linux-stable/drivers/hv/hv_balloon.c
Stephen Hemminger 8b1f91fb4c vmbus: remove useless return's
No need for empty return at end of void function

Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-17 15:10:48 +09:00

1734 lines
42 KiB
C

/*
* Copyright (c) 2012, Microsoft Corporation.
*
* Author:
* K. Y. Srinivasan <kys@microsoft.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/mman.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <linux/memory_hotplug.h>
#include <linux/memory.h>
#include <linux/notifier.h>
#include <linux/percpu_counter.h>
#include <linux/hyperv.h>
/*
* We begin with definitions supporting the Dynamic Memory protocol
* with the host.
*
* Begin protocol definitions.
*/
/*
* Protocol versions. The low word is the minor version, the high word the major
* version.
*
* History:
* Initial version 1.0
* Changed to 0.1 on 2009/03/25
* Changes to 0.2 on 2009/05/14
* Changes to 0.3 on 2009/12/03
* Changed to 1.0 on 2011/04/05
*/
#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
enum {
DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
};
/*
* Message Types
*/
enum dm_message_type {
/*
* Version 0.3
*/
DM_ERROR = 0,
DM_VERSION_REQUEST = 1,
DM_VERSION_RESPONSE = 2,
DM_CAPABILITIES_REPORT = 3,
DM_CAPABILITIES_RESPONSE = 4,
DM_STATUS_REPORT = 5,
DM_BALLOON_REQUEST = 6,
DM_BALLOON_RESPONSE = 7,
DM_UNBALLOON_REQUEST = 8,
DM_UNBALLOON_RESPONSE = 9,
DM_MEM_HOT_ADD_REQUEST = 10,
DM_MEM_HOT_ADD_RESPONSE = 11,
DM_VERSION_03_MAX = 11,
/*
* Version 1.0.
*/
DM_INFO_MESSAGE = 12,
DM_VERSION_1_MAX = 12
};
/*
* Structures defining the dynamic memory management
* protocol.
*/
union dm_version {
struct {
__u16 minor_version;
__u16 major_version;
};
__u32 version;
} __packed;
union dm_caps {
struct {
__u64 balloon:1;
__u64 hot_add:1;
/*
* To support guests that may have alignment
* limitations on hot-add, the guest can specify
* its alignment requirements; a value of n
* represents an alignment of 2^n in mega bytes.
*/
__u64 hot_add_alignment:4;
__u64 reservedz:58;
} cap_bits;
__u64 caps;
} __packed;
union dm_mem_page_range {
struct {
/*
* The PFN number of the first page in the range.
* 40 bits is the architectural limit of a PFN
* number for AMD64.
*/
__u64 start_page:40;
/*
* The number of pages in the range.
*/
__u64 page_cnt:24;
} finfo;
__u64 page_range;
} __packed;
/*
* The header for all dynamic memory messages:
*
* type: Type of the message.
* size: Size of the message in bytes; including the header.
* trans_id: The guest is responsible for manufacturing this ID.
*/
struct dm_header {
__u16 type;
__u16 size;
__u32 trans_id;
} __packed;
/*
* A generic message format for dynamic memory.
* Specific message formats are defined later in the file.
*/
struct dm_message {
struct dm_header hdr;
__u8 data[]; /* enclosed message */
} __packed;
/*
* Specific message types supporting the dynamic memory protocol.
*/
/*
* Version negotiation message. Sent from the guest to the host.
* The guest is free to try different versions until the host
* accepts the version.
*
* dm_version: The protocol version requested.
* is_last_attempt: If TRUE, this is the last version guest will request.
* reservedz: Reserved field, set to zero.
*/
struct dm_version_request {
struct dm_header hdr;
union dm_version version;
__u32 is_last_attempt:1;
__u32 reservedz:31;
} __packed;
/*
* Version response message; Host to Guest and indicates
* if the host has accepted the version sent by the guest.
*
* is_accepted: If TRUE, host has accepted the version and the guest
* should proceed to the next stage of the protocol. FALSE indicates that
* guest should re-try with a different version.
*
* reservedz: Reserved field, set to zero.
*/
struct dm_version_response {
struct dm_header hdr;
__u64 is_accepted:1;
__u64 reservedz:63;
} __packed;
/*
* Message reporting capabilities. This is sent from the guest to the
* host.
*/
struct dm_capabilities {
struct dm_header hdr;
union dm_caps caps;
__u64 min_page_cnt;
__u64 max_page_number;
} __packed;
/*
* Response to the capabilities message. This is sent from the host to the
* guest. This message notifies if the host has accepted the guest's
* capabilities. If the host has not accepted, the guest must shutdown
* the service.
*
* is_accepted: Indicates if the host has accepted guest's capabilities.
* reservedz: Must be 0.
*/
struct dm_capabilities_resp_msg {
struct dm_header hdr;
__u64 is_accepted:1;
__u64 reservedz:63;
} __packed;
/*
* This message is used to report memory pressure from the guest.
* This message is not part of any transaction and there is no
* response to this message.
*
* num_avail: Available memory in pages.
* num_committed: Committed memory in pages.
* page_file_size: The accumulated size of all page files
* in the system in pages.
* zero_free: The nunber of zero and free pages.
* page_file_writes: The writes to the page file in pages.
* io_diff: An indicator of file cache efficiency or page file activity,
* calculated as File Cache Page Fault Count - Page Read Count.
* This value is in pages.
*
* Some of these metrics are Windows specific and fortunately
* the algorithm on the host side that computes the guest memory
* pressure only uses num_committed value.
*/
struct dm_status {
struct dm_header hdr;
__u64 num_avail;
__u64 num_committed;
__u64 page_file_size;
__u64 zero_free;
__u32 page_file_writes;
__u32 io_diff;
} __packed;
/*
* Message to ask the guest to allocate memory - balloon up message.
* This message is sent from the host to the guest. The guest may not be
* able to allocate as much memory as requested.
*
* num_pages: number of pages to allocate.
*/
struct dm_balloon {
struct dm_header hdr;
__u32 num_pages;
__u32 reservedz;
} __packed;
/*
* Balloon response message; this message is sent from the guest
* to the host in response to the balloon message.
*
* reservedz: Reserved; must be set to zero.
* more_pages: If FALSE, this is the last message of the transaction.
* if TRUE there will atleast one more message from the guest.
*
* range_count: The number of ranges in the range array.
*
* range_array: An array of page ranges returned to the host.
*
*/
struct dm_balloon_response {
struct dm_header hdr;
__u32 reservedz;
__u32 more_pages:1;
__u32 range_count:31;
union dm_mem_page_range range_array[];
} __packed;
/*
* Un-balloon message; this message is sent from the host
* to the guest to give guest more memory.
*
* more_pages: If FALSE, this is the last message of the transaction.
* if TRUE there will atleast one more message from the guest.
*
* reservedz: Reserved; must be set to zero.
*
* range_count: The number of ranges in the range array.
*
* range_array: An array of page ranges returned to the host.
*
*/
struct dm_unballoon_request {
struct dm_header hdr;
__u32 more_pages:1;
__u32 reservedz:31;
__u32 range_count;
union dm_mem_page_range range_array[];
} __packed;
/*
* Un-balloon response message; this message is sent from the guest
* to the host in response to an unballoon request.
*
*/
struct dm_unballoon_response {
struct dm_header hdr;
} __packed;
/*
* Hot add request message. Message sent from the host to the guest.
*
* mem_range: Memory range to hot add.
*
* On Linux we currently don't support this since we cannot hot add
* arbitrary granularity of memory.
*/
struct dm_hot_add {
struct dm_header hdr;
union dm_mem_page_range range;
} __packed;
/*
* Hot add response message.
* This message is sent by the guest to report the status of a hot add request.
* If page_count is less than the requested page count, then the host should
* assume all further hot add requests will fail, since this indicates that
* the guest has hit an upper physical memory barrier.
*
* Hot adds may also fail due to low resources; in this case, the guest must
* not complete this message until the hot add can succeed, and the host must
* not send a new hot add request until the response is sent.
* If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
* times it fails the request.
*
*
* page_count: number of pages that were successfully hot added.
*
* result: result of the operation 1: success, 0: failure.
*
*/
struct dm_hot_add_response {
struct dm_header hdr;
__u32 page_count;
__u32 result;
} __packed;
/*
* Types of information sent from host to the guest.
*/
enum dm_info_type {
INFO_TYPE_MAX_PAGE_CNT = 0,
MAX_INFO_TYPE
};
/*
* Header for the information message.
*/
struct dm_info_header {
enum dm_info_type type;
__u32 data_size;
} __packed;
/*
* This message is sent from the host to the guest to pass
* some relevant information (win8 addition).
*
* reserved: no used.
* info_size: size of the information blob.
* info: information blob.
*/
struct dm_info_msg {
struct dm_header hdr;
__u32 reserved;
__u32 info_size;
__u8 info[];
};
/*
* End protocol definitions.
*/
/*
* State to manage hot adding memory into the guest.
* The range start_pfn : end_pfn specifies the range
* that the host has asked us to hot add. The range
* start_pfn : ha_end_pfn specifies the range that we have
* currently hot added. We hot add in multiples of 128M
* chunks; it is possible that we may not be able to bring
* online all the pages in the region. The range
* covered_start_pfn:covered_end_pfn defines the pages that can
* be brough online.
*/
struct hv_hotadd_state {
struct list_head list;
unsigned long start_pfn;
unsigned long covered_start_pfn;
unsigned long covered_end_pfn;
unsigned long ha_end_pfn;
unsigned long end_pfn;
/*
* A list of gaps.
*/
struct list_head gap_list;
};
struct hv_hotadd_gap {
struct list_head list;
unsigned long start_pfn;
unsigned long end_pfn;
};
struct balloon_state {
__u32 num_pages;
struct work_struct wrk;
};
struct hot_add_wrk {
union dm_mem_page_range ha_page_range;
union dm_mem_page_range ha_region_range;
struct work_struct wrk;
};
static bool hot_add = true;
static bool do_hot_add;
/*
* Delay reporting memory pressure by
* the specified number of seconds.
*/
static uint pressure_report_delay = 45;
/*
* The last time we posted a pressure report to host.
*/
static unsigned long last_post_time;
module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
static atomic_t trans_id = ATOMIC_INIT(0);
static int dm_ring_size = (5 * PAGE_SIZE);
/*
* Driver specific state.
*/
enum hv_dm_state {
DM_INITIALIZING = 0,
DM_INITIALIZED,
DM_BALLOON_UP,
DM_BALLOON_DOWN,
DM_HOT_ADD,
DM_INIT_ERROR
};
static __u8 recv_buffer[PAGE_SIZE];
static __u8 *send_buffer;
#define PAGES_IN_2M 512
#define HA_CHUNK (32 * 1024)
struct hv_dynmem_device {
struct hv_device *dev;
enum hv_dm_state state;
struct completion host_event;
struct completion config_event;
/*
* Number of pages we have currently ballooned out.
*/
unsigned int num_pages_ballooned;
unsigned int num_pages_onlined;
unsigned int num_pages_added;
/*
* State to manage the ballooning (up) operation.
*/
struct balloon_state balloon_wrk;
/*
* State to execute the "hot-add" operation.
*/
struct hot_add_wrk ha_wrk;
/*
* This state tracks if the host has specified a hot-add
* region.
*/
bool host_specified_ha_region;
/*
* State to synchronize hot-add.
*/
struct completion ol_waitevent;
bool ha_waiting;
/*
* This thread handles hot-add
* requests from the host as well as notifying
* the host with regards to memory pressure in
* the guest.
*/
struct task_struct *thread;
/*
* Protects ha_region_list, num_pages_onlined counter and individual
* regions from ha_region_list.
*/
spinlock_t ha_lock;
/*
* A list of hot-add regions.
*/
struct list_head ha_region_list;
/*
* We start with the highest version we can support
* and downgrade based on the host; we save here the
* next version to try.
*/
__u32 next_version;
/*
* The negotiated version agreed by host.
*/
__u32 version;
};
static struct hv_dynmem_device dm_device;
static void post_status(struct hv_dynmem_device *dm);
#ifdef CONFIG_MEMORY_HOTPLUG
static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
void *v)
{
struct memory_notify *mem = (struct memory_notify *)v;
unsigned long flags;
switch (val) {
case MEM_ONLINE:
spin_lock_irqsave(&dm_device.ha_lock, flags);
dm_device.num_pages_onlined += mem->nr_pages;
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
/* Fall through */
case MEM_CANCEL_ONLINE:
if (dm_device.ha_waiting) {
dm_device.ha_waiting = false;
complete(&dm_device.ol_waitevent);
}
break;
case MEM_OFFLINE:
spin_lock_irqsave(&dm_device.ha_lock, flags);
dm_device.num_pages_onlined -= mem->nr_pages;
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
break;
case MEM_GOING_ONLINE:
case MEM_GOING_OFFLINE:
case MEM_CANCEL_OFFLINE:
break;
}
return NOTIFY_OK;
}
static struct notifier_block hv_memory_nb = {
.notifier_call = hv_memory_notifier,
.priority = 0
};
/* Check if the particular page is backed and can be onlined and online it. */
static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
{
unsigned long cur_start_pgp;
unsigned long cur_end_pgp;
struct hv_hotadd_gap *gap;
cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
/* The page is not backed. */
if (((unsigned long)pg < cur_start_pgp) ||
((unsigned long)pg >= cur_end_pgp))
return;
/* Check for gaps. */
list_for_each_entry(gap, &has->gap_list, list) {
cur_start_pgp = (unsigned long)
pfn_to_page(gap->start_pfn);
cur_end_pgp = (unsigned long)
pfn_to_page(gap->end_pfn);
if (((unsigned long)pg >= cur_start_pgp) &&
((unsigned long)pg < cur_end_pgp)) {
return;
}
}
/* This frame is currently backed; online the page. */
__online_page_set_limits(pg);
__online_page_increment_counters(pg);
__online_page_free(pg);
}
static void hv_bring_pgs_online(struct hv_hotadd_state *has,
unsigned long start_pfn, unsigned long size)
{
int i;
pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
for (i = 0; i < size; i++)
hv_page_online_one(has, pfn_to_page(start_pfn + i));
}
static void hv_mem_hot_add(unsigned long start, unsigned long size,
unsigned long pfn_count,
struct hv_hotadd_state *has)
{
int ret = 0;
int i, nid;
unsigned long start_pfn;
unsigned long processed_pfn;
unsigned long total_pfn = pfn_count;
unsigned long flags;
for (i = 0; i < (size/HA_CHUNK); i++) {
start_pfn = start + (i * HA_CHUNK);
spin_lock_irqsave(&dm_device.ha_lock, flags);
has->ha_end_pfn += HA_CHUNK;
if (total_pfn > HA_CHUNK) {
processed_pfn = HA_CHUNK;
total_pfn -= HA_CHUNK;
} else {
processed_pfn = total_pfn;
total_pfn = 0;
}
has->covered_end_pfn += processed_pfn;
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
init_completion(&dm_device.ol_waitevent);
dm_device.ha_waiting = !memhp_auto_online;
nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
ret = add_memory(nid, PFN_PHYS((start_pfn)),
(HA_CHUNK << PAGE_SHIFT));
if (ret) {
pr_warn("hot_add memory failed error is %d\n", ret);
if (ret == -EEXIST) {
/*
* This error indicates that the error
* is not a transient failure. This is the
* case where the guest's physical address map
* precludes hot adding memory. Stop all further
* memory hot-add.
*/
do_hot_add = false;
}
spin_lock_irqsave(&dm_device.ha_lock, flags);
has->ha_end_pfn -= HA_CHUNK;
has->covered_end_pfn -= processed_pfn;
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
break;
}
/*
* Wait for the memory block to be onlined when memory onlining
* is done outside of kernel (memhp_auto_online). Since the hot
* add has succeeded, it is ok to proceed even if the pages in
* the hot added region have not been "onlined" within the
* allowed time.
*/
if (dm_device.ha_waiting)
wait_for_completion_timeout(&dm_device.ol_waitevent,
5*HZ);
post_status(&dm_device);
}
}
static void hv_online_page(struct page *pg)
{
struct hv_hotadd_state *has;
unsigned long cur_start_pgp;
unsigned long cur_end_pgp;
unsigned long flags;
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry(has, &dm_device.ha_region_list, list) {
cur_start_pgp = (unsigned long)
pfn_to_page(has->start_pfn);
cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
/* The page belongs to a different HAS. */
if (((unsigned long)pg < cur_start_pgp) ||
((unsigned long)pg >= cur_end_pgp))
continue;
hv_page_online_one(has, pg);
break;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
}
static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
{
struct hv_hotadd_state *has;
struct hv_hotadd_gap *gap;
unsigned long residual, new_inc;
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry(has, &dm_device.ha_region_list, list) {
/*
* If the pfn range we are dealing with is not in the current
* "hot add block", move on.
*/
if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
continue;
/*
* If the current start pfn is not where the covered_end
* is, create a gap and update covered_end_pfn.
*/
if (has->covered_end_pfn != start_pfn) {
gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
if (!gap) {
ret = -ENOMEM;
break;
}
INIT_LIST_HEAD(&gap->list);
gap->start_pfn = has->covered_end_pfn;
gap->end_pfn = start_pfn;
list_add_tail(&gap->list, &has->gap_list);
has->covered_end_pfn = start_pfn;
}
/*
* If the current hot add-request extends beyond
* our current limit; extend it.
*/
if ((start_pfn + pfn_cnt) > has->end_pfn) {
residual = (start_pfn + pfn_cnt - has->end_pfn);
/*
* Extend the region by multiples of HA_CHUNK.
*/
new_inc = (residual / HA_CHUNK) * HA_CHUNK;
if (residual % HA_CHUNK)
new_inc += HA_CHUNK;
has->end_pfn += new_inc;
}
ret = 1;
break;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
return ret;
}
static unsigned long handle_pg_range(unsigned long pg_start,
unsigned long pg_count)
{
unsigned long start_pfn = pg_start;
unsigned long pfn_cnt = pg_count;
unsigned long size;
struct hv_hotadd_state *has;
unsigned long pgs_ol = 0;
unsigned long old_covered_state;
unsigned long res = 0, flags;
pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
pg_start);
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry(has, &dm_device.ha_region_list, list) {
/*
* If the pfn range we are dealing with is not in the current
* "hot add block", move on.
*/
if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
continue;
old_covered_state = has->covered_end_pfn;
if (start_pfn < has->ha_end_pfn) {
/*
* This is the case where we are backing pages
* in an already hot added region. Bring
* these pages online first.
*/
pgs_ol = has->ha_end_pfn - start_pfn;
if (pgs_ol > pfn_cnt)
pgs_ol = pfn_cnt;
has->covered_end_pfn += pgs_ol;
pfn_cnt -= pgs_ol;
/*
* Check if the corresponding memory block is already
* online by checking its last previously backed page.
* In case it is we need to bring rest (which was not
* backed previously) online too.
*/
if (start_pfn > has->start_pfn &&
!PageReserved(pfn_to_page(start_pfn - 1)))
hv_bring_pgs_online(has, start_pfn, pgs_ol);
}
if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
/*
* We have some residual hot add range
* that needs to be hot added; hot add
* it now. Hot add a multiple of
* of HA_CHUNK that fully covers the pages
* we have.
*/
size = (has->end_pfn - has->ha_end_pfn);
if (pfn_cnt <= size) {
size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
if (pfn_cnt % HA_CHUNK)
size += HA_CHUNK;
} else {
pfn_cnt = size;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
spin_lock_irqsave(&dm_device.ha_lock, flags);
}
/*
* If we managed to online any pages that were given to us,
* we declare success.
*/
res = has->covered_end_pfn - old_covered_state;
break;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
return res;
}
static unsigned long process_hot_add(unsigned long pg_start,
unsigned long pfn_cnt,
unsigned long rg_start,
unsigned long rg_size)
{
struct hv_hotadd_state *ha_region = NULL;
int covered;
unsigned long flags;
if (pfn_cnt == 0)
return 0;
if (!dm_device.host_specified_ha_region) {
covered = pfn_covered(pg_start, pfn_cnt);
if (covered < 0)
return 0;
if (covered)
goto do_pg_range;
}
/*
* If the host has specified a hot-add range; deal with it first.
*/
if (rg_size != 0) {
ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
if (!ha_region)
return 0;
INIT_LIST_HEAD(&ha_region->list);
INIT_LIST_HEAD(&ha_region->gap_list);
ha_region->start_pfn = rg_start;
ha_region->ha_end_pfn = rg_start;
ha_region->covered_start_pfn = pg_start;
ha_region->covered_end_pfn = pg_start;
ha_region->end_pfn = rg_start + rg_size;
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_add_tail(&ha_region->list, &dm_device.ha_region_list);
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
}
do_pg_range:
/*
* Process the page range specified; bringing them
* online if possible.
*/
return handle_pg_range(pg_start, pfn_cnt);
}
#endif
static void hot_add_req(struct work_struct *dummy)
{
struct dm_hot_add_response resp;
#ifdef CONFIG_MEMORY_HOTPLUG
unsigned long pg_start, pfn_cnt;
unsigned long rg_start, rg_sz;
#endif
struct hv_dynmem_device *dm = &dm_device;
memset(&resp, 0, sizeof(struct dm_hot_add_response));
resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
resp.hdr.size = sizeof(struct dm_hot_add_response);
#ifdef CONFIG_MEMORY_HOTPLUG
pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
unsigned long region_size;
unsigned long region_start;
/*
* The host has not specified the hot-add region.
* Based on the hot-add page range being specified,
* compute a hot-add region that can cover the pages
* that need to be hot-added while ensuring the alignment
* and size requirements of Linux as it relates to hot-add.
*/
region_start = pg_start;
region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
if (pfn_cnt % HA_CHUNK)
region_size += HA_CHUNK;
region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
rg_start = region_start;
rg_sz = region_size;
}
if (do_hot_add)
resp.page_count = process_hot_add(pg_start, pfn_cnt,
rg_start, rg_sz);
dm->num_pages_added += resp.page_count;
#endif
/*
* The result field of the response structure has the
* following semantics:
*
* 1. If all or some pages hot-added: Guest should return success.
*
* 2. If no pages could be hot-added:
*
* If the guest returns success, then the host
* will not attempt any further hot-add operations. This
* signifies a permanent failure.
*
* If the guest returns failure, then this failure will be
* treated as a transient failure and the host may retry the
* hot-add operation after some delay.
*/
if (resp.page_count > 0)
resp.result = 1;
else if (!do_hot_add)
resp.result = 1;
else
resp.result = 0;
if (!do_hot_add || (resp.page_count == 0))
pr_info("Memory hot add failed\n");
dm->state = DM_INITIALIZED;
resp.hdr.trans_id = atomic_inc_return(&trans_id);
vmbus_sendpacket(dm->dev->channel, &resp,
sizeof(struct dm_hot_add_response),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
}
static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
{
struct dm_info_header *info_hdr;
info_hdr = (struct dm_info_header *)msg->info;
switch (info_hdr->type) {
case INFO_TYPE_MAX_PAGE_CNT:
if (info_hdr->data_size == sizeof(__u64)) {
__u64 *max_page_count = (__u64 *)&info_hdr[1];
pr_info("INFO_TYPE_MAX_PAGE_CNT = %llu\n",
*max_page_count);
}
break;
default:
pr_info("Received Unknown type: %d\n", info_hdr->type);
}
}
static unsigned long compute_balloon_floor(void)
{
unsigned long min_pages;
#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
/* Simple continuous piecewiese linear function:
* max MiB -> min MiB gradient
* 0 0
* 16 16
* 32 24
* 128 72 (1/2)
* 512 168 (1/4)
* 2048 360 (1/8)
* 8192 744 (1/16)
* 32768 1512 (1/32)
*/
if (totalram_pages < MB2PAGES(128))
min_pages = MB2PAGES(8) + (totalram_pages >> 1);
else if (totalram_pages < MB2PAGES(512))
min_pages = MB2PAGES(40) + (totalram_pages >> 2);
else if (totalram_pages < MB2PAGES(2048))
min_pages = MB2PAGES(104) + (totalram_pages >> 3);
else if (totalram_pages < MB2PAGES(8192))
min_pages = MB2PAGES(232) + (totalram_pages >> 4);
else
min_pages = MB2PAGES(488) + (totalram_pages >> 5);
#undef MB2PAGES
return min_pages;
}
/*
* Post our status as it relates memory pressure to the
* host. Host expects the guests to post this status
* periodically at 1 second intervals.
*
* The metrics specified in this protocol are very Windows
* specific and so we cook up numbers here to convey our memory
* pressure.
*/
static void post_status(struct hv_dynmem_device *dm)
{
struct dm_status status;
unsigned long now = jiffies;
unsigned long last_post = last_post_time;
if (pressure_report_delay > 0) {
--pressure_report_delay;
return;
}
if (!time_after(now, (last_post_time + HZ)))
return;
memset(&status, 0, sizeof(struct dm_status));
status.hdr.type = DM_STATUS_REPORT;
status.hdr.size = sizeof(struct dm_status);
status.hdr.trans_id = atomic_inc_return(&trans_id);
/*
* The host expects the guest to report free and committed memory.
* Furthermore, the host expects the pressure information to include
* the ballooned out pages. For a given amount of memory that we are
* managing we need to compute a floor below which we should not
* balloon. Compute this and add it to the pressure report.
* We also need to report all offline pages (num_pages_added -
* num_pages_onlined) as committed to the host, otherwise it can try
* asking us to balloon them out.
*/
status.num_avail = si_mem_available();
status.num_committed = vm_memory_committed() +
dm->num_pages_ballooned +
(dm->num_pages_added > dm->num_pages_onlined ?
dm->num_pages_added - dm->num_pages_onlined : 0) +
compute_balloon_floor();
/*
* If our transaction ID is no longer current, just don't
* send the status. This can happen if we were interrupted
* after we picked our transaction ID.
*/
if (status.hdr.trans_id != atomic_read(&trans_id))
return;
/*
* If the last post time that we sampled has changed,
* we have raced, don't post the status.
*/
if (last_post != last_post_time)
return;
last_post_time = jiffies;
vmbus_sendpacket(dm->dev->channel, &status,
sizeof(struct dm_status),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
}
static void free_balloon_pages(struct hv_dynmem_device *dm,
union dm_mem_page_range *range_array)
{
int num_pages = range_array->finfo.page_cnt;
__u64 start_frame = range_array->finfo.start_page;
struct page *pg;
int i;
for (i = 0; i < num_pages; i++) {
pg = pfn_to_page(i + start_frame);
__free_page(pg);
dm->num_pages_ballooned--;
}
}
static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
unsigned int num_pages,
struct dm_balloon_response *bl_resp,
int alloc_unit)
{
unsigned int i = 0;
struct page *pg;
if (num_pages < alloc_unit)
return 0;
for (i = 0; (i * alloc_unit) < num_pages; i++) {
if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
PAGE_SIZE)
return i * alloc_unit;
/*
* We execute this code in a thread context. Furthermore,
* we don't want the kernel to try too hard.
*/
pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
__GFP_NOMEMALLOC | __GFP_NOWARN,
get_order(alloc_unit << PAGE_SHIFT));
if (!pg)
return i * alloc_unit;
dm->num_pages_ballooned += alloc_unit;
/*
* If we allocatted 2M pages; split them so we
* can free them in any order we get.
*/
if (alloc_unit != 1)
split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
bl_resp->range_count++;
bl_resp->range_array[i].finfo.start_page =
page_to_pfn(pg);
bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
bl_resp->hdr.size += sizeof(union dm_mem_page_range);
}
return num_pages;
}
static void balloon_up(struct work_struct *dummy)
{
unsigned int num_pages = dm_device.balloon_wrk.num_pages;
unsigned int num_ballooned = 0;
struct dm_balloon_response *bl_resp;
int alloc_unit;
int ret;
bool done = false;
int i;
long avail_pages;
unsigned long floor;
/* The host balloons pages in 2M granularity. */
WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
/*
* We will attempt 2M allocations. However, if we fail to
* allocate 2M chunks, we will go back to 4k allocations.
*/
alloc_unit = 512;
avail_pages = si_mem_available();
floor = compute_balloon_floor();
/* Refuse to balloon below the floor, keep the 2M granularity. */
if (avail_pages < num_pages || avail_pages - num_pages < floor) {
pr_warn("Balloon request will be partially fulfilled. %s\n",
avail_pages < num_pages ? "Not enough memory." :
"Balloon floor reached.");
num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
num_pages -= num_pages % PAGES_IN_2M;
}
while (!done) {
bl_resp = (struct dm_balloon_response *)send_buffer;
memset(send_buffer, 0, PAGE_SIZE);
bl_resp->hdr.type = DM_BALLOON_RESPONSE;
bl_resp->hdr.size = sizeof(struct dm_balloon_response);
bl_resp->more_pages = 1;
num_pages -= num_ballooned;
num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
bl_resp, alloc_unit);
if (alloc_unit != 1 && num_ballooned == 0) {
alloc_unit = 1;
continue;
}
if (num_ballooned == 0 || num_ballooned == num_pages) {
pr_debug("Ballooned %u out of %u requested pages.\n",
num_pages, dm_device.balloon_wrk.num_pages);
bl_resp->more_pages = 0;
done = true;
dm_device.state = DM_INITIALIZED;
}
/*
* We are pushing a lot of data through the channel;
* deal with transient failures caused because of the
* lack of space in the ring buffer.
*/
do {
bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
ret = vmbus_sendpacket(dm_device.dev->channel,
bl_resp,
bl_resp->hdr.size,
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
if (ret == -EAGAIN)
msleep(20);
post_status(&dm_device);
} while (ret == -EAGAIN);
if (ret) {
/*
* Free up the memory we allocatted.
*/
pr_info("Balloon response failed\n");
for (i = 0; i < bl_resp->range_count; i++)
free_balloon_pages(&dm_device,
&bl_resp->range_array[i]);
done = true;
}
}
}
static void balloon_down(struct hv_dynmem_device *dm,
struct dm_unballoon_request *req)
{
union dm_mem_page_range *range_array = req->range_array;
int range_count = req->range_count;
struct dm_unballoon_response resp;
int i;
unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
for (i = 0; i < range_count; i++) {
free_balloon_pages(dm, &range_array[i]);
complete(&dm_device.config_event);
}
pr_debug("Freed %u ballooned pages.\n",
prev_pages_ballooned - dm->num_pages_ballooned);
if (req->more_pages == 1)
return;
memset(&resp, 0, sizeof(struct dm_unballoon_response));
resp.hdr.type = DM_UNBALLOON_RESPONSE;
resp.hdr.trans_id = atomic_inc_return(&trans_id);
resp.hdr.size = sizeof(struct dm_unballoon_response);
vmbus_sendpacket(dm_device.dev->channel, &resp,
sizeof(struct dm_unballoon_response),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
dm->state = DM_INITIALIZED;
}
static void balloon_onchannelcallback(void *context);
static int dm_thread_func(void *dm_dev)
{
struct hv_dynmem_device *dm = dm_dev;
while (!kthread_should_stop()) {
wait_for_completion_interruptible_timeout(
&dm_device.config_event, 1*HZ);
/*
* The host expects us to post information on the memory
* pressure every second.
*/
reinit_completion(&dm_device.config_event);
post_status(dm);
}
return 0;
}
static void version_resp(struct hv_dynmem_device *dm,
struct dm_version_response *vresp)
{
struct dm_version_request version_req;
int ret;
if (vresp->is_accepted) {
/*
* We are done; wakeup the
* context waiting for version
* negotiation.
*/
complete(&dm->host_event);
return;
}
/*
* If there are more versions to try, continue
* with negotiations; if not
* shutdown the service since we are not able
* to negotiate a suitable version number
* with the host.
*/
if (dm->next_version == 0)
goto version_error;
memset(&version_req, 0, sizeof(struct dm_version_request));
version_req.hdr.type = DM_VERSION_REQUEST;
version_req.hdr.size = sizeof(struct dm_version_request);
version_req.hdr.trans_id = atomic_inc_return(&trans_id);
version_req.version.version = dm->next_version;
dm->version = version_req.version.version;
/*
* Set the next version to try in case current version fails.
* Win7 protocol ought to be the last one to try.
*/
switch (version_req.version.version) {
case DYNMEM_PROTOCOL_VERSION_WIN8:
dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
version_req.is_last_attempt = 0;
break;
default:
dm->next_version = 0;
version_req.is_last_attempt = 1;
}
ret = vmbus_sendpacket(dm->dev->channel, &version_req,
sizeof(struct dm_version_request),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
if (ret)
goto version_error;
return;
version_error:
dm->state = DM_INIT_ERROR;
complete(&dm->host_event);
}
static void cap_resp(struct hv_dynmem_device *dm,
struct dm_capabilities_resp_msg *cap_resp)
{
if (!cap_resp->is_accepted) {
pr_info("Capabilities not accepted by host\n");
dm->state = DM_INIT_ERROR;
}
complete(&dm->host_event);
}
static void balloon_onchannelcallback(void *context)
{
struct hv_device *dev = context;
u32 recvlen;
u64 requestid;
struct dm_message *dm_msg;
struct dm_header *dm_hdr;
struct hv_dynmem_device *dm = hv_get_drvdata(dev);
struct dm_balloon *bal_msg;
struct dm_hot_add *ha_msg;
union dm_mem_page_range *ha_pg_range;
union dm_mem_page_range *ha_region;
memset(recv_buffer, 0, sizeof(recv_buffer));
vmbus_recvpacket(dev->channel, recv_buffer,
PAGE_SIZE, &recvlen, &requestid);
if (recvlen > 0) {
dm_msg = (struct dm_message *)recv_buffer;
dm_hdr = &dm_msg->hdr;
switch (dm_hdr->type) {
case DM_VERSION_RESPONSE:
version_resp(dm,
(struct dm_version_response *)dm_msg);
break;
case DM_CAPABILITIES_RESPONSE:
cap_resp(dm,
(struct dm_capabilities_resp_msg *)dm_msg);
break;
case DM_BALLOON_REQUEST:
if (dm->state == DM_BALLOON_UP)
pr_warn("Currently ballooning\n");
bal_msg = (struct dm_balloon *)recv_buffer;
dm->state = DM_BALLOON_UP;
dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
schedule_work(&dm_device.balloon_wrk.wrk);
break;
case DM_UNBALLOON_REQUEST:
dm->state = DM_BALLOON_DOWN;
balloon_down(dm,
(struct dm_unballoon_request *)recv_buffer);
break;
case DM_MEM_HOT_ADD_REQUEST:
if (dm->state == DM_HOT_ADD)
pr_warn("Currently hot-adding\n");
dm->state = DM_HOT_ADD;
ha_msg = (struct dm_hot_add *)recv_buffer;
if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
/*
* This is a normal hot-add request specifying
* hot-add memory.
*/
dm->host_specified_ha_region = false;
ha_pg_range = &ha_msg->range;
dm->ha_wrk.ha_page_range = *ha_pg_range;
dm->ha_wrk.ha_region_range.page_range = 0;
} else {
/*
* Host is specifying that we first hot-add
* a region and then partially populate this
* region.
*/
dm->host_specified_ha_region = true;
ha_pg_range = &ha_msg->range;
ha_region = &ha_pg_range[1];
dm->ha_wrk.ha_page_range = *ha_pg_range;
dm->ha_wrk.ha_region_range = *ha_region;
}
schedule_work(&dm_device.ha_wrk.wrk);
break;
case DM_INFO_MESSAGE:
process_info(dm, (struct dm_info_msg *)dm_msg);
break;
default:
pr_err("Unhandled message: type: %d\n", dm_hdr->type);
}
}
}
static int balloon_probe(struct hv_device *dev,
const struct hv_vmbus_device_id *dev_id)
{
int ret;
unsigned long t;
struct dm_version_request version_req;
struct dm_capabilities cap_msg;
#ifdef CONFIG_MEMORY_HOTPLUG
do_hot_add = hot_add;
#else
do_hot_add = false;
#endif
/*
* First allocate a send buffer.
*/
send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!send_buffer)
return -ENOMEM;
ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
balloon_onchannelcallback, dev);
if (ret)
goto probe_error0;
dm_device.dev = dev;
dm_device.state = DM_INITIALIZING;
dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
init_completion(&dm_device.host_event);
init_completion(&dm_device.config_event);
INIT_LIST_HEAD(&dm_device.ha_region_list);
spin_lock_init(&dm_device.ha_lock);
INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
dm_device.host_specified_ha_region = false;
dm_device.thread =
kthread_run(dm_thread_func, &dm_device, "hv_balloon");
if (IS_ERR(dm_device.thread)) {
ret = PTR_ERR(dm_device.thread);
goto probe_error1;
}
#ifdef CONFIG_MEMORY_HOTPLUG
set_online_page_callback(&hv_online_page);
register_memory_notifier(&hv_memory_nb);
#endif
hv_set_drvdata(dev, &dm_device);
/*
* Initiate the hand shake with the host and negotiate
* a version that the host can support. We start with the
* highest version number and go down if the host cannot
* support it.
*/
memset(&version_req, 0, sizeof(struct dm_version_request));
version_req.hdr.type = DM_VERSION_REQUEST;
version_req.hdr.size = sizeof(struct dm_version_request);
version_req.hdr.trans_id = atomic_inc_return(&trans_id);
version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
version_req.is_last_attempt = 0;
dm_device.version = version_req.version.version;
ret = vmbus_sendpacket(dev->channel, &version_req,
sizeof(struct dm_version_request),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
if (ret)
goto probe_error2;
t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
if (t == 0) {
ret = -ETIMEDOUT;
goto probe_error2;
}
/*
* If we could not negotiate a compatible version with the host
* fail the probe function.
*/
if (dm_device.state == DM_INIT_ERROR) {
ret = -ETIMEDOUT;
goto probe_error2;
}
pr_info("Using Dynamic Memory protocol version %u.%u\n",
DYNMEM_MAJOR_VERSION(dm_device.version),
DYNMEM_MINOR_VERSION(dm_device.version));
/*
* Now submit our capabilities to the host.
*/
memset(&cap_msg, 0, sizeof(struct dm_capabilities));
cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
cap_msg.hdr.size = sizeof(struct dm_capabilities);
cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
cap_msg.caps.cap_bits.balloon = 1;
cap_msg.caps.cap_bits.hot_add = 1;
/*
* Specify our alignment requirements as it relates
* memory hot-add. Specify 128MB alignment.
*/
cap_msg.caps.cap_bits.hot_add_alignment = 7;
/*
* Currently the host does not use these
* values and we set them to what is done in the
* Windows driver.
*/
cap_msg.min_page_cnt = 0;
cap_msg.max_page_number = -1;
ret = vmbus_sendpacket(dev->channel, &cap_msg,
sizeof(struct dm_capabilities),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
if (ret)
goto probe_error2;
t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
if (t == 0) {
ret = -ETIMEDOUT;
goto probe_error2;
}
/*
* If the host does not like our capabilities,
* fail the probe function.
*/
if (dm_device.state == DM_INIT_ERROR) {
ret = -ETIMEDOUT;
goto probe_error2;
}
dm_device.state = DM_INITIALIZED;
return 0;
probe_error2:
#ifdef CONFIG_MEMORY_HOTPLUG
restore_online_page_callback(&hv_online_page);
#endif
kthread_stop(dm_device.thread);
probe_error1:
vmbus_close(dev->channel);
probe_error0:
kfree(send_buffer);
return ret;
}
static int balloon_remove(struct hv_device *dev)
{
struct hv_dynmem_device *dm = hv_get_drvdata(dev);
struct hv_hotadd_state *has, *tmp;
struct hv_hotadd_gap *gap, *tmp_gap;
unsigned long flags;
if (dm->num_pages_ballooned != 0)
pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
cancel_work_sync(&dm->balloon_wrk.wrk);
cancel_work_sync(&dm->ha_wrk.wrk);
vmbus_close(dev->channel);
kthread_stop(dm->thread);
kfree(send_buffer);
#ifdef CONFIG_MEMORY_HOTPLUG
restore_online_page_callback(&hv_online_page);
unregister_memory_notifier(&hv_memory_nb);
#endif
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
list_del(&gap->list);
kfree(gap);
}
list_del(&has->list);
kfree(has);
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
return 0;
}
static const struct hv_vmbus_device_id id_table[] = {
/* Dynamic Memory Class ID */
/* 525074DC-8985-46e2-8057-A307DC18A502 */
{ HV_DM_GUID, },
{ },
};
MODULE_DEVICE_TABLE(vmbus, id_table);
static struct hv_driver balloon_drv = {
.name = "hv_balloon",
.id_table = id_table,
.probe = balloon_probe,
.remove = balloon_remove,
};
static int __init init_balloon_drv(void)
{
return vmbus_driver_register(&balloon_drv);
}
module_init(init_balloon_drv);
MODULE_DESCRIPTION("Hyper-V Balloon");
MODULE_LICENSE("GPL");