linux-stable/fs/smb/client/dfs_cache.c
Paulo Alcantara ce04127c58 smb: client: ensure to try all targets when finding nested links
With current implementation, when a nested DFS link is found during
mount(2), the client follows the referral and then try to connect to
all of its targets.  If all targets failed, the client bails out
rather than retrying remaining targets from previous referral.

Fix this by stacking all referrals and targets so the client can retry
remaining targets from previous referrals in case all targets of
current referral have failed.

Thanks to samba, this can be easily tested like below

* Run the following under dfs folder in samba server

  $ ln -s "msdfs:srv\\bad-share" link1
  $ ln -s "msdfs:srv\\dfs\\link1,srv\\good-share" link0

* Before patch

  $ mount.cifs //srv/dfs/link0 /mnt -o ...
  mount error(2): No such file or directory
  Refer to the mount.cifs(8) manual page (e.g. man mount.cifs)...

* After patch

  $ mount.cifs //srv/dfs/link0 /mnt -o ...
  # ls /mnt
  bar  fileshare1  sub

Signed-off-by: Paulo Alcantara (SUSE) <pc@manguebit.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
2023-08-20 16:05:50 -05:00

1305 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DFS referral cache routines
*
* Copyright (c) 2018-2019 Paulo Alcantara <palcantara@suse.de>
*/
#include <linux/jhash.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/nls.h>
#include <linux/workqueue.h>
#include <linux/uuid.h>
#include "cifsglob.h"
#include "smb2pdu.h"
#include "smb2proto.h"
#include "cifsproto.h"
#include "cifs_debug.h"
#include "cifs_unicode.h"
#include "smb2glob.h"
#include "dns_resolve.h"
#include "dfs.h"
#include "dfs_cache.h"
#define CACHE_HTABLE_SIZE 32
#define CACHE_MAX_ENTRIES 64
#define CACHE_MIN_TTL 120 /* 2 minutes */
#define CACHE_DEFAULT_TTL 300 /* 5 minutes */
struct cache_dfs_tgt {
char *name;
int path_consumed;
struct list_head list;
};
struct cache_entry {
struct hlist_node hlist;
const char *path;
int hdr_flags; /* RESP_GET_DFS_REFERRAL.ReferralHeaderFlags */
int ttl; /* DFS_REREFERRAL_V3.TimeToLive */
int srvtype; /* DFS_REREFERRAL_V3.ServerType */
int ref_flags; /* DFS_REREFERRAL_V3.ReferralEntryFlags */
struct timespec64 etime;
int path_consumed; /* RESP_GET_DFS_REFERRAL.PathConsumed */
int numtgts;
struct list_head tlist;
struct cache_dfs_tgt *tgthint;
};
static struct kmem_cache *cache_slab __read_mostly;
struct workqueue_struct *dfscache_wq;
atomic_t dfs_cache_ttl;
static struct nls_table *cache_cp;
/*
* Number of entries in the cache
*/
static atomic_t cache_count;
static struct hlist_head cache_htable[CACHE_HTABLE_SIZE];
static DECLARE_RWSEM(htable_rw_lock);
/**
* dfs_cache_canonical_path - get a canonical DFS path
*
* @path: DFS path
* @cp: codepage
* @remap: mapping type
*
* Return canonical path if success, otherwise error.
*/
char *dfs_cache_canonical_path(const char *path, const struct nls_table *cp, int remap)
{
char *tmp;
int plen = 0;
char *npath;
if (!path || strlen(path) < 3 || (*path != '\\' && *path != '/'))
return ERR_PTR(-EINVAL);
if (unlikely(strcmp(cp->charset, cache_cp->charset))) {
tmp = (char *)cifs_strndup_to_utf16(path, strlen(path), &plen, cp, remap);
if (!tmp) {
cifs_dbg(VFS, "%s: failed to convert path to utf16\n", __func__);
return ERR_PTR(-EINVAL);
}
npath = cifs_strndup_from_utf16(tmp, plen, true, cache_cp);
kfree(tmp);
if (!npath) {
cifs_dbg(VFS, "%s: failed to convert path from utf16\n", __func__);
return ERR_PTR(-EINVAL);
}
} else {
npath = kstrdup(path, GFP_KERNEL);
if (!npath)
return ERR_PTR(-ENOMEM);
}
convert_delimiter(npath, '\\');
return npath;
}
static inline bool cache_entry_expired(const struct cache_entry *ce)
{
struct timespec64 ts;
ktime_get_coarse_real_ts64(&ts);
return timespec64_compare(&ts, &ce->etime) >= 0;
}
static inline void free_tgts(struct cache_entry *ce)
{
struct cache_dfs_tgt *t, *n;
list_for_each_entry_safe(t, n, &ce->tlist, list) {
list_del(&t->list);
kfree(t->name);
kfree(t);
}
}
static inline void flush_cache_ent(struct cache_entry *ce)
{
hlist_del_init(&ce->hlist);
kfree(ce->path);
free_tgts(ce);
atomic_dec(&cache_count);
kmem_cache_free(cache_slab, ce);
}
static void flush_cache_ents(void)
{
int i;
for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
struct hlist_head *l = &cache_htable[i];
struct hlist_node *n;
struct cache_entry *ce;
hlist_for_each_entry_safe(ce, n, l, hlist) {
if (!hlist_unhashed(&ce->hlist))
flush_cache_ent(ce);
}
}
}
/*
* dfs cache /proc file
*/
static int dfscache_proc_show(struct seq_file *m, void *v)
{
int i;
struct cache_entry *ce;
struct cache_dfs_tgt *t;
seq_puts(m, "DFS cache\n---------\n");
down_read(&htable_rw_lock);
for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
struct hlist_head *l = &cache_htable[i];
hlist_for_each_entry(ce, l, hlist) {
if (hlist_unhashed(&ce->hlist))
continue;
seq_printf(m,
"cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
ce->path, ce->srvtype == DFS_TYPE_ROOT ? "root" : "link",
ce->ttl, ce->etime.tv_nsec, ce->hdr_flags, ce->ref_flags,
DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
ce->path_consumed, cache_entry_expired(ce) ? "yes" : "no");
list_for_each_entry(t, &ce->tlist, list) {
seq_printf(m, " %s%s\n",
t->name,
READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
}
}
}
up_read(&htable_rw_lock);
return 0;
}
static ssize_t dfscache_proc_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
char c;
int rc;
rc = get_user(c, buffer);
if (rc)
return rc;
if (c != '0')
return -EINVAL;
cifs_dbg(FYI, "clearing dfs cache\n");
down_write(&htable_rw_lock);
flush_cache_ents();
up_write(&htable_rw_lock);
return count;
}
static int dfscache_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, dfscache_proc_show, NULL);
}
const struct proc_ops dfscache_proc_ops = {
.proc_open = dfscache_proc_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = single_release,
.proc_write = dfscache_proc_write,
};
#ifdef CONFIG_CIFS_DEBUG2
static inline void dump_tgts(const struct cache_entry *ce)
{
struct cache_dfs_tgt *t;
cifs_dbg(FYI, "target list:\n");
list_for_each_entry(t, &ce->tlist, list) {
cifs_dbg(FYI, " %s%s\n", t->name,
READ_ONCE(ce->tgthint) == t ? " (target hint)" : "");
}
}
static inline void dump_ce(const struct cache_entry *ce)
{
cifs_dbg(FYI, "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n",
ce->path,
ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", ce->ttl,
ce->etime.tv_nsec,
ce->hdr_flags, ce->ref_flags,
DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no",
ce->path_consumed,
cache_entry_expired(ce) ? "yes" : "no");
dump_tgts(ce);
}
static inline void dump_refs(const struct dfs_info3_param *refs, int numrefs)
{
int i;
cifs_dbg(FYI, "DFS referrals returned by the server:\n");
for (i = 0; i < numrefs; i++) {
const struct dfs_info3_param *ref = &refs[i];
cifs_dbg(FYI,
"\n"
"flags: 0x%x\n"
"path_consumed: %d\n"
"server_type: 0x%x\n"
"ref_flag: 0x%x\n"
"path_name: %s\n"
"node_name: %s\n"
"ttl: %d (%dm)\n",
ref->flags, ref->path_consumed, ref->server_type,
ref->ref_flag, ref->path_name, ref->node_name,
ref->ttl, ref->ttl / 60);
}
}
#else
#define dump_tgts(e)
#define dump_ce(e)
#define dump_refs(r, n)
#endif
/**
* dfs_cache_init - Initialize DFS referral cache.
*
* Return zero if initialized successfully, otherwise non-zero.
*/
int dfs_cache_init(void)
{
int rc;
int i;
dfscache_wq = alloc_workqueue("cifs-dfscache",
WQ_UNBOUND|WQ_FREEZABLE|WQ_MEM_RECLAIM,
0);
if (!dfscache_wq)
return -ENOMEM;
cache_slab = kmem_cache_create("cifs_dfs_cache",
sizeof(struct cache_entry), 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!cache_slab) {
rc = -ENOMEM;
goto out_destroy_wq;
}
for (i = 0; i < CACHE_HTABLE_SIZE; i++)
INIT_HLIST_HEAD(&cache_htable[i]);
atomic_set(&cache_count, 0);
atomic_set(&dfs_cache_ttl, CACHE_DEFAULT_TTL);
cache_cp = load_nls("utf8");
if (!cache_cp)
cache_cp = load_nls_default();
cifs_dbg(FYI, "%s: initialized DFS referral cache\n", __func__);
return 0;
out_destroy_wq:
destroy_workqueue(dfscache_wq);
return rc;
}
static int cache_entry_hash(const void *data, int size, unsigned int *hash)
{
int i, clen;
const unsigned char *s = data;
wchar_t c;
unsigned int h = 0;
for (i = 0; i < size; i += clen) {
clen = cache_cp->char2uni(&s[i], size - i, &c);
if (unlikely(clen < 0)) {
cifs_dbg(VFS, "%s: can't convert char\n", __func__);
return clen;
}
c = cifs_toupper(c);
h = jhash(&c, sizeof(c), h);
}
*hash = h % CACHE_HTABLE_SIZE;
return 0;
}
/* Return target hint of a DFS cache entry */
static inline char *get_tgt_name(const struct cache_entry *ce)
{
struct cache_dfs_tgt *t = READ_ONCE(ce->tgthint);
return t ? t->name : ERR_PTR(-ENOENT);
}
/* Return expire time out of a new entry's TTL */
static inline struct timespec64 get_expire_time(int ttl)
{
struct timespec64 ts = {
.tv_sec = ttl,
.tv_nsec = 0,
};
struct timespec64 now;
ktime_get_coarse_real_ts64(&now);
return timespec64_add(now, ts);
}
/* Allocate a new DFS target */
static struct cache_dfs_tgt *alloc_target(const char *name, int path_consumed)
{
struct cache_dfs_tgt *t;
t = kmalloc(sizeof(*t), GFP_ATOMIC);
if (!t)
return ERR_PTR(-ENOMEM);
t->name = kstrdup(name, GFP_ATOMIC);
if (!t->name) {
kfree(t);
return ERR_PTR(-ENOMEM);
}
t->path_consumed = path_consumed;
INIT_LIST_HEAD(&t->list);
return t;
}
/*
* Copy DFS referral information to a cache entry and conditionally update
* target hint.
*/
static int copy_ref_data(const struct dfs_info3_param *refs, int numrefs,
struct cache_entry *ce, const char *tgthint)
{
struct cache_dfs_tgt *target;
int i;
ce->ttl = max_t(int, refs[0].ttl, CACHE_MIN_TTL);
ce->etime = get_expire_time(ce->ttl);
ce->srvtype = refs[0].server_type;
ce->hdr_flags = refs[0].flags;
ce->ref_flags = refs[0].ref_flag;
ce->path_consumed = refs[0].path_consumed;
for (i = 0; i < numrefs; i++) {
struct cache_dfs_tgt *t;
t = alloc_target(refs[i].node_name, refs[i].path_consumed);
if (IS_ERR(t)) {
free_tgts(ce);
return PTR_ERR(t);
}
if (tgthint && !strcasecmp(t->name, tgthint)) {
list_add(&t->list, &ce->tlist);
tgthint = NULL;
} else {
list_add_tail(&t->list, &ce->tlist);
}
ce->numtgts++;
}
target = list_first_entry_or_null(&ce->tlist, struct cache_dfs_tgt,
list);
WRITE_ONCE(ce->tgthint, target);
return 0;
}
/* Allocate a new cache entry */
static struct cache_entry *alloc_cache_entry(struct dfs_info3_param *refs, int numrefs)
{
struct cache_entry *ce;
int rc;
ce = kmem_cache_zalloc(cache_slab, GFP_KERNEL);
if (!ce)
return ERR_PTR(-ENOMEM);
ce->path = refs[0].path_name;
refs[0].path_name = NULL;
INIT_HLIST_NODE(&ce->hlist);
INIT_LIST_HEAD(&ce->tlist);
rc = copy_ref_data(refs, numrefs, ce, NULL);
if (rc) {
kfree(ce->path);
kmem_cache_free(cache_slab, ce);
ce = ERR_PTR(rc);
}
return ce;
}
static void remove_oldest_entry_locked(void)
{
int i;
struct cache_entry *ce;
struct cache_entry *to_del = NULL;
WARN_ON(!rwsem_is_locked(&htable_rw_lock));
for (i = 0; i < CACHE_HTABLE_SIZE; i++) {
struct hlist_head *l = &cache_htable[i];
hlist_for_each_entry(ce, l, hlist) {
if (hlist_unhashed(&ce->hlist))
continue;
if (!to_del || timespec64_compare(&ce->etime,
&to_del->etime) < 0)
to_del = ce;
}
}
if (!to_del) {
cifs_dbg(FYI, "%s: no entry to remove\n", __func__);
return;
}
cifs_dbg(FYI, "%s: removing entry\n", __func__);
dump_ce(to_del);
flush_cache_ent(to_del);
}
/* Add a new DFS cache entry */
static struct cache_entry *add_cache_entry_locked(struct dfs_info3_param *refs,
int numrefs)
{
int rc;
struct cache_entry *ce;
unsigned int hash;
int ttl;
WARN_ON(!rwsem_is_locked(&htable_rw_lock));
if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES) {
cifs_dbg(FYI, "%s: reached max cache size (%d)\n", __func__, CACHE_MAX_ENTRIES);
remove_oldest_entry_locked();
}
rc = cache_entry_hash(refs[0].path_name, strlen(refs[0].path_name), &hash);
if (rc)
return ERR_PTR(rc);
ce = alloc_cache_entry(refs, numrefs);
if (IS_ERR(ce))
return ce;
ttl = min_t(int, atomic_read(&dfs_cache_ttl), ce->ttl);
atomic_set(&dfs_cache_ttl, ttl);
hlist_add_head(&ce->hlist, &cache_htable[hash]);
dump_ce(ce);
atomic_inc(&cache_count);
return ce;
}
/* Check if two DFS paths are equal. @s1 and @s2 are expected to be in @cache_cp's charset */
static bool dfs_path_equal(const char *s1, int len1, const char *s2, int len2)
{
int i, l1, l2;
wchar_t c1, c2;
if (len1 != len2)
return false;
for (i = 0; i < len1; i += l1) {
l1 = cache_cp->char2uni(&s1[i], len1 - i, &c1);
l2 = cache_cp->char2uni(&s2[i], len2 - i, &c2);
if (unlikely(l1 < 0 && l2 < 0)) {
if (s1[i] != s2[i])
return false;
l1 = 1;
continue;
}
if (l1 != l2)
return false;
if (cifs_toupper(c1) != cifs_toupper(c2))
return false;
}
return true;
}
static struct cache_entry *__lookup_cache_entry(const char *path, unsigned int hash, int len)
{
struct cache_entry *ce;
hlist_for_each_entry(ce, &cache_htable[hash], hlist) {
if (dfs_path_equal(ce->path, strlen(ce->path), path, len)) {
dump_ce(ce);
return ce;
}
}
return ERR_PTR(-ENOENT);
}
/*
* Find a DFS cache entry in hash table and optionally check prefix path against normalized @path.
*
* Use whole path components in the match. Must be called with htable_rw_lock held.
*
* Return cached entry if successful.
* Return ERR_PTR(-ENOENT) if the entry is not found.
* Return error ptr otherwise.
*/
static struct cache_entry *lookup_cache_entry(const char *path)
{
struct cache_entry *ce;
int cnt = 0;
const char *s = path, *e;
char sep = *s;
unsigned int hash;
int rc;
while ((s = strchr(s, sep)) && ++cnt < 3)
s++;
if (cnt < 3) {
rc = cache_entry_hash(path, strlen(path), &hash);
if (rc)
return ERR_PTR(rc);
return __lookup_cache_entry(path, hash, strlen(path));
}
/*
* Handle paths that have more than two path components and are a complete prefix of the DFS
* referral request path (@path).
*
* See MS-DFSC 3.2.5.5 "Receiving a Root Referral Request or Link Referral Request".
*/
e = path + strlen(path) - 1;
while (e > s) {
int len;
/* skip separators */
while (e > s && *e == sep)
e--;
if (e == s)
break;
len = e + 1 - path;
rc = cache_entry_hash(path, len, &hash);
if (rc)
return ERR_PTR(rc);
ce = __lookup_cache_entry(path, hash, len);
if (!IS_ERR(ce))
return ce;
/* backward until separator */
while (e > s && *e != sep)
e--;
}
return ERR_PTR(-ENOENT);
}
/**
* dfs_cache_destroy - destroy DFS referral cache
*/
void dfs_cache_destroy(void)
{
unload_nls(cache_cp);
flush_cache_ents();
kmem_cache_destroy(cache_slab);
destroy_workqueue(dfscache_wq);
cifs_dbg(FYI, "%s: destroyed DFS referral cache\n", __func__);
}
/* Update a cache entry with the new referral in @refs */
static int update_cache_entry_locked(struct cache_entry *ce, const struct dfs_info3_param *refs,
int numrefs)
{
struct cache_dfs_tgt *target;
char *th = NULL;
int rc;
WARN_ON(!rwsem_is_locked(&htable_rw_lock));
target = READ_ONCE(ce->tgthint);
if (target) {
th = kstrdup(target->name, GFP_ATOMIC);
if (!th)
return -ENOMEM;
}
free_tgts(ce);
ce->numtgts = 0;
rc = copy_ref_data(refs, numrefs, ce, th);
kfree(th);
return rc;
}
static int get_dfs_referral(const unsigned int xid, struct cifs_ses *ses, const char *path,
struct dfs_info3_param **refs, int *numrefs)
{
int rc;
int i;
*refs = NULL;
*numrefs = 0;
if (!ses || !ses->server || !ses->server->ops->get_dfs_refer)
return -EOPNOTSUPP;
if (unlikely(!cache_cp))
return -EINVAL;
cifs_dbg(FYI, "%s: ipc=%s referral=%s\n", __func__, ses->tcon_ipc->tree_name, path);
rc = ses->server->ops->get_dfs_refer(xid, ses, path, refs, numrefs, cache_cp,
NO_MAP_UNI_RSVD);
if (!rc) {
struct dfs_info3_param *ref = *refs;
for (i = 0; i < *numrefs; i++)
convert_delimiter(ref[i].path_name, '\\');
}
return rc;
}
/*
* Find, create or update a DFS cache entry.
*
* If the entry wasn't found, it will create a new one. Or if it was found but
* expired, then it will update the entry accordingly.
*
* For interlinks, cifs_mount() and expand_dfs_referral() are supposed to
* handle them properly.
*
* On success, return entry with acquired lock for reading, otherwise error ptr.
*/
static struct cache_entry *cache_refresh_path(const unsigned int xid,
struct cifs_ses *ses,
const char *path,
bool force_refresh)
{
struct dfs_info3_param *refs = NULL;
struct cache_entry *ce;
int numrefs = 0;
int rc;
cifs_dbg(FYI, "%s: search path: %s\n", __func__, path);
down_read(&htable_rw_lock);
ce = lookup_cache_entry(path);
if (!IS_ERR(ce)) {
if (!force_refresh && !cache_entry_expired(ce))
return ce;
} else if (PTR_ERR(ce) != -ENOENT) {
up_read(&htable_rw_lock);
return ce;
}
/*
* Unlock shared access as we don't want to hold any locks while getting
* a new referral. The @ses used for performing the I/O could be
* reconnecting and it acquires @htable_rw_lock to look up the dfs cache
* in order to failover -- if necessary.
*/
up_read(&htable_rw_lock);
/*
* Either the entry was not found, or it is expired, or it is a forced
* refresh.
* Request a new DFS referral in order to create or update a cache entry.
*/
rc = get_dfs_referral(xid, ses, path, &refs, &numrefs);
if (rc) {
ce = ERR_PTR(rc);
goto out;
}
dump_refs(refs, numrefs);
down_write(&htable_rw_lock);
/* Re-check as another task might have it added or refreshed already */
ce = lookup_cache_entry(path);
if (!IS_ERR(ce)) {
if (force_refresh || cache_entry_expired(ce)) {
rc = update_cache_entry_locked(ce, refs, numrefs);
if (rc)
ce = ERR_PTR(rc);
}
} else if (PTR_ERR(ce) == -ENOENT) {
ce = add_cache_entry_locked(refs, numrefs);
}
if (IS_ERR(ce)) {
up_write(&htable_rw_lock);
goto out;
}
downgrade_write(&htable_rw_lock);
out:
free_dfs_info_array(refs, numrefs);
return ce;
}
/*
* Set up a DFS referral from a given cache entry.
*
* Must be called with htable_rw_lock held.
*/
static int setup_referral(const char *path, struct cache_entry *ce,
struct dfs_info3_param *ref, const char *target)
{
int rc;
cifs_dbg(FYI, "%s: set up new ref\n", __func__);
memset(ref, 0, sizeof(*ref));
ref->path_name = kstrdup(path, GFP_ATOMIC);
if (!ref->path_name)
return -ENOMEM;
ref->node_name = kstrdup(target, GFP_ATOMIC);
if (!ref->node_name) {
rc = -ENOMEM;
goto err_free_path;
}
ref->path_consumed = ce->path_consumed;
ref->ttl = ce->ttl;
ref->server_type = ce->srvtype;
ref->ref_flag = ce->ref_flags;
ref->flags = ce->hdr_flags;
return 0;
err_free_path:
kfree(ref->path_name);
ref->path_name = NULL;
return rc;
}
/* Return target list of a DFS cache entry */
static int get_targets(struct cache_entry *ce, struct dfs_cache_tgt_list *tl)
{
int rc;
struct list_head *head = &tl->tl_list;
struct cache_dfs_tgt *t;
struct dfs_cache_tgt_iterator *it, *nit;
memset(tl, 0, sizeof(*tl));
INIT_LIST_HEAD(head);
list_for_each_entry(t, &ce->tlist, list) {
it = kzalloc(sizeof(*it), GFP_ATOMIC);
if (!it) {
rc = -ENOMEM;
goto err_free_it;
}
it->it_name = kstrdup(t->name, GFP_ATOMIC);
if (!it->it_name) {
kfree(it);
rc = -ENOMEM;
goto err_free_it;
}
it->it_path_consumed = t->path_consumed;
if (READ_ONCE(ce->tgthint) == t)
list_add(&it->it_list, head);
else
list_add_tail(&it->it_list, head);
}
tl->tl_numtgts = ce->numtgts;
return 0;
err_free_it:
list_for_each_entry_safe(it, nit, head, it_list) {
list_del(&it->it_list);
kfree(it->it_name);
kfree(it);
}
return rc;
}
/**
* dfs_cache_find - find a DFS cache entry
*
* If it doesn't find the cache entry, then it will get a DFS referral
* for @path and create a new entry.
*
* In case the cache entry exists but expired, it will get a DFS referral
* for @path and then update the respective cache entry.
*
* These parameters are passed down to the get_dfs_refer() call if it
* needs to be issued:
* @xid: syscall xid
* @ses: smb session to issue the request on
* @cp: codepage
* @remap: path character remapping type
* @path: path to lookup in DFS referral cache.
*
* @ref: when non-NULL, store single DFS referral result in it.
* @tgt_list: when non-NULL, store complete DFS target list in it.
*
* Return zero if the target was found, otherwise non-zero.
*/
int dfs_cache_find(const unsigned int xid, struct cifs_ses *ses, const struct nls_table *cp,
int remap, const char *path, struct dfs_info3_param *ref,
struct dfs_cache_tgt_list *tgt_list)
{
int rc;
const char *npath;
struct cache_entry *ce;
npath = dfs_cache_canonical_path(path, cp, remap);
if (IS_ERR(npath))
return PTR_ERR(npath);
ce = cache_refresh_path(xid, ses, npath, false);
if (IS_ERR(ce)) {
rc = PTR_ERR(ce);
goto out_free_path;
}
if (ref)
rc = setup_referral(path, ce, ref, get_tgt_name(ce));
else
rc = 0;
if (!rc && tgt_list)
rc = get_targets(ce, tgt_list);
up_read(&htable_rw_lock);
out_free_path:
kfree(npath);
return rc;
}
/**
* dfs_cache_noreq_find - find a DFS cache entry without sending any requests to
* the currently connected server.
*
* NOTE: This function will neither update a cache entry in case it was
* expired, nor create a new cache entry if @path hasn't been found. It heavily
* relies on an existing cache entry.
*
* @path: canonical DFS path to lookup in the DFS referral cache.
* @ref: when non-NULL, store single DFS referral result in it.
* @tgt_list: when non-NULL, store complete DFS target list in it.
*
* Return 0 if successful.
* Return -ENOENT if the entry was not found.
* Return non-zero for other errors.
*/
int dfs_cache_noreq_find(const char *path, struct dfs_info3_param *ref,
struct dfs_cache_tgt_list *tgt_list)
{
int rc;
struct cache_entry *ce;
cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
down_read(&htable_rw_lock);
ce = lookup_cache_entry(path);
if (IS_ERR(ce)) {
rc = PTR_ERR(ce);
goto out_unlock;
}
if (ref)
rc = setup_referral(path, ce, ref, get_tgt_name(ce));
else
rc = 0;
if (!rc && tgt_list)
rc = get_targets(ce, tgt_list);
out_unlock:
up_read(&htable_rw_lock);
return rc;
}
/**
* dfs_cache_noreq_update_tgthint - update target hint of a DFS cache entry
* without sending any requests to the currently connected server.
*
* NOTE: This function will neither update a cache entry in case it was
* expired, nor create a new cache entry if @path hasn't been found. It heavily
* relies on an existing cache entry.
*
* @path: canonical DFS path to lookup in DFS referral cache.
* @it: target iterator which contains the target hint to update the cache
* entry with.
*
* Return zero if the target hint was updated successfully, otherwise non-zero.
*/
void dfs_cache_noreq_update_tgthint(const char *path, const struct dfs_cache_tgt_iterator *it)
{
struct cache_dfs_tgt *t;
struct cache_entry *ce;
if (!path || !it)
return;
cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
down_read(&htable_rw_lock);
ce = lookup_cache_entry(path);
if (IS_ERR(ce))
goto out_unlock;
t = READ_ONCE(ce->tgthint);
if (unlikely(!strcasecmp(it->it_name, t->name)))
goto out_unlock;
list_for_each_entry(t, &ce->tlist, list) {
if (!strcasecmp(t->name, it->it_name)) {
WRITE_ONCE(ce->tgthint, t);
cifs_dbg(FYI, "%s: new target hint: %s\n", __func__,
it->it_name);
break;
}
}
out_unlock:
up_read(&htable_rw_lock);
}
/**
* dfs_cache_get_tgt_referral - returns a DFS referral (@ref) from a given
* target iterator (@it).
*
* @path: canonical DFS path to lookup in DFS referral cache.
* @it: DFS target iterator.
* @ref: DFS referral pointer to set up the gathered information.
*
* Return zero if the DFS referral was set up correctly, otherwise non-zero.
*/
int dfs_cache_get_tgt_referral(const char *path, const struct dfs_cache_tgt_iterator *it,
struct dfs_info3_param *ref)
{
int rc;
struct cache_entry *ce;
if (!it || !ref)
return -EINVAL;
cifs_dbg(FYI, "%s: path: %s\n", __func__, path);
down_read(&htable_rw_lock);
ce = lookup_cache_entry(path);
if (IS_ERR(ce)) {
rc = PTR_ERR(ce);
goto out_unlock;
}
cifs_dbg(FYI, "%s: target name: %s\n", __func__, it->it_name);
rc = setup_referral(path, ce, ref, it->it_name);
out_unlock:
up_read(&htable_rw_lock);
return rc;
}
/* Extract share from DFS target and return a pointer to prefix path or NULL */
static const char *parse_target_share(const char *target, char **share)
{
const char *s, *seps = "/\\";
size_t len;
s = strpbrk(target + 1, seps);
if (!s)
return ERR_PTR(-EINVAL);
len = strcspn(s + 1, seps);
if (!len)
return ERR_PTR(-EINVAL);
s += len;
len = s - target + 1;
*share = kstrndup(target, len, GFP_KERNEL);
if (!*share)
return ERR_PTR(-ENOMEM);
s = target + len;
return s + strspn(s, seps);
}
/**
* dfs_cache_get_tgt_share - parse a DFS target
*
* @path: DFS full path
* @it: DFS target iterator.
* @share: tree name.
* @prefix: prefix path.
*
* Return zero if target was parsed correctly, otherwise non-zero.
*/
int dfs_cache_get_tgt_share(char *path, const struct dfs_cache_tgt_iterator *it, char **share,
char **prefix)
{
char sep;
char *target_share;
char *ppath = NULL;
const char *target_ppath, *dfsref_ppath;
size_t target_pplen, dfsref_pplen;
size_t len, c;
if (!it || !path || !share || !prefix || strlen(path) < it->it_path_consumed)
return -EINVAL;
sep = it->it_name[0];
if (sep != '\\' && sep != '/')
return -EINVAL;
target_ppath = parse_target_share(it->it_name, &target_share);
if (IS_ERR(target_ppath))
return PTR_ERR(target_ppath);
/* point to prefix in DFS referral path */
dfsref_ppath = path + it->it_path_consumed;
dfsref_ppath += strspn(dfsref_ppath, "/\\");
target_pplen = strlen(target_ppath);
dfsref_pplen = strlen(dfsref_ppath);
/* merge prefix paths from DFS referral path and target node */
if (target_pplen || dfsref_pplen) {
len = target_pplen + dfsref_pplen + 2;
ppath = kzalloc(len, GFP_KERNEL);
if (!ppath) {
kfree(target_share);
return -ENOMEM;
}
c = strscpy(ppath, target_ppath, len);
if (c && dfsref_pplen)
ppath[c] = sep;
strlcat(ppath, dfsref_ppath, len);
}
*share = target_share;
*prefix = ppath;
return 0;
}
static bool target_share_equal(struct TCP_Server_Info *server, const char *s1, const char *s2)
{
char unc[sizeof("\\\\") + SERVER_NAME_LENGTH] = {0};
const char *host;
size_t hostlen;
struct sockaddr_storage ss;
bool match;
int rc;
if (strcasecmp(s1, s2))
return false;
/*
* Resolve share's hostname and check if server address matches. Otherwise just ignore it
* as we could not have upcall to resolve hostname or failed to convert ip address.
*/
extract_unc_hostname(s1, &host, &hostlen);
scnprintf(unc, sizeof(unc), "\\\\%.*s", (int)hostlen, host);
rc = dns_resolve_server_name_to_ip(unc, (struct sockaddr *)&ss, NULL);
if (rc < 0) {
cifs_dbg(FYI, "%s: could not resolve %.*s. assuming server address matches.\n",
__func__, (int)hostlen, host);
return true;
}
cifs_server_lock(server);
match = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
cifs_server_unlock(server);
return match;
}
/*
* Mark dfs tcon for reconnecting when the currently connected tcon does not match any of the new
* target shares in @refs.
*/
static void mark_for_reconnect_if_needed(struct TCP_Server_Info *server,
const char *path,
struct dfs_cache_tgt_list *old_tl,
struct dfs_cache_tgt_list *new_tl)
{
struct dfs_cache_tgt_iterator *oit, *nit;
for (oit = dfs_cache_get_tgt_iterator(old_tl); oit;
oit = dfs_cache_get_next_tgt(old_tl, oit)) {
for (nit = dfs_cache_get_tgt_iterator(new_tl); nit;
nit = dfs_cache_get_next_tgt(new_tl, nit)) {
if (target_share_equal(server,
dfs_cache_get_tgt_name(oit),
dfs_cache_get_tgt_name(nit))) {
dfs_cache_noreq_update_tgthint(path, nit);
return;
}
}
}
cifs_dbg(FYI, "%s: no cached or matched targets. mark dfs share for reconnect.\n", __func__);
cifs_signal_cifsd_for_reconnect(server, true);
}
static bool is_ses_good(struct cifs_ses *ses)
{
struct TCP_Server_Info *server = ses->server;
struct cifs_tcon *tcon = ses->tcon_ipc;
bool ret;
spin_lock(&ses->ses_lock);
spin_lock(&ses->chan_lock);
ret = !cifs_chan_needs_reconnect(ses, server) &&
ses->ses_status == SES_GOOD &&
!tcon->need_reconnect;
spin_unlock(&ses->chan_lock);
spin_unlock(&ses->ses_lock);
return ret;
}
/* Refresh dfs referral of tcon and mark it for reconnect if needed */
static int __refresh_tcon(const char *path, struct cifs_ses *ses, bool force_refresh)
{
struct TCP_Server_Info *server = ses->server;
DFS_CACHE_TGT_LIST(old_tl);
DFS_CACHE_TGT_LIST(new_tl);
bool needs_refresh = false;
struct cache_entry *ce;
unsigned int xid;
int rc = 0;
xid = get_xid();
down_read(&htable_rw_lock);
ce = lookup_cache_entry(path);
needs_refresh = force_refresh || IS_ERR(ce) || cache_entry_expired(ce);
if (!IS_ERR(ce)) {
rc = get_targets(ce, &old_tl);
cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc);
}
up_read(&htable_rw_lock);
if (!needs_refresh) {
rc = 0;
goto out;
}
ses = CIFS_DFS_ROOT_SES(ses);
if (!is_ses_good(ses)) {
cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n",
__func__);
goto out;
}
ce = cache_refresh_path(xid, ses, path, true);
if (!IS_ERR(ce)) {
rc = get_targets(ce, &new_tl);
up_read(&htable_rw_lock);
cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc);
mark_for_reconnect_if_needed(server, path, &old_tl, &new_tl);
}
out:
free_xid(xid);
dfs_cache_free_tgts(&old_tl);
dfs_cache_free_tgts(&new_tl);
return rc;
}
static int refresh_tcon(struct cifs_tcon *tcon, bool force_refresh)
{
struct TCP_Server_Info *server = tcon->ses->server;
struct cifs_ses *ses = tcon->ses;
mutex_lock(&server->refpath_lock);
if (server->leaf_fullpath)
__refresh_tcon(server->leaf_fullpath + 1, ses, force_refresh);
mutex_unlock(&server->refpath_lock);
return 0;
}
/**
* dfs_cache_remount_fs - remount a DFS share
*
* Reconfigure dfs mount by forcing a new DFS referral and if the currently cached targets do not
* match any of the new targets, mark it for reconnect.
*
* @cifs_sb: cifs superblock.
*
* Return zero if remounted, otherwise non-zero.
*/
int dfs_cache_remount_fs(struct cifs_sb_info *cifs_sb)
{
struct cifs_tcon *tcon;
if (!cifs_sb || !cifs_sb->master_tlink)
return -EINVAL;
tcon = cifs_sb_master_tcon(cifs_sb);
spin_lock(&tcon->tc_lock);
if (!tcon->origin_fullpath) {
spin_unlock(&tcon->tc_lock);
cifs_dbg(FYI, "%s: not a dfs mount\n", __func__);
return 0;
}
spin_unlock(&tcon->tc_lock);
/*
* After reconnecting to a different server, unique ids won't match anymore, so we disable
* serverino. This prevents dentry revalidation to think the dentry are stale (ESTALE).
*/
cifs_autodisable_serverino(cifs_sb);
/*
* Force the use of prefix path to support failover on DFS paths that resolve to targets
* that have different prefix paths.
*/
cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
return refresh_tcon(tcon, true);
}
/* Refresh all DFS referrals related to DFS tcon */
void dfs_cache_refresh(struct work_struct *work)
{
struct TCP_Server_Info *server;
struct dfs_root_ses *rses;
struct cifs_tcon *tcon;
struct cifs_ses *ses;
tcon = container_of(work, struct cifs_tcon, dfs_cache_work.work);
ses = tcon->ses;
server = ses->server;
mutex_lock(&server->refpath_lock);
if (server->leaf_fullpath)
__refresh_tcon(server->leaf_fullpath + 1, ses, false);
mutex_unlock(&server->refpath_lock);
list_for_each_entry(rses, &tcon->dfs_ses_list, list) {
ses = rses->ses;
server = ses->server;
mutex_lock(&server->refpath_lock);
if (server->leaf_fullpath)
__refresh_tcon(server->leaf_fullpath + 1, ses, false);
mutex_unlock(&server->refpath_lock);
}
queue_delayed_work(dfscache_wq, &tcon->dfs_cache_work,
atomic_read(&dfs_cache_ttl) * HZ);
}