linux-stable/drivers/iio/adc/sc27xx_adc.c
Rob Herring 1240c94ce8 iio: adc: Explicitly include correct DT includes
The DT of_device.h and of_platform.h date back to the separate
of_platform_bus_type before it as merged into the regular platform bus.
As part of that merge prepping Arm DT support 13 years ago, they
"temporarily" include each other. They also include platform_device.h
and of.h. As a result, there's a pretty much random mix of those include
files used throughout the tree. In order to detangle these headers and
replace the implicit includes with struct declarations, users need to
explicitly include the correct includes.

Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Link: https://lore.kernel.org/r/20230714174628.4057920-1-robh@kernel.org
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2023-07-23 13:38:13 +01:00

970 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.
#include <linux/hwspinlock.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/* PMIC global registers definition */
#define SC2730_MODULE_EN 0x1808
#define SC2731_MODULE_EN 0xc08
#define SC27XX_MODULE_ADC_EN BIT(5)
#define SC2721_ARM_CLK_EN 0xc0c
#define SC2730_ARM_CLK_EN 0x180c
#define SC2731_ARM_CLK_EN 0xc10
#define SC27XX_CLK_ADC_EN BIT(5)
#define SC27XX_CLK_ADC_CLK_EN BIT(6)
/* ADC controller registers definition */
#define SC27XX_ADC_CTL 0x0
#define SC27XX_ADC_CH_CFG 0x4
#define SC27XX_ADC_DATA 0x4c
#define SC27XX_ADC_INT_EN 0x50
#define SC27XX_ADC_INT_CLR 0x54
#define SC27XX_ADC_INT_STS 0x58
#define SC27XX_ADC_INT_RAW 0x5c
/* Bits and mask definition for SC27XX_ADC_CTL register */
#define SC27XX_ADC_EN BIT(0)
#define SC27XX_ADC_CHN_RUN BIT(1)
#define SC27XX_ADC_12BIT_MODE BIT(2)
#define SC27XX_ADC_RUN_NUM_MASK GENMASK(7, 4)
#define SC27XX_ADC_RUN_NUM_SHIFT 4
/* Bits and mask definition for SC27XX_ADC_CH_CFG register */
#define SC27XX_ADC_CHN_ID_MASK GENMASK(4, 0)
#define SC27XX_ADC_SCALE_MASK GENMASK(10, 9)
#define SC2721_ADC_SCALE_MASK BIT(5)
#define SC27XX_ADC_SCALE_SHIFT 9
#define SC2721_ADC_SCALE_SHIFT 5
/* Bits definitions for SC27XX_ADC_INT_EN registers */
#define SC27XX_ADC_IRQ_EN BIT(0)
/* Bits definitions for SC27XX_ADC_INT_CLR registers */
#define SC27XX_ADC_IRQ_CLR BIT(0)
/* Bits definitions for SC27XX_ADC_INT_RAW registers */
#define SC27XX_ADC_IRQ_RAW BIT(0)
/* Mask definition for SC27XX_ADC_DATA register */
#define SC27XX_ADC_DATA_MASK GENMASK(11, 0)
/* Timeout (ms) for the trylock of hardware spinlocks */
#define SC27XX_ADC_HWLOCK_TIMEOUT 5000
/* Timeout (us) for ADC data conversion according to ADC datasheet */
#define SC27XX_ADC_RDY_TIMEOUT 1000000
#define SC27XX_ADC_POLL_RAW_STATUS 500
/* Maximum ADC channel number */
#define SC27XX_ADC_CHANNEL_MAX 32
/* ADC voltage ratio definition */
#define SC27XX_VOLT_RATIO(n, d) \
(((n) << SC27XX_RATIO_NUMERATOR_OFFSET) | (d))
#define SC27XX_RATIO_NUMERATOR_OFFSET 16
#define SC27XX_RATIO_DENOMINATOR_MASK GENMASK(15, 0)
/* ADC specific channel reference voltage 3.5V */
#define SC27XX_ADC_REFVOL_VDD35 3500000
/* ADC default channel reference voltage is 2.8V */
#define SC27XX_ADC_REFVOL_VDD28 2800000
struct sc27xx_adc_data {
struct device *dev;
struct regulator *volref;
struct regmap *regmap;
/* lock to protect against multiple access to the device */
struct mutex lock;
/*
* One hardware spinlock to synchronize between the multiple
* subsystems which will access the unique ADC controller.
*/
struct hwspinlock *hwlock;
int channel_scale[SC27XX_ADC_CHANNEL_MAX];
u32 base;
int irq;
const struct sc27xx_adc_variant_data *var_data;
};
/*
* Since different PMICs of SC27xx series can have different
* address and ratio, we should save ratio config and base
* in the device data structure.
*/
struct sc27xx_adc_variant_data {
u32 module_en;
u32 clk_en;
u32 scale_shift;
u32 scale_mask;
const struct sc27xx_adc_linear_graph *bscale_cal;
const struct sc27xx_adc_linear_graph *sscale_cal;
void (*init_scale)(struct sc27xx_adc_data *data);
int (*get_ratio)(int channel, int scale);
bool set_volref;
};
struct sc27xx_adc_linear_graph {
int volt0;
int adc0;
int volt1;
int adc1;
};
/*
* According to the datasheet, we can convert one ADC value to one voltage value
* through 2 points in the linear graph. If the voltage is less than 1.2v, we
* should use the small-scale graph, and if more than 1.2v, we should use the
* big-scale graph.
*/
static struct sc27xx_adc_linear_graph big_scale_graph = {
4200, 3310,
3600, 2832,
};
static struct sc27xx_adc_linear_graph small_scale_graph = {
1000, 3413,
100, 341,
};
static const struct sc27xx_adc_linear_graph sc2731_big_scale_graph_calib = {
4200, 850,
3600, 728,
};
static const struct sc27xx_adc_linear_graph sc2731_small_scale_graph_calib = {
1000, 838,
100, 84,
};
static const struct sc27xx_adc_linear_graph big_scale_graph_calib = {
4200, 856,
3600, 733,
};
static const struct sc27xx_adc_linear_graph small_scale_graph_calib = {
1000, 833,
100, 80,
};
static int sc27xx_adc_get_calib_data(u32 calib_data, int calib_adc)
{
return ((calib_data & 0xff) + calib_adc - 128) * 4;
}
/* get the adc nvmem cell calibration data */
static int adc_nvmem_cell_calib_data(struct sc27xx_adc_data *data, const char *cell_name)
{
struct nvmem_cell *cell;
void *buf;
u32 origin_calib_data = 0;
size_t len;
if (!data)
return -EINVAL;
cell = nvmem_cell_get(data->dev, cell_name);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
if (IS_ERR(buf)) {
nvmem_cell_put(cell);
return PTR_ERR(buf);
}
memcpy(&origin_calib_data, buf, min(len, sizeof(u32)));
kfree(buf);
nvmem_cell_put(cell);
return origin_calib_data;
}
static int sc27xx_adc_scale_calibration(struct sc27xx_adc_data *data,
bool big_scale)
{
const struct sc27xx_adc_linear_graph *calib_graph;
struct sc27xx_adc_linear_graph *graph;
const char *cell_name;
u32 calib_data = 0;
if (big_scale) {
calib_graph = data->var_data->bscale_cal;
graph = &big_scale_graph;
cell_name = "big_scale_calib";
} else {
calib_graph = data->var_data->sscale_cal;
graph = &small_scale_graph;
cell_name = "small_scale_calib";
}
calib_data = adc_nvmem_cell_calib_data(data, cell_name);
/* Only need to calibrate the adc values in the linear graph. */
graph->adc0 = sc27xx_adc_get_calib_data(calib_data, calib_graph->adc0);
graph->adc1 = sc27xx_adc_get_calib_data(calib_data >> 8,
calib_graph->adc1);
return 0;
}
static int sc2720_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 14:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(68, 900);
case 1:
return SC27XX_VOLT_RATIO(68, 1760);
case 2:
return SC27XX_VOLT_RATIO(68, 2327);
case 3:
return SC27XX_VOLT_RATIO(68, 3654);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 16:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(48, 100);
case 1:
return SC27XX_VOLT_RATIO(480, 1955);
case 2:
return SC27XX_VOLT_RATIO(480, 2586);
case 3:
return SC27XX_VOLT_RATIO(48, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 21:
case 22:
case 23:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(3, 8);
case 1:
return SC27XX_VOLT_RATIO(375, 1955);
case 2:
return SC27XX_VOLT_RATIO(375, 2586);
case 3:
return SC27XX_VOLT_RATIO(300, 3248);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
default:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 1);
case 1:
return SC27XX_VOLT_RATIO(1000, 1955);
case 2:
return SC27XX_VOLT_RATIO(1000, 2586);
case 3:
return SC27XX_VOLT_RATIO(100, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2721_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 1:
case 2:
case 3:
case 4:
return scale ? SC27XX_VOLT_RATIO(400, 1025) :
SC27XX_VOLT_RATIO(1, 1);
case 5:
return SC27XX_VOLT_RATIO(7, 29);
case 7:
case 9:
return scale ? SC27XX_VOLT_RATIO(100, 125) :
SC27XX_VOLT_RATIO(1, 1);
case 14:
return SC27XX_VOLT_RATIO(68, 900);
case 16:
return SC27XX_VOLT_RATIO(48, 100);
case 19:
return SC27XX_VOLT_RATIO(1, 3);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2730_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 14:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(68, 900);
case 1:
return SC27XX_VOLT_RATIO(68, 1760);
case 2:
return SC27XX_VOLT_RATIO(68, 2327);
case 3:
return SC27XX_VOLT_RATIO(68, 3654);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 15:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 3);
case 1:
return SC27XX_VOLT_RATIO(1000, 5865);
case 2:
return SC27XX_VOLT_RATIO(500, 3879);
case 3:
return SC27XX_VOLT_RATIO(500, 6090);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 16:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(48, 100);
case 1:
return SC27XX_VOLT_RATIO(480, 1955);
case 2:
return SC27XX_VOLT_RATIO(480, 2586);
case 3:
return SC27XX_VOLT_RATIO(48, 406);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
case 21:
case 22:
case 23:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(3, 8);
case 1:
return SC27XX_VOLT_RATIO(375, 1955);
case 2:
return SC27XX_VOLT_RATIO(375, 2586);
case 3:
return SC27XX_VOLT_RATIO(300, 3248);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
default:
switch (scale) {
case 0:
return SC27XX_VOLT_RATIO(1, 1);
case 1:
return SC27XX_VOLT_RATIO(1000, 1955);
case 2:
return SC27XX_VOLT_RATIO(1000, 2586);
case 3:
return SC27XX_VOLT_RATIO(1000, 4060);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
}
return SC27XX_VOLT_RATIO(1, 1);
}
static int sc2731_adc_get_ratio(int channel, int scale)
{
switch (channel) {
case 1:
case 2:
case 3:
case 4:
return scale ? SC27XX_VOLT_RATIO(400, 1025) :
SC27XX_VOLT_RATIO(1, 1);
case 5:
return SC27XX_VOLT_RATIO(7, 29);
case 6:
return SC27XX_VOLT_RATIO(375, 9000);
case 7:
case 8:
return scale ? SC27XX_VOLT_RATIO(100, 125) :
SC27XX_VOLT_RATIO(1, 1);
case 19:
return SC27XX_VOLT_RATIO(1, 3);
default:
return SC27XX_VOLT_RATIO(1, 1);
}
return SC27XX_VOLT_RATIO(1, 1);
}
/*
* According to the datasheet set specific value on some channel.
*/
static void sc2720_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
data->channel_scale[i] = 3;
break;
case 7:
case 9:
data->channel_scale[i] = 2;
break;
case 13:
data->channel_scale[i] = 1;
break;
case 19:
case 30:
case 31:
data->channel_scale[i] = 3;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static void sc2730_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
case 10:
case 19:
case 30:
case 31:
data->channel_scale[i] = 3;
break;
case 7:
case 9:
data->channel_scale[i] = 2;
break;
case 13:
data->channel_scale[i] = 1;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static void sc2731_adc_scale_init(struct sc27xx_adc_data *data)
{
int i;
/*
* In the current software design, SC2731 support 2 scales,
* channels 5 uses big scale, others use smale.
*/
for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
switch (i) {
case 5:
data->channel_scale[i] = 1;
break;
default:
data->channel_scale[i] = 0;
break;
}
}
}
static int sc27xx_adc_read(struct sc27xx_adc_data *data, int channel,
int scale, int *val)
{
int ret, ret_volref;
u32 tmp, value, status;
ret = hwspin_lock_timeout_raw(data->hwlock, SC27XX_ADC_HWLOCK_TIMEOUT);
if (ret) {
dev_err(data->dev, "timeout to get the hwspinlock\n");
return ret;
}
/*
* According to the sc2721 chip data sheet, the reference voltage of
* specific channel 30 and channel 31 in ADC module needs to be set from
* the default 2.8v to 3.5v.
*/
if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
ret = regulator_set_voltage(data->volref,
SC27XX_ADC_REFVOL_VDD35,
SC27XX_ADC_REFVOL_VDD35);
if (ret) {
dev_err(data->dev, "failed to set the volref 3.5v\n");
goto unlock_adc;
}
}
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_EN, SC27XX_ADC_EN);
if (ret)
goto regulator_restore;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_INT_CLR,
SC27XX_ADC_IRQ_CLR, SC27XX_ADC_IRQ_CLR);
if (ret)
goto disable_adc;
/* Configure the channel id and scale */
tmp = (scale << data->var_data->scale_shift) & data->var_data->scale_mask;
tmp |= channel & SC27XX_ADC_CHN_ID_MASK;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CH_CFG,
SC27XX_ADC_CHN_ID_MASK |
data->var_data->scale_mask,
tmp);
if (ret)
goto disable_adc;
/* Select 12bit conversion mode, and only sample 1 time */
tmp = SC27XX_ADC_12BIT_MODE;
tmp |= (0 << SC27XX_ADC_RUN_NUM_SHIFT) & SC27XX_ADC_RUN_NUM_MASK;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_RUN_NUM_MASK | SC27XX_ADC_12BIT_MODE,
tmp);
if (ret)
goto disable_adc;
ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_CHN_RUN, SC27XX_ADC_CHN_RUN);
if (ret)
goto disable_adc;
ret = regmap_read_poll_timeout(data->regmap,
data->base + SC27XX_ADC_INT_RAW,
status, (status & SC27XX_ADC_IRQ_RAW),
SC27XX_ADC_POLL_RAW_STATUS,
SC27XX_ADC_RDY_TIMEOUT);
if (ret) {
dev_err(data->dev, "read adc timeout, status = 0x%x\n", status);
goto disable_adc;
}
ret = regmap_read(data->regmap, data->base + SC27XX_ADC_DATA, &value);
if (ret)
goto disable_adc;
value &= SC27XX_ADC_DATA_MASK;
disable_adc:
regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
SC27XX_ADC_EN, 0);
regulator_restore:
if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
ret_volref = regulator_set_voltage(data->volref,
SC27XX_ADC_REFVOL_VDD28,
SC27XX_ADC_REFVOL_VDD28);
if (ret_volref) {
dev_err(data->dev, "failed to set the volref 2.8v,ret_volref = 0x%x\n",
ret_volref);
ret = ret || ret_volref;
}
}
unlock_adc:
hwspin_unlock_raw(data->hwlock);
if (!ret)
*val = value;
return ret;
}
static void sc27xx_adc_volt_ratio(struct sc27xx_adc_data *data, int channel, int scale,
struct u32_fract *fract)
{
u32 ratio;
ratio = data->var_data->get_ratio(channel, scale);
fract->numerator = ratio >> SC27XX_RATIO_NUMERATOR_OFFSET;
fract->denominator = ratio & SC27XX_RATIO_DENOMINATOR_MASK;
}
static int adc_to_volt(struct sc27xx_adc_linear_graph *graph,
int raw_adc)
{
int tmp;
tmp = (graph->volt0 - graph->volt1) * (raw_adc - graph->adc1);
tmp /= (graph->adc0 - graph->adc1);
tmp += graph->volt1;
return tmp;
}
static int sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph *graph,
int raw_adc)
{
int tmp;
tmp = adc_to_volt(graph, raw_adc);
return tmp < 0 ? 0 : tmp;
}
static int sc27xx_adc_convert_volt(struct sc27xx_adc_data *data, int channel,
int scale, int raw_adc)
{
struct u32_fract fract;
u32 volt;
/*
* Convert ADC values to voltage values according to the linear graph,
* and channel 5 and channel 1 has been calibrated, so we can just
* return the voltage values calculated by the linear graph. But other
* channels need be calculated to the real voltage values with the
* voltage ratio.
*/
switch (channel) {
case 5:
return sc27xx_adc_to_volt(&big_scale_graph, raw_adc);
case 1:
return sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
default:
volt = sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
break;
}
sc27xx_adc_volt_ratio(data, channel, scale, &fract);
return DIV_ROUND_CLOSEST(volt * fract.denominator, fract.numerator);
}
static int sc27xx_adc_read_processed(struct sc27xx_adc_data *data,
int channel, int scale, int *val)
{
int ret, raw_adc;
ret = sc27xx_adc_read(data, channel, scale, &raw_adc);
if (ret)
return ret;
*val = sc27xx_adc_convert_volt(data, channel, scale, raw_adc);
return 0;
}
static int sc27xx_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct sc27xx_adc_data *data = iio_priv(indio_dev);
int scale = data->channel_scale[chan->channel];
int ret, tmp;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&data->lock);
ret = sc27xx_adc_read(data, chan->channel, scale, &tmp);
mutex_unlock(&data->lock);
if (ret)
return ret;
*val = tmp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_PROCESSED:
mutex_lock(&data->lock);
ret = sc27xx_adc_read_processed(data, chan->channel, scale,
&tmp);
mutex_unlock(&data->lock);
if (ret)
return ret;
*val = tmp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = scale;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int sc27xx_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct sc27xx_adc_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
data->channel_scale[chan->channel] = val;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static const struct iio_info sc27xx_info = {
.read_raw = &sc27xx_adc_read_raw,
.write_raw = &sc27xx_adc_write_raw,
};
#define SC27XX_ADC_CHANNEL(index, mask) { \
.type = IIO_VOLTAGE, \
.channel = index, \
.info_mask_separate = mask | BIT(IIO_CHAN_INFO_SCALE), \
.datasheet_name = "CH##index", \
.indexed = 1, \
}
static const struct iio_chan_spec sc27xx_channels[] = {
SC27XX_ADC_CHANNEL(0, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(1, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(2, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(3, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(4, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(5, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(6, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(7, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(8, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(9, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(10, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(11, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(12, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(13, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(14, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(15, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(16, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(17, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(18, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(19, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(20, BIT(IIO_CHAN_INFO_RAW)),
SC27XX_ADC_CHANNEL(21, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(22, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(23, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(24, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(25, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(26, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(27, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(28, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(29, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(30, BIT(IIO_CHAN_INFO_PROCESSED)),
SC27XX_ADC_CHANNEL(31, BIT(IIO_CHAN_INFO_PROCESSED)),
};
static int sc27xx_adc_enable(struct sc27xx_adc_data *data)
{
int ret;
ret = regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, SC27XX_MODULE_ADC_EN);
if (ret)
return ret;
/* Enable ADC work clock and controller clock */
ret = regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN);
if (ret)
goto disable_adc;
/* ADC channel scales' calibration from nvmem device */
ret = sc27xx_adc_scale_calibration(data, true);
if (ret)
goto disable_clk;
ret = sc27xx_adc_scale_calibration(data, false);
if (ret)
goto disable_clk;
return 0;
disable_clk:
regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
disable_adc:
regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, 0);
return ret;
}
static void sc27xx_adc_disable(void *_data)
{
struct sc27xx_adc_data *data = _data;
/* Disable ADC work clock and controller clock */
regmap_update_bits(data->regmap, data->var_data->clk_en,
SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
regmap_update_bits(data->regmap, data->var_data->module_en,
SC27XX_MODULE_ADC_EN, 0);
}
static const struct sc27xx_adc_variant_data sc2731_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2731_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &sc2731_big_scale_graph_calib,
.sscale_cal = &sc2731_small_scale_graph_calib,
.init_scale = sc2731_adc_scale_init,
.get_ratio = sc2731_adc_get_ratio,
.set_volref = false,
};
static const struct sc27xx_adc_variant_data sc2730_data = {
.module_en = SC2730_MODULE_EN,
.clk_en = SC2730_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &big_scale_graph_calib,
.sscale_cal = &small_scale_graph_calib,
.init_scale = sc2730_adc_scale_init,
.get_ratio = sc2730_adc_get_ratio,
.set_volref = false,
};
static const struct sc27xx_adc_variant_data sc2721_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2721_ARM_CLK_EN,
.scale_shift = SC2721_ADC_SCALE_SHIFT,
.scale_mask = SC2721_ADC_SCALE_MASK,
.bscale_cal = &sc2731_big_scale_graph_calib,
.sscale_cal = &sc2731_small_scale_graph_calib,
.init_scale = sc2731_adc_scale_init,
.get_ratio = sc2721_adc_get_ratio,
.set_volref = true,
};
static const struct sc27xx_adc_variant_data sc2720_data = {
.module_en = SC2731_MODULE_EN,
.clk_en = SC2721_ARM_CLK_EN,
.scale_shift = SC27XX_ADC_SCALE_SHIFT,
.scale_mask = SC27XX_ADC_SCALE_MASK,
.bscale_cal = &big_scale_graph_calib,
.sscale_cal = &small_scale_graph_calib,
.init_scale = sc2720_adc_scale_init,
.get_ratio = sc2720_adc_get_ratio,
.set_volref = false,
};
static int sc27xx_adc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct sc27xx_adc_data *sc27xx_data;
const struct sc27xx_adc_variant_data *pdata;
struct iio_dev *indio_dev;
int ret;
pdata = of_device_get_match_data(dev);
if (!pdata) {
dev_err(dev, "No matching driver data found\n");
return -EINVAL;
}
indio_dev = devm_iio_device_alloc(dev, sizeof(*sc27xx_data));
if (!indio_dev)
return -ENOMEM;
sc27xx_data = iio_priv(indio_dev);
sc27xx_data->regmap = dev_get_regmap(dev->parent, NULL);
if (!sc27xx_data->regmap) {
dev_err(dev, "failed to get ADC regmap\n");
return -ENODEV;
}
ret = of_property_read_u32(np, "reg", &sc27xx_data->base);
if (ret) {
dev_err(dev, "failed to get ADC base address\n");
return ret;
}
sc27xx_data->irq = platform_get_irq(pdev, 0);
if (sc27xx_data->irq < 0)
return sc27xx_data->irq;
ret = of_hwspin_lock_get_id(np, 0);
if (ret < 0) {
dev_err(dev, "failed to get hwspinlock id\n");
return ret;
}
sc27xx_data->hwlock = devm_hwspin_lock_request_specific(dev, ret);
if (!sc27xx_data->hwlock) {
dev_err(dev, "failed to request hwspinlock\n");
return -ENXIO;
}
sc27xx_data->dev = dev;
if (pdata->set_volref) {
sc27xx_data->volref = devm_regulator_get(dev, "vref");
if (IS_ERR(sc27xx_data->volref)) {
ret = PTR_ERR(sc27xx_data->volref);
return dev_err_probe(dev, ret, "failed to get ADC volref\n");
}
}
sc27xx_data->var_data = pdata;
sc27xx_data->var_data->init_scale(sc27xx_data);
ret = sc27xx_adc_enable(sc27xx_data);
if (ret) {
dev_err(dev, "failed to enable ADC module\n");
return ret;
}
ret = devm_add_action_or_reset(dev, sc27xx_adc_disable, sc27xx_data);
if (ret) {
dev_err(dev, "failed to add ADC disable action\n");
return ret;
}
indio_dev->name = dev_name(dev);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &sc27xx_info;
indio_dev->channels = sc27xx_channels;
indio_dev->num_channels = ARRAY_SIZE(sc27xx_channels);
mutex_init(&sc27xx_data->lock);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
dev_err(dev, "could not register iio (ADC)");
return ret;
}
static const struct of_device_id sc27xx_adc_of_match[] = {
{ .compatible = "sprd,sc2731-adc", .data = &sc2731_data},
{ .compatible = "sprd,sc2730-adc", .data = &sc2730_data},
{ .compatible = "sprd,sc2721-adc", .data = &sc2721_data},
{ .compatible = "sprd,sc2720-adc", .data = &sc2720_data},
{ }
};
MODULE_DEVICE_TABLE(of, sc27xx_adc_of_match);
static struct platform_driver sc27xx_adc_driver = {
.probe = sc27xx_adc_probe,
.driver = {
.name = "sc27xx-adc",
.of_match_table = sc27xx_adc_of_match,
},
};
module_platform_driver(sc27xx_adc_driver);
MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
MODULE_DESCRIPTION("Spreadtrum SC27XX ADC Driver");
MODULE_LICENSE("GPL v2");