linux-stable/drivers/interconnect/qcom/icc-rpm.c
Leo Yan e3305daad6 interconnect: qcom: icc-rpm: Set bandwidth and clock for bucket values
This commit uses buckets for support bandwidth and clock rates.  It
introduces a new function qcom_icc_bus_aggregate() to calculate the
aggregate average and peak bandwidths for every bucket, and also it
calculates the maximum value of aggregated average bandwidth across all
buckets.

The maximum aggregated average is used to calculate the final bandwidth
requests.  And we can set the clock rate per bucket, we use SLEEP bucket
as default bucket if a platform doesn't enable the interconnect path
tags in DT binding; otherwise, we use WAKE bucket to set active clock
and use SLEEP bucket for other clocks.  So far we don't use AMC bucket.

Signed-off-by: Leo Yan <leo.yan@linaro.org>
Link: https://lore.kernel.org/r/20220712015929.2789881-6-leo.yan@linaro.org
Signed-off-by: Georgi Djakov <djakov@kernel.org>
2022-07-12 10:04:01 +03:00

568 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Linaro Ltd
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interconnect-provider.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include "smd-rpm.h"
#include "icc-common.h"
#include "icc-rpm.h"
/* QNOC QoS */
#define QNOC_QOS_MCTL_LOWn_ADDR(n) (0x8 + (n * 0x1000))
#define QNOC_QOS_MCTL_DFLT_PRIO_MASK 0x70
#define QNOC_QOS_MCTL_DFLT_PRIO_SHIFT 4
#define QNOC_QOS_MCTL_URGFWD_EN_MASK 0x8
#define QNOC_QOS_MCTL_URGFWD_EN_SHIFT 3
/* BIMC QoS */
#define M_BKE_REG_BASE(n) (0x300 + (0x4000 * n))
#define M_BKE_EN_ADDR(n) (M_BKE_REG_BASE(n))
#define M_BKE_HEALTH_CFG_ADDR(i, n) (M_BKE_REG_BASE(n) + 0x40 + (0x4 * i))
#define M_BKE_HEALTH_CFG_LIMITCMDS_MASK 0x80000000
#define M_BKE_HEALTH_CFG_AREQPRIO_MASK 0x300
#define M_BKE_HEALTH_CFG_PRIOLVL_MASK 0x3
#define M_BKE_HEALTH_CFG_AREQPRIO_SHIFT 0x8
#define M_BKE_HEALTH_CFG_LIMITCMDS_SHIFT 0x1f
#define M_BKE_EN_EN_BMASK 0x1
/* NoC QoS */
#define NOC_QOS_PRIORITYn_ADDR(n) (0x8 + (n * 0x1000))
#define NOC_QOS_PRIORITY_P1_MASK 0xc
#define NOC_QOS_PRIORITY_P0_MASK 0x3
#define NOC_QOS_PRIORITY_P1_SHIFT 0x2
#define NOC_QOS_MODEn_ADDR(n) (0xc + (n * 0x1000))
#define NOC_QOS_MODEn_MASK 0x3
static int qcom_icc_set_qnoc_qos(struct icc_node *src, u64 max_bw)
{
struct icc_provider *provider = src->provider;
struct qcom_icc_provider *qp = to_qcom_provider(provider);
struct qcom_icc_node *qn = src->data;
struct qcom_icc_qos *qos = &qn->qos;
int rc;
rc = regmap_update_bits(qp->regmap,
qp->qos_offset + QNOC_QOS_MCTL_LOWn_ADDR(qos->qos_port),
QNOC_QOS_MCTL_DFLT_PRIO_MASK,
qos->areq_prio << QNOC_QOS_MCTL_DFLT_PRIO_SHIFT);
if (rc)
return rc;
return regmap_update_bits(qp->regmap,
qp->qos_offset + QNOC_QOS_MCTL_LOWn_ADDR(qos->qos_port),
QNOC_QOS_MCTL_URGFWD_EN_MASK,
!!qos->urg_fwd_en << QNOC_QOS_MCTL_URGFWD_EN_SHIFT);
}
static int qcom_icc_bimc_set_qos_health(struct qcom_icc_provider *qp,
struct qcom_icc_qos *qos,
int regnum)
{
u32 val;
u32 mask;
val = qos->prio_level;
mask = M_BKE_HEALTH_CFG_PRIOLVL_MASK;
val |= qos->areq_prio << M_BKE_HEALTH_CFG_AREQPRIO_SHIFT;
mask |= M_BKE_HEALTH_CFG_AREQPRIO_MASK;
/* LIMITCMDS is not present on M_BKE_HEALTH_3 */
if (regnum != 3) {
val |= qos->limit_commands << M_BKE_HEALTH_CFG_LIMITCMDS_SHIFT;
mask |= M_BKE_HEALTH_CFG_LIMITCMDS_MASK;
}
return regmap_update_bits(qp->regmap,
qp->qos_offset + M_BKE_HEALTH_CFG_ADDR(regnum, qos->qos_port),
mask, val);
}
static int qcom_icc_set_bimc_qos(struct icc_node *src, u64 max_bw)
{
struct qcom_icc_provider *qp;
struct qcom_icc_node *qn;
struct icc_provider *provider;
u32 mode = NOC_QOS_MODE_BYPASS;
u32 val = 0;
int i, rc = 0;
qn = src->data;
provider = src->provider;
qp = to_qcom_provider(provider);
if (qn->qos.qos_mode != NOC_QOS_MODE_INVALID)
mode = qn->qos.qos_mode;
/* QoS Priority: The QoS Health parameters are getting considered
* only if we are NOT in Bypass Mode.
*/
if (mode != NOC_QOS_MODE_BYPASS) {
for (i = 3; i >= 0; i--) {
rc = qcom_icc_bimc_set_qos_health(qp,
&qn->qos, i);
if (rc)
return rc;
}
/* Set BKE_EN to 1 when Fixed, Regulator or Limiter Mode */
val = 1;
}
return regmap_update_bits(qp->regmap,
qp->qos_offset + M_BKE_EN_ADDR(qn->qos.qos_port),
M_BKE_EN_EN_BMASK, val);
}
static int qcom_icc_noc_set_qos_priority(struct qcom_icc_provider *qp,
struct qcom_icc_qos *qos)
{
u32 val;
int rc;
/* Must be updated one at a time, P1 first, P0 last */
val = qos->areq_prio << NOC_QOS_PRIORITY_P1_SHIFT;
rc = regmap_update_bits(qp->regmap,
qp->qos_offset + NOC_QOS_PRIORITYn_ADDR(qos->qos_port),
NOC_QOS_PRIORITY_P1_MASK, val);
if (rc)
return rc;
return regmap_update_bits(qp->regmap,
qp->qos_offset + NOC_QOS_PRIORITYn_ADDR(qos->qos_port),
NOC_QOS_PRIORITY_P0_MASK, qos->prio_level);
}
static int qcom_icc_set_noc_qos(struct icc_node *src, u64 max_bw)
{
struct qcom_icc_provider *qp;
struct qcom_icc_node *qn;
struct icc_provider *provider;
u32 mode = NOC_QOS_MODE_BYPASS;
int rc = 0;
qn = src->data;
provider = src->provider;
qp = to_qcom_provider(provider);
if (qn->qos.qos_port < 0) {
dev_dbg(src->provider->dev,
"NoC QoS: Skipping %s: vote aggregated on parent.\n",
qn->name);
return 0;
}
if (qn->qos.qos_mode != NOC_QOS_MODE_INVALID)
mode = qn->qos.qos_mode;
if (mode == NOC_QOS_MODE_FIXED) {
dev_dbg(src->provider->dev, "NoC QoS: %s: Set Fixed mode\n",
qn->name);
rc = qcom_icc_noc_set_qos_priority(qp, &qn->qos);
if (rc)
return rc;
} else if (mode == NOC_QOS_MODE_BYPASS) {
dev_dbg(src->provider->dev, "NoC QoS: %s: Set Bypass mode\n",
qn->name);
}
return regmap_update_bits(qp->regmap,
qp->qos_offset + NOC_QOS_MODEn_ADDR(qn->qos.qos_port),
NOC_QOS_MODEn_MASK, mode);
}
static int qcom_icc_qos_set(struct icc_node *node, u64 sum_bw)
{
struct qcom_icc_provider *qp = to_qcom_provider(node->provider);
struct qcom_icc_node *qn = node->data;
dev_dbg(node->provider->dev, "Setting QoS for %s\n", qn->name);
switch (qp->type) {
case QCOM_ICC_BIMC:
return qcom_icc_set_bimc_qos(node, sum_bw);
case QCOM_ICC_QNOC:
return qcom_icc_set_qnoc_qos(node, sum_bw);
default:
return qcom_icc_set_noc_qos(node, sum_bw);
}
}
static int qcom_icc_rpm_set(int mas_rpm_id, int slv_rpm_id, u64 sum_bw)
{
int ret = 0;
if (mas_rpm_id != -1) {
ret = qcom_icc_rpm_smd_send(QCOM_SMD_RPM_ACTIVE_STATE,
RPM_BUS_MASTER_REQ,
mas_rpm_id,
sum_bw);
if (ret) {
pr_err("qcom_icc_rpm_smd_send mas %d error %d\n",
mas_rpm_id, ret);
return ret;
}
}
if (slv_rpm_id != -1) {
ret = qcom_icc_rpm_smd_send(QCOM_SMD_RPM_ACTIVE_STATE,
RPM_BUS_SLAVE_REQ,
slv_rpm_id,
sum_bw);
if (ret) {
pr_err("qcom_icc_rpm_smd_send slv %d error %d\n",
slv_rpm_id, ret);
return ret;
}
}
return ret;
}
static int __qcom_icc_set(struct icc_node *n, struct qcom_icc_node *qn,
u64 sum_bw)
{
int ret;
if (!qn->qos.ap_owned) {
/* send bandwidth request message to the RPM processor */
ret = qcom_icc_rpm_set(qn->mas_rpm_id, qn->slv_rpm_id, sum_bw);
if (ret)
return ret;
} else if (qn->qos.qos_mode != -1) {
/* set bandwidth directly from the AP */
ret = qcom_icc_qos_set(n, sum_bw);
if (ret)
return ret;
}
return 0;
}
/**
* qcom_icc_pre_bw_aggregate - cleans up values before re-aggregate requests
* @node: icc node to operate on
*/
static void qcom_icc_pre_bw_aggregate(struct icc_node *node)
{
struct qcom_icc_node *qn;
size_t i;
qn = node->data;
for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++) {
qn->sum_avg[i] = 0;
qn->max_peak[i] = 0;
}
}
/**
* qcom_icc_bw_aggregate - aggregate bw for buckets indicated by tag
* @node: node to aggregate
* @tag: tag to indicate which buckets to aggregate
* @avg_bw: new bw to sum aggregate
* @peak_bw: new bw to max aggregate
* @agg_avg: existing aggregate avg bw val
* @agg_peak: existing aggregate peak bw val
*/
static int qcom_icc_bw_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
{
size_t i;
struct qcom_icc_node *qn;
qn = node->data;
if (!tag)
tag = QCOM_ICC_TAG_ALWAYS;
for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++) {
if (tag & BIT(i)) {
qn->sum_avg[i] += avg_bw;
qn->max_peak[i] = max_t(u32, qn->max_peak[i], peak_bw);
}
}
*agg_avg += avg_bw;
*agg_peak = max_t(u32, *agg_peak, peak_bw);
return 0;
}
/**
* qcom_icc_bus_aggregate - aggregate bandwidth by traversing all nodes
* @provider: generic interconnect provider
* @agg_avg: an array for aggregated average bandwidth of buckets
* @agg_peak: an array for aggregated peak bandwidth of buckets
* @max_agg_avg: pointer to max value of aggregated average bandwidth
*/
static void qcom_icc_bus_aggregate(struct icc_provider *provider,
u64 *agg_avg, u64 *agg_peak,
u64 *max_agg_avg)
{
struct icc_node *node;
struct qcom_icc_node *qn;
int i;
/* Initialise aggregate values */
for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++) {
agg_avg[i] = 0;
agg_peak[i] = 0;
}
*max_agg_avg = 0;
/*
* Iterate nodes on the interconnect and aggregate bandwidth
* requests for every bucket.
*/
list_for_each_entry(node, &provider->nodes, node_list) {
qn = node->data;
for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++) {
agg_avg[i] += qn->sum_avg[i];
agg_peak[i] = max_t(u64, agg_peak[i], qn->max_peak[i]);
}
}
/* Find maximum values across all buckets */
for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++)
*max_agg_avg = max_t(u64, *max_agg_avg, agg_avg[i]);
}
static int qcom_icc_set(struct icc_node *src, struct icc_node *dst)
{
struct qcom_icc_provider *qp;
struct qcom_icc_node *src_qn = NULL, *dst_qn = NULL;
struct icc_provider *provider;
u64 sum_bw;
u64 rate;
u64 agg_avg[QCOM_ICC_NUM_BUCKETS], agg_peak[QCOM_ICC_NUM_BUCKETS];
u64 max_agg_avg;
int ret, i;
int bucket;
src_qn = src->data;
if (dst)
dst_qn = dst->data;
provider = src->provider;
qp = to_qcom_provider(provider);
qcom_icc_bus_aggregate(provider, agg_avg, agg_peak, &max_agg_avg);
sum_bw = icc_units_to_bps(max_agg_avg);
ret = __qcom_icc_set(src, src_qn, sum_bw);
if (ret)
return ret;
if (dst_qn) {
ret = __qcom_icc_set(dst, dst_qn, sum_bw);
if (ret)
return ret;
}
for (i = 0; i < qp->num_clks; i++) {
/*
* Use WAKE bucket for active clock, otherwise, use SLEEP bucket
* for other clocks. If a platform doesn't set interconnect
* path tags, by default use sleep bucket for all clocks.
*
* Note, AMC bucket is not supported yet.
*/
if (!strcmp(qp->bus_clks[i].id, "bus_a"))
bucket = QCOM_ICC_BUCKET_WAKE;
else
bucket = QCOM_ICC_BUCKET_SLEEP;
rate = icc_units_to_bps(max(agg_avg[bucket], agg_peak[bucket]));
do_div(rate, src_qn->buswidth);
rate = min_t(u64, rate, LONG_MAX);
if (qp->bus_clk_rate[i] == rate)
continue;
ret = clk_set_rate(qp->bus_clks[i].clk, rate);
if (ret) {
pr_err("%s clk_set_rate error: %d\n",
qp->bus_clks[i].id, ret);
return ret;
}
qp->bus_clk_rate[i] = rate;
}
return 0;
}
static const char * const bus_clocks[] = {
"bus", "bus_a",
};
int qnoc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct qcom_icc_desc *desc;
struct icc_onecell_data *data;
struct icc_provider *provider;
struct qcom_icc_node * const *qnodes;
struct qcom_icc_provider *qp;
struct icc_node *node;
size_t num_nodes, i;
const char * const *cds;
int cd_num;
int ret;
/* wait for the RPM proxy */
if (!qcom_icc_rpm_smd_available())
return -EPROBE_DEFER;
desc = of_device_get_match_data(dev);
if (!desc)
return -EINVAL;
qnodes = desc->nodes;
num_nodes = desc->num_nodes;
if (desc->num_clocks) {
cds = desc->clocks;
cd_num = desc->num_clocks;
} else {
cds = bus_clocks;
cd_num = ARRAY_SIZE(bus_clocks);
}
qp = devm_kzalloc(dev, struct_size(qp, bus_clks, cd_num), GFP_KERNEL);
if (!qp)
return -ENOMEM;
qp->bus_clk_rate = devm_kcalloc(dev, cd_num, sizeof(*qp->bus_clk_rate),
GFP_KERNEL);
if (!qp->bus_clk_rate)
return -ENOMEM;
data = devm_kzalloc(dev, struct_size(data, nodes, num_nodes),
GFP_KERNEL);
if (!data)
return -ENOMEM;
for (i = 0; i < cd_num; i++)
qp->bus_clks[i].id = cds[i];
qp->num_clks = cd_num;
qp->type = desc->type;
qp->qos_offset = desc->qos_offset;
if (desc->regmap_cfg) {
struct resource *res;
void __iomem *mmio;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
/* Try parent's regmap */
qp->regmap = dev_get_regmap(dev->parent, NULL);
if (qp->regmap)
goto regmap_done;
return -ENODEV;
}
mmio = devm_ioremap_resource(dev, res);
if (IS_ERR(mmio)) {
dev_err(dev, "Cannot ioremap interconnect bus resource\n");
return PTR_ERR(mmio);
}
qp->regmap = devm_regmap_init_mmio(dev, mmio, desc->regmap_cfg);
if (IS_ERR(qp->regmap)) {
dev_err(dev, "Cannot regmap interconnect bus resource\n");
return PTR_ERR(qp->regmap);
}
}
regmap_done:
ret = devm_clk_bulk_get(dev, qp->num_clks, qp->bus_clks);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(qp->num_clks, qp->bus_clks);
if (ret)
return ret;
if (desc->has_bus_pd) {
ret = dev_pm_domain_attach(dev, true);
if (ret)
return ret;
}
provider = &qp->provider;
INIT_LIST_HEAD(&provider->nodes);
provider->dev = dev;
provider->set = qcom_icc_set;
provider->pre_aggregate = qcom_icc_pre_bw_aggregate;
provider->aggregate = qcom_icc_bw_aggregate;
provider->xlate_extended = qcom_icc_xlate_extended;
provider->data = data;
ret = icc_provider_add(provider);
if (ret) {
dev_err(dev, "error adding interconnect provider: %d\n", ret);
clk_bulk_disable_unprepare(qp->num_clks, qp->bus_clks);
return ret;
}
for (i = 0; i < num_nodes; i++) {
size_t j;
node = icc_node_create(qnodes[i]->id);
if (IS_ERR(node)) {
ret = PTR_ERR(node);
goto err;
}
node->name = qnodes[i]->name;
node->data = qnodes[i];
icc_node_add(node, provider);
for (j = 0; j < qnodes[i]->num_links; j++)
icc_link_create(node, qnodes[i]->links[j]);
data->nodes[i] = node;
}
data->num_nodes = num_nodes;
platform_set_drvdata(pdev, qp);
/* Populate child NoC devices if any */
if (of_get_child_count(dev->of_node) > 0)
return of_platform_populate(dev->of_node, NULL, NULL, dev);
return 0;
err:
icc_nodes_remove(provider);
clk_bulk_disable_unprepare(qp->num_clks, qp->bus_clks);
icc_provider_del(provider);
return ret;
}
EXPORT_SYMBOL(qnoc_probe);
int qnoc_remove(struct platform_device *pdev)
{
struct qcom_icc_provider *qp = platform_get_drvdata(pdev);
icc_nodes_remove(&qp->provider);
clk_bulk_disable_unprepare(qp->num_clks, qp->bus_clks);
return icc_provider_del(&qp->provider);
}
EXPORT_SYMBOL(qnoc_remove);