mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
4cad671979
The get_unaligned()/put_unaligned() helpers are traditionally architecture specific, with the two main variants being the "access-ok.h" version that assumes unaligned pointer accesses always work on a particular architecture, and the "le-struct.h" version that casts the data to a byte aligned type before dereferencing, for architectures that cannot always do unaligned accesses in hardware. Based on the discussion linked below, it appears that the access-ok version is not realiable on any architecture, but the struct version probably has no downsides. This series changes the code to use the same implementation on all architectures, addressing the few exceptions separately. Link: https://lore.kernel.org/lkml/75d07691-1e4f-741f-9852-38c0b4f520bc@synopsys.com/ Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100363 Link: https://lore.kernel.org/lkml/20210507220813.365382-14-arnd@kernel.org/ Link: git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic.git unaligned-rework-v2 Link: https://lore.kernel.org/lkml/CAHk-=whGObOKruA_bU3aPGZfoDqZM1_9wBkwREp0H0FgR-90uQ@mail.gmail.com/ Signed-off-by: Arnd Bergmann <arnd@arndb.de> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmDfFx4ACgkQmmx57+YA GNkqzRAAjdlIr8M+xI2CyT0/A9tswYfLMeWejmYopq3zlxI6RnvPiJJDIdY2I8US 1npIiDo55w061CnXL9rV65ocL3XmGu1mabOvgM6ATsec+8t4WaXBV9tysxTJ9ea0 ltLTa2P5DXWALvWiVMTME7hFaf1cW+8Uqt3LmXxDp2l5zasXajCHAH6YokON2PfM CsaRhwSxIu8Sbnu/IQGBI9JW5UXsBfKSyUwtM0OwP7jFOuIeZ4WBVA+j6UxONnFC wouKmAM/ThoOsaV9aP4EZLIfBx8d4/hfYQjZ958kYXurerruYkJeEqdIRbV0QqTy 2O6ZrJ6uqPlzfWz9h458me2dt98YEtALHV/3DCWUcBfHmUQtxElyJYEhG0YjVF3H 5RYtjw8Q2LS/QR5ask1Xn0JfT89rRnLi2migAtsA4Ce70JP4Us6wGobkj4SHlgDt P7+eVq2Mkhqw/kmV8N4p+ZS5lpkK0JniDN+ONDhkZqHL/zXG/HQzx9wLV69jlvo2 ASevKxITdi+bKHWs5ANungkBOnBUQZacq46mVyi4HPDwMAFyWvVYTbFumy9koagQ o9NEgX3RsZcxxi7bU1xuFPFMLMlUQT3Nb30+84B4fKe9FmvHC1hizTiCnp7q4bZr z6a6AMHke7YLqKZOqzTJGRR3lPoZZDCb775SAd70LQp6XPZXOHs= =IY5U -----END PGP SIGNATURE----- Merge tag 'asm-generic-unaligned-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm/unaligned.h unification from Arnd Bergmann: "Unify asm/unaligned.h around struct helper The get_unaligned()/put_unaligned() helpers are traditionally architecture specific, with the two main variants being the "access-ok.h" version that assumes unaligned pointer accesses always work on a particular architecture, and the "le-struct.h" version that casts the data to a byte aligned type before dereferencing, for architectures that cannot always do unaligned accesses in hardware. Based on the discussion linked below, it appears that the access-ok version is not realiable on any architecture, but the struct version probably has no downsides. This series changes the code to use the same implementation on all architectures, addressing the few exceptions separately" Link: https://lore.kernel.org/lkml/75d07691-1e4f-741f-9852-38c0b4f520bc@synopsys.com/ Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100363 Link: https://lore.kernel.org/lkml/20210507220813.365382-14-arnd@kernel.org/ Link: git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic.git unaligned-rework-v2 Link: https://lore.kernel.org/lkml/CAHk-=whGObOKruA_bU3aPGZfoDqZM1_9wBkwREp0H0FgR-90uQ@mail.gmail.com/ * tag 'asm-generic-unaligned-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: asm-generic: simplify asm/unaligned.h asm-generic: uaccess: 1-byte access is always aligned netpoll: avoid put_unaligned() on single character mwifiex: re-fix for unaligned accesses apparmor: use get_unaligned() only for multi-byte words partitions: msdos: fix one-byte get_unaligned() asm-generic: unaligned always use struct helpers asm-generic: unaligned: remove byteshift helpers powerpc: use linux/unaligned/le_struct.h on LE power7 m68k: select CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS sh: remove unaligned access for sh4a openrisc: always use unaligned-struct header asm-generic: use asm-generic/unaligned.h for most architectures
715 lines
21 KiB
C
715 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/partitions/msdos.c
|
|
*
|
|
* Code extracted from drivers/block/genhd.c
|
|
* Copyright (C) 1991-1998 Linus Torvalds
|
|
*
|
|
* Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug
|
|
* in the early extended-partition checks and added DM partitions
|
|
*
|
|
* Support for DiskManager v6.0x added by Mark Lord,
|
|
* with information provided by OnTrack. This now works for linux fdisk
|
|
* and LILO, as well as loadlin and bootln. Note that disks other than
|
|
* /dev/hda *must* have a "DOS" type 0x51 partition in the first slot (hda1).
|
|
*
|
|
* More flexible handling of extended partitions - aeb, 950831
|
|
*
|
|
* Check partition table on IDE disks for common CHS translations
|
|
*
|
|
* Re-organised Feb 1998 Russell King
|
|
*
|
|
* BSD disklabel support by Yossi Gottlieb <yogo@math.tau.ac.il>
|
|
* updated by Marc Espie <Marc.Espie@openbsd.org>
|
|
*
|
|
* Unixware slices support by Andrzej Krzysztofowicz <ankry@mif.pg.gda.pl>
|
|
* and Krzysztof G. Baranowski <kgb@knm.org.pl>
|
|
*/
|
|
#include <linux/msdos_fs.h>
|
|
#include <linux/msdos_partition.h>
|
|
|
|
#include "check.h"
|
|
#include "efi.h"
|
|
|
|
/*
|
|
* Many architectures don't like unaligned accesses, while
|
|
* the nr_sects and start_sect partition table entries are
|
|
* at a 2 (mod 4) address.
|
|
*/
|
|
#include <asm/unaligned.h>
|
|
|
|
static inline sector_t nr_sects(struct msdos_partition *p)
|
|
{
|
|
return (sector_t)get_unaligned_le32(&p->nr_sects);
|
|
}
|
|
|
|
static inline sector_t start_sect(struct msdos_partition *p)
|
|
{
|
|
return (sector_t)get_unaligned_le32(&p->start_sect);
|
|
}
|
|
|
|
static inline int is_extended_partition(struct msdos_partition *p)
|
|
{
|
|
return (p->sys_ind == DOS_EXTENDED_PARTITION ||
|
|
p->sys_ind == WIN98_EXTENDED_PARTITION ||
|
|
p->sys_ind == LINUX_EXTENDED_PARTITION);
|
|
}
|
|
|
|
#define MSDOS_LABEL_MAGIC1 0x55
|
|
#define MSDOS_LABEL_MAGIC2 0xAA
|
|
|
|
static inline int
|
|
msdos_magic_present(unsigned char *p)
|
|
{
|
|
return (p[0] == MSDOS_LABEL_MAGIC1 && p[1] == MSDOS_LABEL_MAGIC2);
|
|
}
|
|
|
|
/* Value is EBCDIC 'IBMA' */
|
|
#define AIX_LABEL_MAGIC1 0xC9
|
|
#define AIX_LABEL_MAGIC2 0xC2
|
|
#define AIX_LABEL_MAGIC3 0xD4
|
|
#define AIX_LABEL_MAGIC4 0xC1
|
|
static int aix_magic_present(struct parsed_partitions *state, unsigned char *p)
|
|
{
|
|
struct msdos_partition *pt = (struct msdos_partition *) (p + 0x1be);
|
|
Sector sect;
|
|
unsigned char *d;
|
|
int slot, ret = 0;
|
|
|
|
if (!(p[0] == AIX_LABEL_MAGIC1 &&
|
|
p[1] == AIX_LABEL_MAGIC2 &&
|
|
p[2] == AIX_LABEL_MAGIC3 &&
|
|
p[3] == AIX_LABEL_MAGIC4))
|
|
return 0;
|
|
|
|
/*
|
|
* Assume the partition table is valid if Linux partitions exists.
|
|
* Note that old Solaris/x86 partitions use the same indicator as
|
|
* Linux swap partitions, so we consider that a Linux partition as
|
|
* well.
|
|
*/
|
|
for (slot = 1; slot <= 4; slot++, pt++) {
|
|
if (pt->sys_ind == SOLARIS_X86_PARTITION ||
|
|
pt->sys_ind == LINUX_RAID_PARTITION ||
|
|
pt->sys_ind == LINUX_DATA_PARTITION ||
|
|
pt->sys_ind == LINUX_LVM_PARTITION ||
|
|
is_extended_partition(pt))
|
|
return 0;
|
|
}
|
|
d = read_part_sector(state, 7, §);
|
|
if (d) {
|
|
if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M')
|
|
ret = 1;
|
|
put_dev_sector(sect);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void set_info(struct parsed_partitions *state, int slot,
|
|
u32 disksig)
|
|
{
|
|
struct partition_meta_info *info = &state->parts[slot].info;
|
|
|
|
snprintf(info->uuid, sizeof(info->uuid), "%08x-%02x", disksig,
|
|
slot);
|
|
info->volname[0] = 0;
|
|
state->parts[slot].has_info = true;
|
|
}
|
|
|
|
/*
|
|
* Create devices for each logical partition in an extended partition.
|
|
* The logical partitions form a linked list, with each entry being
|
|
* a partition table with two entries. The first entry
|
|
* is the real data partition (with a start relative to the partition
|
|
* table start). The second is a pointer to the next logical partition
|
|
* (with a start relative to the entire extended partition).
|
|
* We do not create a Linux partition for the partition tables, but
|
|
* only for the actual data partitions.
|
|
*/
|
|
|
|
static void parse_extended(struct parsed_partitions *state,
|
|
sector_t first_sector, sector_t first_size,
|
|
u32 disksig)
|
|
{
|
|
struct msdos_partition *p;
|
|
Sector sect;
|
|
unsigned char *data;
|
|
sector_t this_sector, this_size;
|
|
sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
|
|
int loopct = 0; /* number of links followed
|
|
without finding a data partition */
|
|
int i;
|
|
|
|
this_sector = first_sector;
|
|
this_size = first_size;
|
|
|
|
while (1) {
|
|
if (++loopct > 100)
|
|
return;
|
|
if (state->next == state->limit)
|
|
return;
|
|
data = read_part_sector(state, this_sector, §);
|
|
if (!data)
|
|
return;
|
|
|
|
if (!msdos_magic_present(data + 510))
|
|
goto done;
|
|
|
|
p = (struct msdos_partition *) (data + 0x1be);
|
|
|
|
/*
|
|
* Usually, the first entry is the real data partition,
|
|
* the 2nd entry is the next extended partition, or empty,
|
|
* and the 3rd and 4th entries are unused.
|
|
* However, DRDOS sometimes has the extended partition as
|
|
* the first entry (when the data partition is empty),
|
|
* and OS/2 seems to use all four entries.
|
|
*/
|
|
|
|
/*
|
|
* First process the data partition(s)
|
|
*/
|
|
for (i = 0; i < 4; i++, p++) {
|
|
sector_t offs, size, next;
|
|
|
|
if (!nr_sects(p) || is_extended_partition(p))
|
|
continue;
|
|
|
|
/* Check the 3rd and 4th entries -
|
|
these sometimes contain random garbage */
|
|
offs = start_sect(p)*sector_size;
|
|
size = nr_sects(p)*sector_size;
|
|
next = this_sector + offs;
|
|
if (i >= 2) {
|
|
if (offs + size > this_size)
|
|
continue;
|
|
if (next < first_sector)
|
|
continue;
|
|
if (next + size > first_sector + first_size)
|
|
continue;
|
|
}
|
|
|
|
put_partition(state, state->next, next, size);
|
|
set_info(state, state->next, disksig);
|
|
if (p->sys_ind == LINUX_RAID_PARTITION)
|
|
state->parts[state->next].flags = ADDPART_FLAG_RAID;
|
|
loopct = 0;
|
|
if (++state->next == state->limit)
|
|
goto done;
|
|
}
|
|
/*
|
|
* Next, process the (first) extended partition, if present.
|
|
* (So far, there seems to be no reason to make
|
|
* parse_extended() recursive and allow a tree
|
|
* of extended partitions.)
|
|
* It should be a link to the next logical partition.
|
|
*/
|
|
p -= 4;
|
|
for (i = 0; i < 4; i++, p++)
|
|
if (nr_sects(p) && is_extended_partition(p))
|
|
break;
|
|
if (i == 4)
|
|
goto done; /* nothing left to do */
|
|
|
|
this_sector = first_sector + start_sect(p) * sector_size;
|
|
this_size = nr_sects(p) * sector_size;
|
|
put_dev_sector(sect);
|
|
}
|
|
done:
|
|
put_dev_sector(sect);
|
|
}
|
|
|
|
#define SOLARIS_X86_NUMSLICE 16
|
|
#define SOLARIS_X86_VTOC_SANE (0x600DDEEEUL)
|
|
|
|
struct solaris_x86_slice {
|
|
__le16 s_tag; /* ID tag of partition */
|
|
__le16 s_flag; /* permission flags */
|
|
__le32 s_start; /* start sector no of partition */
|
|
__le32 s_size; /* # of blocks in partition */
|
|
};
|
|
|
|
struct solaris_x86_vtoc {
|
|
unsigned int v_bootinfo[3]; /* info needed by mboot */
|
|
__le32 v_sanity; /* to verify vtoc sanity */
|
|
__le32 v_version; /* layout version */
|
|
char v_volume[8]; /* volume name */
|
|
__le16 v_sectorsz; /* sector size in bytes */
|
|
__le16 v_nparts; /* number of partitions */
|
|
unsigned int v_reserved[10]; /* free space */
|
|
struct solaris_x86_slice
|
|
v_slice[SOLARIS_X86_NUMSLICE]; /* slice headers */
|
|
unsigned int timestamp[SOLARIS_X86_NUMSLICE]; /* timestamp */
|
|
char v_asciilabel[128]; /* for compatibility */
|
|
};
|
|
|
|
/* james@bpgc.com: Solaris has a nasty indicator: 0x82 which also
|
|
indicates linux swap. Be careful before believing this is Solaris. */
|
|
|
|
static void parse_solaris_x86(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_SOLARIS_X86_PARTITION
|
|
Sector sect;
|
|
struct solaris_x86_vtoc *v;
|
|
int i;
|
|
short max_nparts;
|
|
|
|
v = read_part_sector(state, offset + 1, §);
|
|
if (!v)
|
|
return;
|
|
if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
{
|
|
char tmp[1 + BDEVNAME_SIZE + 10 + 11 + 1];
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <solaris:", state->name, origin);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
}
|
|
if (le32_to_cpu(v->v_version) != 1) {
|
|
char tmp[64];
|
|
|
|
snprintf(tmp, sizeof(tmp), " cannot handle version %d vtoc>\n",
|
|
le32_to_cpu(v->v_version));
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
/* Ensure we can handle previous case of VTOC with 8 entries gracefully */
|
|
max_nparts = le16_to_cpu(v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8;
|
|
for (i = 0; i < max_nparts && state->next < state->limit; i++) {
|
|
struct solaris_x86_slice *s = &v->v_slice[i];
|
|
char tmp[3 + 10 + 1 + 1];
|
|
|
|
if (s->s_size == 0)
|
|
continue;
|
|
snprintf(tmp, sizeof(tmp), " [s%d]", i);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
/* solaris partitions are relative to current MS-DOS
|
|
* one; must add the offset of the current partition */
|
|
put_partition(state, state->next++,
|
|
le32_to_cpu(s->s_start)+offset,
|
|
le32_to_cpu(s->s_size));
|
|
}
|
|
put_dev_sector(sect);
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
/* check against BSD src/sys/sys/disklabel.h for consistency */
|
|
#define BSD_DISKMAGIC (0x82564557UL) /* The disk magic number */
|
|
#define BSD_MAXPARTITIONS 16
|
|
#define OPENBSD_MAXPARTITIONS 16
|
|
#define BSD_FS_UNUSED 0 /* disklabel unused partition entry ID */
|
|
struct bsd_disklabel {
|
|
__le32 d_magic; /* the magic number */
|
|
__s16 d_type; /* drive type */
|
|
__s16 d_subtype; /* controller/d_type specific */
|
|
char d_typename[16]; /* type name, e.g. "eagle" */
|
|
char d_packname[16]; /* pack identifier */
|
|
__u32 d_secsize; /* # of bytes per sector */
|
|
__u32 d_nsectors; /* # of data sectors per track */
|
|
__u32 d_ntracks; /* # of tracks per cylinder */
|
|
__u32 d_ncylinders; /* # of data cylinders per unit */
|
|
__u32 d_secpercyl; /* # of data sectors per cylinder */
|
|
__u32 d_secperunit; /* # of data sectors per unit */
|
|
__u16 d_sparespertrack; /* # of spare sectors per track */
|
|
__u16 d_sparespercyl; /* # of spare sectors per cylinder */
|
|
__u32 d_acylinders; /* # of alt. cylinders per unit */
|
|
__u16 d_rpm; /* rotational speed */
|
|
__u16 d_interleave; /* hardware sector interleave */
|
|
__u16 d_trackskew; /* sector 0 skew, per track */
|
|
__u16 d_cylskew; /* sector 0 skew, per cylinder */
|
|
__u32 d_headswitch; /* head switch time, usec */
|
|
__u32 d_trkseek; /* track-to-track seek, usec */
|
|
__u32 d_flags; /* generic flags */
|
|
#define NDDATA 5
|
|
__u32 d_drivedata[NDDATA]; /* drive-type specific information */
|
|
#define NSPARE 5
|
|
__u32 d_spare[NSPARE]; /* reserved for future use */
|
|
__le32 d_magic2; /* the magic number (again) */
|
|
__le16 d_checksum; /* xor of data incl. partitions */
|
|
|
|
/* filesystem and partition information: */
|
|
__le16 d_npartitions; /* number of partitions in following */
|
|
__le32 d_bbsize; /* size of boot area at sn0, bytes */
|
|
__le32 d_sbsize; /* max size of fs superblock, bytes */
|
|
struct bsd_partition { /* the partition table */
|
|
__le32 p_size; /* number of sectors in partition */
|
|
__le32 p_offset; /* starting sector */
|
|
__le32 p_fsize; /* filesystem basic fragment size */
|
|
__u8 p_fstype; /* filesystem type, see below */
|
|
__u8 p_frag; /* filesystem fragments per block */
|
|
__le16 p_cpg; /* filesystem cylinders per group */
|
|
} d_partitions[BSD_MAXPARTITIONS]; /* actually may be more */
|
|
};
|
|
|
|
#if defined(CONFIG_BSD_DISKLABEL)
|
|
/*
|
|
* Create devices for BSD partitions listed in a disklabel, under a
|
|
* dos-like partition. See parse_extended() for more information.
|
|
*/
|
|
static void parse_bsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin, char *flavour,
|
|
int max_partitions)
|
|
{
|
|
Sector sect;
|
|
struct bsd_disklabel *l;
|
|
struct bsd_partition *p;
|
|
char tmp[64];
|
|
|
|
l = read_part_sector(state, offset + 1, §);
|
|
if (!l)
|
|
return;
|
|
if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) {
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <%s:", state->name, origin, flavour);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
|
|
if (le16_to_cpu(l->d_npartitions) < max_partitions)
|
|
max_partitions = le16_to_cpu(l->d_npartitions);
|
|
for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) {
|
|
sector_t bsd_start, bsd_size;
|
|
|
|
if (state->next == state->limit)
|
|
break;
|
|
if (p->p_fstype == BSD_FS_UNUSED)
|
|
continue;
|
|
bsd_start = le32_to_cpu(p->p_offset);
|
|
bsd_size = le32_to_cpu(p->p_size);
|
|
/* FreeBSD has relative offset if C partition offset is zero */
|
|
if (memcmp(flavour, "bsd\0", 4) == 0 &&
|
|
le32_to_cpu(l->d_partitions[2].p_offset) == 0)
|
|
bsd_start += offset;
|
|
if (offset == bsd_start && size == bsd_size)
|
|
/* full parent partition, we have it already */
|
|
continue;
|
|
if (offset > bsd_start || offset+size < bsd_start+bsd_size) {
|
|
strlcat(state->pp_buf, "bad subpartition - ignored\n", PAGE_SIZE);
|
|
continue;
|
|
}
|
|
put_partition(state, state->next++, bsd_start, bsd_size);
|
|
}
|
|
put_dev_sector(sect);
|
|
if (le16_to_cpu(l->d_npartitions) > max_partitions) {
|
|
snprintf(tmp, sizeof(tmp), " (ignored %d more)",
|
|
le16_to_cpu(l->d_npartitions) - max_partitions);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
}
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
}
|
|
#endif
|
|
|
|
static void parse_freebsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_BSD_DISKLABEL
|
|
parse_bsd(state, offset, size, origin, "bsd", BSD_MAXPARTITIONS);
|
|
#endif
|
|
}
|
|
|
|
static void parse_netbsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_BSD_DISKLABEL
|
|
parse_bsd(state, offset, size, origin, "netbsd", BSD_MAXPARTITIONS);
|
|
#endif
|
|
}
|
|
|
|
static void parse_openbsd(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_BSD_DISKLABEL
|
|
parse_bsd(state, offset, size, origin, "openbsd",
|
|
OPENBSD_MAXPARTITIONS);
|
|
#endif
|
|
}
|
|
|
|
#define UNIXWARE_DISKMAGIC (0xCA5E600DUL) /* The disk magic number */
|
|
#define UNIXWARE_DISKMAGIC2 (0x600DDEEEUL) /* The slice table magic nr */
|
|
#define UNIXWARE_NUMSLICE 16
|
|
#define UNIXWARE_FS_UNUSED 0 /* Unused slice entry ID */
|
|
|
|
struct unixware_slice {
|
|
__le16 s_label; /* label */
|
|
__le16 s_flags; /* permission flags */
|
|
__le32 start_sect; /* starting sector */
|
|
__le32 nr_sects; /* number of sectors in slice */
|
|
};
|
|
|
|
struct unixware_disklabel {
|
|
__le32 d_type; /* drive type */
|
|
__le32 d_magic; /* the magic number */
|
|
__le32 d_version; /* version number */
|
|
char d_serial[12]; /* serial number of the device */
|
|
__le32 d_ncylinders; /* # of data cylinders per device */
|
|
__le32 d_ntracks; /* # of tracks per cylinder */
|
|
__le32 d_nsectors; /* # of data sectors per track */
|
|
__le32 d_secsize; /* # of bytes per sector */
|
|
__le32 d_part_start; /* # of first sector of this partition*/
|
|
__le32 d_unknown1[12]; /* ? */
|
|
__le32 d_alt_tbl; /* byte offset of alternate table */
|
|
__le32 d_alt_len; /* byte length of alternate table */
|
|
__le32 d_phys_cyl; /* # of physical cylinders per device */
|
|
__le32 d_phys_trk; /* # of physical tracks per cylinder */
|
|
__le32 d_phys_sec; /* # of physical sectors per track */
|
|
__le32 d_phys_bytes; /* # of physical bytes per sector */
|
|
__le32 d_unknown2; /* ? */
|
|
__le32 d_unknown3; /* ? */
|
|
__le32 d_pad[8]; /* pad */
|
|
|
|
struct unixware_vtoc {
|
|
__le32 v_magic; /* the magic number */
|
|
__le32 v_version; /* version number */
|
|
char v_name[8]; /* volume name */
|
|
__le16 v_nslices; /* # of slices */
|
|
__le16 v_unknown1; /* ? */
|
|
__le32 v_reserved[10]; /* reserved */
|
|
struct unixware_slice
|
|
v_slice[UNIXWARE_NUMSLICE]; /* slice headers */
|
|
} vtoc;
|
|
}; /* 408 */
|
|
|
|
/*
|
|
* Create devices for Unixware partitions listed in a disklabel, under a
|
|
* dos-like partition. See parse_extended() for more information.
|
|
*/
|
|
static void parse_unixware(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_UNIXWARE_DISKLABEL
|
|
Sector sect;
|
|
struct unixware_disklabel *l;
|
|
struct unixware_slice *p;
|
|
|
|
l = read_part_sector(state, offset + 29, §);
|
|
if (!l)
|
|
return;
|
|
if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC ||
|
|
le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) {
|
|
put_dev_sector(sect);
|
|
return;
|
|
}
|
|
{
|
|
char tmp[1 + BDEVNAME_SIZE + 10 + 12 + 1];
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <unixware:", state->name, origin);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
}
|
|
p = &l->vtoc.v_slice[1];
|
|
/* I omit the 0th slice as it is the same as whole disk. */
|
|
while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) {
|
|
if (state->next == state->limit)
|
|
break;
|
|
|
|
if (p->s_label != UNIXWARE_FS_UNUSED)
|
|
put_partition(state, state->next++,
|
|
le32_to_cpu(p->start_sect),
|
|
le32_to_cpu(p->nr_sects));
|
|
p++;
|
|
}
|
|
put_dev_sector(sect);
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
#define MINIX_NR_SUBPARTITIONS 4
|
|
|
|
/*
|
|
* Minix 2.0.0/2.0.2 subpartition support.
|
|
* Anand Krishnamurthy <anandk@wiproge.med.ge.com>
|
|
* Rajeev V. Pillai <rajeevvp@yahoo.com>
|
|
*/
|
|
static void parse_minix(struct parsed_partitions *state,
|
|
sector_t offset, sector_t size, int origin)
|
|
{
|
|
#ifdef CONFIG_MINIX_SUBPARTITION
|
|
Sector sect;
|
|
unsigned char *data;
|
|
struct msdos_partition *p;
|
|
int i;
|
|
|
|
data = read_part_sector(state, offset, §);
|
|
if (!data)
|
|
return;
|
|
|
|
p = (struct msdos_partition *)(data + 0x1be);
|
|
|
|
/* The first sector of a Minix partition can have either
|
|
* a secondary MBR describing its subpartitions, or
|
|
* the normal boot sector. */
|
|
if (msdos_magic_present(data + 510) &&
|
|
p->sys_ind == MINIX_PARTITION) { /* subpartition table present */
|
|
char tmp[1 + BDEVNAME_SIZE + 10 + 9 + 1];
|
|
|
|
snprintf(tmp, sizeof(tmp), " %s%d: <minix:", state->name, origin);
|
|
strlcat(state->pp_buf, tmp, PAGE_SIZE);
|
|
for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) {
|
|
if (state->next == state->limit)
|
|
break;
|
|
/* add each partition in use */
|
|
if (p->sys_ind == MINIX_PARTITION)
|
|
put_partition(state, state->next++,
|
|
start_sect(p), nr_sects(p));
|
|
}
|
|
strlcat(state->pp_buf, " >\n", PAGE_SIZE);
|
|
}
|
|
put_dev_sector(sect);
|
|
#endif /* CONFIG_MINIX_SUBPARTITION */
|
|
}
|
|
|
|
static struct {
|
|
unsigned char id;
|
|
void (*parse)(struct parsed_partitions *, sector_t, sector_t, int);
|
|
} subtypes[] = {
|
|
{FREEBSD_PARTITION, parse_freebsd},
|
|
{NETBSD_PARTITION, parse_netbsd},
|
|
{OPENBSD_PARTITION, parse_openbsd},
|
|
{MINIX_PARTITION, parse_minix},
|
|
{UNIXWARE_PARTITION, parse_unixware},
|
|
{SOLARIS_X86_PARTITION, parse_solaris_x86},
|
|
{NEW_SOLARIS_X86_PARTITION, parse_solaris_x86},
|
|
{0, NULL},
|
|
};
|
|
|
|
int msdos_partition(struct parsed_partitions *state)
|
|
{
|
|
sector_t sector_size = bdev_logical_block_size(state->bdev) / 512;
|
|
Sector sect;
|
|
unsigned char *data;
|
|
struct msdos_partition *p;
|
|
struct fat_boot_sector *fb;
|
|
int slot;
|
|
u32 disksig;
|
|
|
|
data = read_part_sector(state, 0, §);
|
|
if (!data)
|
|
return -1;
|
|
|
|
/*
|
|
* Note order! (some AIX disks, e.g. unbootable kind,
|
|
* have no MSDOS 55aa)
|
|
*/
|
|
if (aix_magic_present(state, data)) {
|
|
put_dev_sector(sect);
|
|
#ifdef CONFIG_AIX_PARTITION
|
|
return aix_partition(state);
|
|
#else
|
|
strlcat(state->pp_buf, " [AIX]", PAGE_SIZE);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
if (!msdos_magic_present(data + 510)) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now that the 55aa signature is present, this is probably
|
|
* either the boot sector of a FAT filesystem or a DOS-type
|
|
* partition table. Reject this in case the boot indicator
|
|
* is not 0 or 0x80.
|
|
*/
|
|
p = (struct msdos_partition *) (data + 0x1be);
|
|
for (slot = 1; slot <= 4; slot++, p++) {
|
|
if (p->boot_ind != 0 && p->boot_ind != 0x80) {
|
|
/*
|
|
* Even without a valid boot indicator value
|
|
* its still possible this is valid FAT filesystem
|
|
* without a partition table.
|
|
*/
|
|
fb = (struct fat_boot_sector *) data;
|
|
if (slot == 1 && fb->reserved && fb->fats
|
|
&& fat_valid_media(fb->media)) {
|
|
strlcat(state->pp_buf, "\n", PAGE_SIZE);
|
|
put_dev_sector(sect);
|
|
return 1;
|
|
} else {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_PARTITION
|
|
p = (struct msdos_partition *) (data + 0x1be);
|
|
for (slot = 1 ; slot <= 4 ; slot++, p++) {
|
|
/* If this is an EFI GPT disk, msdos should ignore it. */
|
|
if (p->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT) {
|
|
put_dev_sector(sect);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
p = (struct msdos_partition *) (data + 0x1be);
|
|
|
|
disksig = le32_to_cpup((__le32 *)(data + 0x1b8));
|
|
|
|
/*
|
|
* Look for partitions in two passes:
|
|
* First find the primary and DOS-type extended partitions.
|
|
* On the second pass look inside *BSD, Unixware and Solaris partitions.
|
|
*/
|
|
|
|
state->next = 5;
|
|
for (slot = 1 ; slot <= 4 ; slot++, p++) {
|
|
sector_t start = start_sect(p)*sector_size;
|
|
sector_t size = nr_sects(p)*sector_size;
|
|
|
|
if (!size)
|
|
continue;
|
|
if (is_extended_partition(p)) {
|
|
/*
|
|
* prevent someone doing mkfs or mkswap on an
|
|
* extended partition, but leave room for LILO
|
|
* FIXME: this uses one logical sector for > 512b
|
|
* sector, although it may not be enough/proper.
|
|
*/
|
|
sector_t n = 2;
|
|
|
|
n = min(size, max(sector_size, n));
|
|
put_partition(state, slot, start, n);
|
|
|
|
strlcat(state->pp_buf, " <", PAGE_SIZE);
|
|
parse_extended(state, start, size, disksig);
|
|
strlcat(state->pp_buf, " >", PAGE_SIZE);
|
|
continue;
|
|
}
|
|
put_partition(state, slot, start, size);
|
|
set_info(state, slot, disksig);
|
|
if (p->sys_ind == LINUX_RAID_PARTITION)
|
|
state->parts[slot].flags = ADDPART_FLAG_RAID;
|
|
if (p->sys_ind == DM6_PARTITION)
|
|
strlcat(state->pp_buf, "[DM]", PAGE_SIZE);
|
|
if (p->sys_ind == EZD_PARTITION)
|
|
strlcat(state->pp_buf, "[EZD]", PAGE_SIZE);
|
|
}
|
|
|
|
strlcat(state->pp_buf, "\n", PAGE_SIZE);
|
|
|
|
/* second pass - output for each on a separate line */
|
|
p = (struct msdos_partition *) (0x1be + data);
|
|
for (slot = 1 ; slot <= 4 ; slot++, p++) {
|
|
unsigned char id = p->sys_ind;
|
|
int n;
|
|
|
|
if (!nr_sects(p))
|
|
continue;
|
|
|
|
for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
|
|
;
|
|
|
|
if (!subtypes[n].parse)
|
|
continue;
|
|
subtypes[n].parse(state, start_sect(p) * sector_size,
|
|
nr_sects(p) * sector_size, slot);
|
|
}
|
|
put_dev_sector(sect);
|
|
return 1;
|
|
}
|