linux-stable/fs/buffer.c
Dennis Zhou (Facebook) bdc2491708 blkcg: associate writeback bios with a blkg
One of the goals of this series is to remove a separate reference to
the css of the bio. This can and should be accessed via bio_blkcg. In
this patch, the wbc_init_bio call is changed such that it must be called
after a queue has been associated with the bio.

Signed-off-by: Dennis Zhou <dennisszhou@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-09-21 20:29:11 -06:00

3460 lines
90 KiB
C

/*
* linux/fs/buffer.c
*
* Copyright (C) 1991, 1992, 2002 Linus Torvalds
*/
/*
* Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
*
* Removed a lot of unnecessary code and simplified things now that
* the buffer cache isn't our primary cache - Andrew Tridgell 12/96
*
* Speed up hash, lru, and free list operations. Use gfp() for allocating
* hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
*
* Added 32k buffer block sizes - these are required older ARM systems. - RMK
*
* async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
*/
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/syscalls.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/mm.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/capability.h>
#include <linux/blkdev.h>
#include <linux/file.h>
#include <linux/quotaops.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
#include <linux/hash.h>
#include <linux/suspend.h>
#include <linux/buffer_head.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/bio.h>
#include <linux/cpu.h>
#include <linux/bitops.h>
#include <linux/mpage.h>
#include <linux/bit_spinlock.h>
#include <linux/pagevec.h>
#include <linux/sched/mm.h>
#include <trace/events/block.h>
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
enum rw_hint hint, struct writeback_control *wbc);
#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
inline void touch_buffer(struct buffer_head *bh)
{
trace_block_touch_buffer(bh);
mark_page_accessed(bh->b_page);
}
EXPORT_SYMBOL(touch_buffer);
void __lock_buffer(struct buffer_head *bh)
{
wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_buffer);
void unlock_buffer(struct buffer_head *bh)
{
clear_bit_unlock(BH_Lock, &bh->b_state);
smp_mb__after_atomic();
wake_up_bit(&bh->b_state, BH_Lock);
}
EXPORT_SYMBOL(unlock_buffer);
/*
* Returns if the page has dirty or writeback buffers. If all the buffers
* are unlocked and clean then the PageDirty information is stale. If
* any of the pages are locked, it is assumed they are locked for IO.
*/
void buffer_check_dirty_writeback(struct page *page,
bool *dirty, bool *writeback)
{
struct buffer_head *head, *bh;
*dirty = false;
*writeback = false;
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
return;
if (PageWriteback(page))
*writeback = true;
head = page_buffers(page);
bh = head;
do {
if (buffer_locked(bh))
*writeback = true;
if (buffer_dirty(bh))
*dirty = true;
bh = bh->b_this_page;
} while (bh != head);
}
EXPORT_SYMBOL(buffer_check_dirty_writeback);
/*
* Block until a buffer comes unlocked. This doesn't stop it
* from becoming locked again - you have to lock it yourself
* if you want to preserve its state.
*/
void __wait_on_buffer(struct buffer_head * bh)
{
wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__wait_on_buffer);
static void
__clear_page_buffers(struct page *page)
{
ClearPagePrivate(page);
set_page_private(page, 0);
put_page(page);
}
static void buffer_io_error(struct buffer_head *bh, char *msg)
{
if (!test_bit(BH_Quiet, &bh->b_state))
printk_ratelimited(KERN_ERR
"Buffer I/O error on dev %pg, logical block %llu%s\n",
bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
}
/*
* End-of-IO handler helper function which does not touch the bh after
* unlocking it.
* Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
* a race there is benign: unlock_buffer() only use the bh's address for
* hashing after unlocking the buffer, so it doesn't actually touch the bh
* itself.
*/
static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
{
if (uptodate) {
set_buffer_uptodate(bh);
} else {
/* This happens, due to failed read-ahead attempts. */
clear_buffer_uptodate(bh);
}
unlock_buffer(bh);
}
/*
* Default synchronous end-of-IO handler.. Just mark it up-to-date and
* unlock the buffer. This is what ll_rw_block uses too.
*/
void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
{
__end_buffer_read_notouch(bh, uptodate);
put_bh(bh);
}
EXPORT_SYMBOL(end_buffer_read_sync);
void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
if (uptodate) {
set_buffer_uptodate(bh);
} else {
buffer_io_error(bh, ", lost sync page write");
mark_buffer_write_io_error(bh);
clear_buffer_uptodate(bh);
}
unlock_buffer(bh);
put_bh(bh);
}
EXPORT_SYMBOL(end_buffer_write_sync);
/*
* Various filesystems appear to want __find_get_block to be non-blocking.
* But it's the page lock which protects the buffers. To get around this,
* we get exclusion from try_to_free_buffers with the blockdev mapping's
* private_lock.
*
* Hack idea: for the blockdev mapping, private_lock contention
* may be quite high. This code could TryLock the page, and if that
* succeeds, there is no need to take private_lock.
*/
static struct buffer_head *
__find_get_block_slow(struct block_device *bdev, sector_t block)
{
struct inode *bd_inode = bdev->bd_inode;
struct address_space *bd_mapping = bd_inode->i_mapping;
struct buffer_head *ret = NULL;
pgoff_t index;
struct buffer_head *bh;
struct buffer_head *head;
struct page *page;
int all_mapped = 1;
index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
if (!page)
goto out;
spin_lock(&bd_mapping->private_lock);
if (!page_has_buffers(page))
goto out_unlock;
head = page_buffers(page);
bh = head;
do {
if (!buffer_mapped(bh))
all_mapped = 0;
else if (bh->b_blocknr == block) {
ret = bh;
get_bh(bh);
goto out_unlock;
}
bh = bh->b_this_page;
} while (bh != head);
/* we might be here because some of the buffers on this page are
* not mapped. This is due to various races between
* file io on the block device and getblk. It gets dealt with
* elsewhere, don't buffer_error if we had some unmapped buffers
*/
if (all_mapped) {
printk("__find_get_block_slow() failed. "
"block=%llu, b_blocknr=%llu\n",
(unsigned long long)block,
(unsigned long long)bh->b_blocknr);
printk("b_state=0x%08lx, b_size=%zu\n",
bh->b_state, bh->b_size);
printk("device %pg blocksize: %d\n", bdev,
1 << bd_inode->i_blkbits);
}
out_unlock:
spin_unlock(&bd_mapping->private_lock);
put_page(page);
out:
return ret;
}
/*
* I/O completion handler for block_read_full_page() - pages
* which come unlocked at the end of I/O.
*/
static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
{
unsigned long flags;
struct buffer_head *first;
struct buffer_head *tmp;
struct page *page;
int page_uptodate = 1;
BUG_ON(!buffer_async_read(bh));
page = bh->b_page;
if (uptodate) {
set_buffer_uptodate(bh);
} else {
clear_buffer_uptodate(bh);
buffer_io_error(bh, ", async page read");
SetPageError(page);
}
/*
* Be _very_ careful from here on. Bad things can happen if
* two buffer heads end IO at almost the same time and both
* decide that the page is now completely done.
*/
first = page_buffers(page);
local_irq_save(flags);
bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
clear_buffer_async_read(bh);
unlock_buffer(bh);
tmp = bh;
do {
if (!buffer_uptodate(tmp))
page_uptodate = 0;
if (buffer_async_read(tmp)) {
BUG_ON(!buffer_locked(tmp));
goto still_busy;
}
tmp = tmp->b_this_page;
} while (tmp != bh);
bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
local_irq_restore(flags);
/*
* If none of the buffers had errors and they are all
* uptodate then we can set the page uptodate.
*/
if (page_uptodate && !PageError(page))
SetPageUptodate(page);
unlock_page(page);
return;
still_busy:
bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
local_irq_restore(flags);
return;
}
/*
* Completion handler for block_write_full_page() - pages which are unlocked
* during I/O, and which have PageWriteback cleared upon I/O completion.
*/
void end_buffer_async_write(struct buffer_head *bh, int uptodate)
{
unsigned long flags;
struct buffer_head *first;
struct buffer_head *tmp;
struct page *page;
BUG_ON(!buffer_async_write(bh));
page = bh->b_page;
if (uptodate) {
set_buffer_uptodate(bh);
} else {
buffer_io_error(bh, ", lost async page write");
mark_buffer_write_io_error(bh);
clear_buffer_uptodate(bh);
SetPageError(page);
}
first = page_buffers(page);
local_irq_save(flags);
bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
clear_buffer_async_write(bh);
unlock_buffer(bh);
tmp = bh->b_this_page;
while (tmp != bh) {
if (buffer_async_write(tmp)) {
BUG_ON(!buffer_locked(tmp));
goto still_busy;
}
tmp = tmp->b_this_page;
}
bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
local_irq_restore(flags);
end_page_writeback(page);
return;
still_busy:
bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
local_irq_restore(flags);
return;
}
EXPORT_SYMBOL(end_buffer_async_write);
/*
* If a page's buffers are under async readin (end_buffer_async_read
* completion) then there is a possibility that another thread of
* control could lock one of the buffers after it has completed
* but while some of the other buffers have not completed. This
* locked buffer would confuse end_buffer_async_read() into not unlocking
* the page. So the absence of BH_Async_Read tells end_buffer_async_read()
* that this buffer is not under async I/O.
*
* The page comes unlocked when it has no locked buffer_async buffers
* left.
*
* PageLocked prevents anyone starting new async I/O reads any of
* the buffers.
*
* PageWriteback is used to prevent simultaneous writeout of the same
* page.
*
* PageLocked prevents anyone from starting writeback of a page which is
* under read I/O (PageWriteback is only ever set against a locked page).
*/
static void mark_buffer_async_read(struct buffer_head *bh)
{
bh->b_end_io = end_buffer_async_read;
set_buffer_async_read(bh);
}
static void mark_buffer_async_write_endio(struct buffer_head *bh,
bh_end_io_t *handler)
{
bh->b_end_io = handler;
set_buffer_async_write(bh);
}
void mark_buffer_async_write(struct buffer_head *bh)
{
mark_buffer_async_write_endio(bh, end_buffer_async_write);
}
EXPORT_SYMBOL(mark_buffer_async_write);
/*
* fs/buffer.c contains helper functions for buffer-backed address space's
* fsync functions. A common requirement for buffer-based filesystems is
* that certain data from the backing blockdev needs to be written out for
* a successful fsync(). For example, ext2 indirect blocks need to be
* written back and waited upon before fsync() returns.
*
* The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
* inode_has_buffers() and invalidate_inode_buffers() are provided for the
* management of a list of dependent buffers at ->i_mapping->private_list.
*
* Locking is a little subtle: try_to_free_buffers() will remove buffers
* from their controlling inode's queue when they are being freed. But
* try_to_free_buffers() will be operating against the *blockdev* mapping
* at the time, not against the S_ISREG file which depends on those buffers.
* So the locking for private_list is via the private_lock in the address_space
* which backs the buffers. Which is different from the address_space
* against which the buffers are listed. So for a particular address_space,
* mapping->private_lock does *not* protect mapping->private_list! In fact,
* mapping->private_list will always be protected by the backing blockdev's
* ->private_lock.
*
* Which introduces a requirement: all buffers on an address_space's
* ->private_list must be from the same address_space: the blockdev's.
*
* address_spaces which do not place buffers at ->private_list via these
* utility functions are free to use private_lock and private_list for
* whatever they want. The only requirement is that list_empty(private_list)
* be true at clear_inode() time.
*
* FIXME: clear_inode should not call invalidate_inode_buffers(). The
* filesystems should do that. invalidate_inode_buffers() should just go
* BUG_ON(!list_empty).
*
* FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
* take an address_space, not an inode. And it should be called
* mark_buffer_dirty_fsync() to clearly define why those buffers are being
* queued up.
*
* FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
* list if it is already on a list. Because if the buffer is on a list,
* it *must* already be on the right one. If not, the filesystem is being
* silly. This will save a ton of locking. But first we have to ensure
* that buffers are taken *off* the old inode's list when they are freed
* (presumably in truncate). That requires careful auditing of all
* filesystems (do it inside bforget()). It could also be done by bringing
* b_inode back.
*/
/*
* The buffer's backing address_space's private_lock must be held
*/
static void __remove_assoc_queue(struct buffer_head *bh)
{
list_del_init(&bh->b_assoc_buffers);
WARN_ON(!bh->b_assoc_map);
bh->b_assoc_map = NULL;
}
int inode_has_buffers(struct inode *inode)
{
return !list_empty(&inode->i_data.private_list);
}
/*
* osync is designed to support O_SYNC io. It waits synchronously for
* all already-submitted IO to complete, but does not queue any new
* writes to the disk.
*
* To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
* you dirty the buffers, and then use osync_inode_buffers to wait for
* completion. Any other dirty buffers which are not yet queued for
* write will not be flushed to disk by the osync.
*/
static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
{
struct buffer_head *bh;
struct list_head *p;
int err = 0;
spin_lock(lock);
repeat:
list_for_each_prev(p, list) {
bh = BH_ENTRY(p);
if (buffer_locked(bh)) {
get_bh(bh);
spin_unlock(lock);
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
err = -EIO;
brelse(bh);
spin_lock(lock);
goto repeat;
}
}
spin_unlock(lock);
return err;
}
void emergency_thaw_bdev(struct super_block *sb)
{
while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
}
/**
* sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
* @mapping: the mapping which wants those buffers written
*
* Starts I/O against the buffers at mapping->private_list, and waits upon
* that I/O.
*
* Basically, this is a convenience function for fsync().
* @mapping is a file or directory which needs those buffers to be written for
* a successful fsync().
*/
int sync_mapping_buffers(struct address_space *mapping)
{
struct address_space *buffer_mapping = mapping->private_data;
if (buffer_mapping == NULL || list_empty(&mapping->private_list))
return 0;
return fsync_buffers_list(&buffer_mapping->private_lock,
&mapping->private_list);
}
EXPORT_SYMBOL(sync_mapping_buffers);
/*
* Called when we've recently written block `bblock', and it is known that
* `bblock' was for a buffer_boundary() buffer. This means that the block at
* `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
* dirty, schedule it for IO. So that indirects merge nicely with their data.
*/
void write_boundary_block(struct block_device *bdev,
sector_t bblock, unsigned blocksize)
{
struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
if (bh) {
if (buffer_dirty(bh))
ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
put_bh(bh);
}
}
void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
{
struct address_space *mapping = inode->i_mapping;
struct address_space *buffer_mapping = bh->b_page->mapping;
mark_buffer_dirty(bh);
if (!mapping->private_data) {
mapping->private_data = buffer_mapping;
} else {
BUG_ON(mapping->private_data != buffer_mapping);
}
if (!bh->b_assoc_map) {
spin_lock(&buffer_mapping->private_lock);
list_move_tail(&bh->b_assoc_buffers,
&mapping->private_list);
bh->b_assoc_map = mapping;
spin_unlock(&buffer_mapping->private_lock);
}
}
EXPORT_SYMBOL(mark_buffer_dirty_inode);
/*
* Mark the page dirty, and set it dirty in the radix tree, and mark the inode
* dirty.
*
* If warn is true, then emit a warning if the page is not uptodate and has
* not been truncated.
*
* The caller must hold lock_page_memcg().
*/
void __set_page_dirty(struct page *page, struct address_space *mapping,
int warn)
{
unsigned long flags;
xa_lock_irqsave(&mapping->i_pages, flags);
if (page->mapping) { /* Race with truncate? */
WARN_ON_ONCE(warn && !PageUptodate(page));
account_page_dirtied(page, mapping);
radix_tree_tag_set(&mapping->i_pages,
page_index(page), PAGECACHE_TAG_DIRTY);
}
xa_unlock_irqrestore(&mapping->i_pages, flags);
}
EXPORT_SYMBOL_GPL(__set_page_dirty);
/*
* Add a page to the dirty page list.
*
* It is a sad fact of life that this function is called from several places
* deeply under spinlocking. It may not sleep.
*
* If the page has buffers, the uptodate buffers are set dirty, to preserve
* dirty-state coherency between the page and the buffers. It the page does
* not have buffers then when they are later attached they will all be set
* dirty.
*
* The buffers are dirtied before the page is dirtied. There's a small race
* window in which a writepage caller may see the page cleanness but not the
* buffer dirtiness. That's fine. If this code were to set the page dirty
* before the buffers, a concurrent writepage caller could clear the page dirty
* bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
* page on the dirty page list.
*
* We use private_lock to lock against try_to_free_buffers while using the
* page's buffer list. Also use this to protect against clean buffers being
* added to the page after it was set dirty.
*
* FIXME: may need to call ->reservepage here as well. That's rather up to the
* address_space though.
*/
int __set_page_dirty_buffers(struct page *page)
{
int newly_dirty;
struct address_space *mapping = page_mapping(page);
if (unlikely(!mapping))
return !TestSetPageDirty(page);
spin_lock(&mapping->private_lock);
if (page_has_buffers(page)) {
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
do {
set_buffer_dirty(bh);
bh = bh->b_this_page;
} while (bh != head);
}
/*
* Lock out page->mem_cgroup migration to keep PageDirty
* synchronized with per-memcg dirty page counters.
*/
lock_page_memcg(page);
newly_dirty = !TestSetPageDirty(page);
spin_unlock(&mapping->private_lock);
if (newly_dirty)
__set_page_dirty(page, mapping, 1);
unlock_page_memcg(page);
if (newly_dirty)
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
return newly_dirty;
}
EXPORT_SYMBOL(__set_page_dirty_buffers);
/*
* Write out and wait upon a list of buffers.
*
* We have conflicting pressures: we want to make sure that all
* initially dirty buffers get waited on, but that any subsequently
* dirtied buffers don't. After all, we don't want fsync to last
* forever if somebody is actively writing to the file.
*
* Do this in two main stages: first we copy dirty buffers to a
* temporary inode list, queueing the writes as we go. Then we clean
* up, waiting for those writes to complete.
*
* During this second stage, any subsequent updates to the file may end
* up refiling the buffer on the original inode's dirty list again, so
* there is a chance we will end up with a buffer queued for write but
* not yet completed on that list. So, as a final cleanup we go through
* the osync code to catch these locked, dirty buffers without requeuing
* any newly dirty buffers for write.
*/
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
{
struct buffer_head *bh;
struct list_head tmp;
struct address_space *mapping;
int err = 0, err2;
struct blk_plug plug;
INIT_LIST_HEAD(&tmp);
blk_start_plug(&plug);
spin_lock(lock);
while (!list_empty(list)) {
bh = BH_ENTRY(list->next);
mapping = bh->b_assoc_map;
__remove_assoc_queue(bh);
/* Avoid race with mark_buffer_dirty_inode() which does
* a lockless check and we rely on seeing the dirty bit */
smp_mb();
if (buffer_dirty(bh) || buffer_locked(bh)) {
list_add(&bh->b_assoc_buffers, &tmp);
bh->b_assoc_map = mapping;
if (buffer_dirty(bh)) {
get_bh(bh);
spin_unlock(lock);
/*
* Ensure any pending I/O completes so that
* write_dirty_buffer() actually writes the
* current contents - it is a noop if I/O is
* still in flight on potentially older
* contents.
*/
write_dirty_buffer(bh, REQ_SYNC);
/*
* Kick off IO for the previous mapping. Note
* that we will not run the very last mapping,
* wait_on_buffer() will do that for us
* through sync_buffer().
*/
brelse(bh);
spin_lock(lock);
}
}
}
spin_unlock(lock);
blk_finish_plug(&plug);
spin_lock(lock);
while (!list_empty(&tmp)) {
bh = BH_ENTRY(tmp.prev);
get_bh(bh);
mapping = bh->b_assoc_map;
__remove_assoc_queue(bh);
/* Avoid race with mark_buffer_dirty_inode() which does
* a lockless check and we rely on seeing the dirty bit */
smp_mb();
if (buffer_dirty(bh)) {
list_add(&bh->b_assoc_buffers,
&mapping->private_list);
bh->b_assoc_map = mapping;
}
spin_unlock(lock);
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
err = -EIO;
brelse(bh);
spin_lock(lock);
}
spin_unlock(lock);
err2 = osync_buffers_list(lock, list);
if (err)
return err;
else
return err2;
}
/*
* Invalidate any and all dirty buffers on a given inode. We are
* probably unmounting the fs, but that doesn't mean we have already
* done a sync(). Just drop the buffers from the inode list.
*
* NOTE: we take the inode's blockdev's mapping's private_lock. Which
* assumes that all the buffers are against the blockdev. Not true
* for reiserfs.
*/
void invalidate_inode_buffers(struct inode *inode)
{
if (inode_has_buffers(inode)) {
struct address_space *mapping = &inode->i_data;
struct list_head *list = &mapping->private_list;
struct address_space *buffer_mapping = mapping->private_data;
spin_lock(&buffer_mapping->private_lock);
while (!list_empty(list))
__remove_assoc_queue(BH_ENTRY(list->next));
spin_unlock(&buffer_mapping->private_lock);
}
}
EXPORT_SYMBOL(invalidate_inode_buffers);
/*
* Remove any clean buffers from the inode's buffer list. This is called
* when we're trying to free the inode itself. Those buffers can pin it.
*
* Returns true if all buffers were removed.
*/
int remove_inode_buffers(struct inode *inode)
{
int ret = 1;
if (inode_has_buffers(inode)) {
struct address_space *mapping = &inode->i_data;
struct list_head *list = &mapping->private_list;
struct address_space *buffer_mapping = mapping->private_data;
spin_lock(&buffer_mapping->private_lock);
while (!list_empty(list)) {
struct buffer_head *bh = BH_ENTRY(list->next);
if (buffer_dirty(bh)) {
ret = 0;
break;
}
__remove_assoc_queue(bh);
}
spin_unlock(&buffer_mapping->private_lock);
}
return ret;
}
/*
* Create the appropriate buffers when given a page for data area and
* the size of each buffer.. Use the bh->b_this_page linked list to
* follow the buffers created. Return NULL if unable to create more
* buffers.
*
* The retry flag is used to differentiate async IO (paging, swapping)
* which may not fail from ordinary buffer allocations.
*/
struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
bool retry)
{
struct buffer_head *bh, *head;
gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
long offset;
struct mem_cgroup *memcg;
if (retry)
gfp |= __GFP_NOFAIL;
memcg = get_mem_cgroup_from_page(page);
memalloc_use_memcg(memcg);
head = NULL;
offset = PAGE_SIZE;
while ((offset -= size) >= 0) {
bh = alloc_buffer_head(gfp);
if (!bh)
goto no_grow;
bh->b_this_page = head;
bh->b_blocknr = -1;
head = bh;
bh->b_size = size;
/* Link the buffer to its page */
set_bh_page(bh, page, offset);
}
out:
memalloc_unuse_memcg();
mem_cgroup_put(memcg);
return head;
/*
* In case anything failed, we just free everything we got.
*/
no_grow:
if (head) {
do {
bh = head;
head = head->b_this_page;
free_buffer_head(bh);
} while (head);
}
goto out;
}
EXPORT_SYMBOL_GPL(alloc_page_buffers);
static inline void
link_dev_buffers(struct page *page, struct buffer_head *head)
{
struct buffer_head *bh, *tail;
bh = head;
do {
tail = bh;
bh = bh->b_this_page;
} while (bh);
tail->b_this_page = head;
attach_page_buffers(page, head);
}
static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
{
sector_t retval = ~((sector_t)0);
loff_t sz = i_size_read(bdev->bd_inode);
if (sz) {
unsigned int sizebits = blksize_bits(size);
retval = (sz >> sizebits);
}
return retval;
}
/*
* Initialise the state of a blockdev page's buffers.
*/
static sector_t
init_page_buffers(struct page *page, struct block_device *bdev,
sector_t block, int size)
{
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh = head;
int uptodate = PageUptodate(page);
sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
do {
if (!buffer_mapped(bh)) {
bh->b_end_io = NULL;
bh->b_private = NULL;
bh->b_bdev = bdev;
bh->b_blocknr = block;
if (uptodate)
set_buffer_uptodate(bh);
if (block < end_block)
set_buffer_mapped(bh);
}
block++;
bh = bh->b_this_page;
} while (bh != head);
/*
* Caller needs to validate requested block against end of device.
*/
return end_block;
}
/*
* Create the page-cache page that contains the requested block.
*
* This is used purely for blockdev mappings.
*/
static int
grow_dev_page(struct block_device *bdev, sector_t block,
pgoff_t index, int size, int sizebits, gfp_t gfp)
{
struct inode *inode = bdev->bd_inode;
struct page *page;
struct buffer_head *bh;
sector_t end_block;
int ret = 0; /* Will call free_more_memory() */
gfp_t gfp_mask;
gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
/*
* XXX: __getblk_slow() can not really deal with failure and
* will endlessly loop on improvised global reclaim. Prefer
* looping in the allocator rather than here, at least that
* code knows what it's doing.
*/
gfp_mask |= __GFP_NOFAIL;
page = find_or_create_page(inode->i_mapping, index, gfp_mask);
BUG_ON(!PageLocked(page));
if (page_has_buffers(page)) {
bh = page_buffers(page);
if (bh->b_size == size) {
end_block = init_page_buffers(page, bdev,
(sector_t)index << sizebits,
size);
goto done;
}
if (!try_to_free_buffers(page))
goto failed;
}
/*
* Allocate some buffers for this page
*/
bh = alloc_page_buffers(page, size, true);
/*
* Link the page to the buffers and initialise them. Take the
* lock to be atomic wrt __find_get_block(), which does not
* run under the page lock.
*/
spin_lock(&inode->i_mapping->private_lock);
link_dev_buffers(page, bh);
end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
size);
spin_unlock(&inode->i_mapping->private_lock);
done:
ret = (block < end_block) ? 1 : -ENXIO;
failed:
unlock_page(page);
put_page(page);
return ret;
}
/*
* Create buffers for the specified block device block's page. If
* that page was dirty, the buffers are set dirty also.
*/
static int
grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
{
pgoff_t index;
int sizebits;
sizebits = -1;
do {
sizebits++;
} while ((size << sizebits) < PAGE_SIZE);
index = block >> sizebits;
/*
* Check for a block which wants to lie outside our maximum possible
* pagecache index. (this comparison is done using sector_t types).
*/
if (unlikely(index != block >> sizebits)) {
printk(KERN_ERR "%s: requested out-of-range block %llu for "
"device %pg\n",
__func__, (unsigned long long)block,
bdev);
return -EIO;
}
/* Create a page with the proper size buffers.. */
return grow_dev_page(bdev, block, index, size, sizebits, gfp);
}
static struct buffer_head *
__getblk_slow(struct block_device *bdev, sector_t block,
unsigned size, gfp_t gfp)
{
/* Size must be multiple of hard sectorsize */
if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
(size < 512 || size > PAGE_SIZE))) {
printk(KERN_ERR "getblk(): invalid block size %d requested\n",
size);
printk(KERN_ERR "logical block size: %d\n",
bdev_logical_block_size(bdev));
dump_stack();
return NULL;
}
for (;;) {
struct buffer_head *bh;
int ret;
bh = __find_get_block(bdev, block, size);
if (bh)
return bh;
ret = grow_buffers(bdev, block, size, gfp);
if (ret < 0)
return NULL;
}
}
/*
* The relationship between dirty buffers and dirty pages:
*
* Whenever a page has any dirty buffers, the page's dirty bit is set, and
* the page is tagged dirty in its radix tree.
*
* At all times, the dirtiness of the buffers represents the dirtiness of
* subsections of the page. If the page has buffers, the page dirty bit is
* merely a hint about the true dirty state.
*
* When a page is set dirty in its entirety, all its buffers are marked dirty
* (if the page has buffers).
*
* When a buffer is marked dirty, its page is dirtied, but the page's other
* buffers are not.
*
* Also. When blockdev buffers are explicitly read with bread(), they
* individually become uptodate. But their backing page remains not
* uptodate - even if all of its buffers are uptodate. A subsequent
* block_read_full_page() against that page will discover all the uptodate
* buffers, will set the page uptodate and will perform no I/O.
*/
/**
* mark_buffer_dirty - mark a buffer_head as needing writeout
* @bh: the buffer_head to mark dirty
*
* mark_buffer_dirty() will set the dirty bit against the buffer, then set its
* backing page dirty, then tag the page as dirty in its address_space's radix
* tree and then attach the address_space's inode to its superblock's dirty
* inode list.
*
* mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
* i_pages lock and mapping->host->i_lock.
*/
void mark_buffer_dirty(struct buffer_head *bh)
{
WARN_ON_ONCE(!buffer_uptodate(bh));
trace_block_dirty_buffer(bh);
/*
* Very *carefully* optimize the it-is-already-dirty case.
*
* Don't let the final "is it dirty" escape to before we
* perhaps modified the buffer.
*/
if (buffer_dirty(bh)) {
smp_mb();
if (buffer_dirty(bh))
return;
}
if (!test_set_buffer_dirty(bh)) {
struct page *page = bh->b_page;
struct address_space *mapping = NULL;
lock_page_memcg(page);
if (!TestSetPageDirty(page)) {
mapping = page_mapping(page);
if (mapping)
__set_page_dirty(page, mapping, 0);
}
unlock_page_memcg(page);
if (mapping)
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
}
}
EXPORT_SYMBOL(mark_buffer_dirty);
void mark_buffer_write_io_error(struct buffer_head *bh)
{
set_buffer_write_io_error(bh);
/* FIXME: do we need to set this in both places? */
if (bh->b_page && bh->b_page->mapping)
mapping_set_error(bh->b_page->mapping, -EIO);
if (bh->b_assoc_map)
mapping_set_error(bh->b_assoc_map, -EIO);
}
EXPORT_SYMBOL(mark_buffer_write_io_error);
/*
* Decrement a buffer_head's reference count. If all buffers against a page
* have zero reference count, are clean and unlocked, and if the page is clean
* and unlocked then try_to_free_buffers() may strip the buffers from the page
* in preparation for freeing it (sometimes, rarely, buffers are removed from
* a page but it ends up not being freed, and buffers may later be reattached).
*/
void __brelse(struct buffer_head * buf)
{
if (atomic_read(&buf->b_count)) {
put_bh(buf);
return;
}
WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
}
EXPORT_SYMBOL(__brelse);
/*
* bforget() is like brelse(), except it discards any
* potentially dirty data.
*/
void __bforget(struct buffer_head *bh)
{
clear_buffer_dirty(bh);
if (bh->b_assoc_map) {
struct address_space *buffer_mapping = bh->b_page->mapping;
spin_lock(&buffer_mapping->private_lock);
list_del_init(&bh->b_assoc_buffers);
bh->b_assoc_map = NULL;
spin_unlock(&buffer_mapping->private_lock);
}
__brelse(bh);
}
EXPORT_SYMBOL(__bforget);
static struct buffer_head *__bread_slow(struct buffer_head *bh)
{
lock_buffer(bh);
if (buffer_uptodate(bh)) {
unlock_buffer(bh);
return bh;
} else {
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
submit_bh(REQ_OP_READ, 0, bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return bh;
}
brelse(bh);
return NULL;
}
/*
* Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
* The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
* refcount elevated by one when they're in an LRU. A buffer can only appear
* once in a particular CPU's LRU. A single buffer can be present in multiple
* CPU's LRUs at the same time.
*
* This is a transparent caching front-end to sb_bread(), sb_getblk() and
* sb_find_get_block().
*
* The LRUs themselves only need locking against invalidate_bh_lrus. We use
* a local interrupt disable for that.
*/
#define BH_LRU_SIZE 16
struct bh_lru {
struct buffer_head *bhs[BH_LRU_SIZE];
};
static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
#ifdef CONFIG_SMP
#define bh_lru_lock() local_irq_disable()
#define bh_lru_unlock() local_irq_enable()
#else
#define bh_lru_lock() preempt_disable()
#define bh_lru_unlock() preempt_enable()
#endif
static inline void check_irqs_on(void)
{
#ifdef irqs_disabled
BUG_ON(irqs_disabled());
#endif
}
/*
* Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
* inserted at the front, and the buffer_head at the back if any is evicted.
* Or, if already in the LRU it is moved to the front.
*/
static void bh_lru_install(struct buffer_head *bh)
{
struct buffer_head *evictee = bh;
struct bh_lru *b;
int i;
check_irqs_on();
bh_lru_lock();
b = this_cpu_ptr(&bh_lrus);
for (i = 0; i < BH_LRU_SIZE; i++) {
swap(evictee, b->bhs[i]);
if (evictee == bh) {
bh_lru_unlock();
return;
}
}
get_bh(bh);
bh_lru_unlock();
brelse(evictee);
}
/*
* Look up the bh in this cpu's LRU. If it's there, move it to the head.
*/
static struct buffer_head *
lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
{
struct buffer_head *ret = NULL;
unsigned int i;
check_irqs_on();
bh_lru_lock();
for (i = 0; i < BH_LRU_SIZE; i++) {
struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
bh->b_size == size) {
if (i) {
while (i) {
__this_cpu_write(bh_lrus.bhs[i],
__this_cpu_read(bh_lrus.bhs[i - 1]));
i--;
}
__this_cpu_write(bh_lrus.bhs[0], bh);
}
get_bh(bh);
ret = bh;
break;
}
}
bh_lru_unlock();
return ret;
}
/*
* Perform a pagecache lookup for the matching buffer. If it's there, refresh
* it in the LRU and mark it as accessed. If it is not present then return
* NULL
*/
struct buffer_head *
__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
{
struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
if (bh == NULL) {
/* __find_get_block_slow will mark the page accessed */
bh = __find_get_block_slow(bdev, block);
if (bh)
bh_lru_install(bh);
} else
touch_buffer(bh);
return bh;
}
EXPORT_SYMBOL(__find_get_block);
/*
* __getblk_gfp() will locate (and, if necessary, create) the buffer_head
* which corresponds to the passed block_device, block and size. The
* returned buffer has its reference count incremented.
*
* __getblk_gfp() will lock up the machine if grow_dev_page's
* try_to_free_buffers() attempt is failing. FIXME, perhaps?
*/
struct buffer_head *
__getblk_gfp(struct block_device *bdev, sector_t block,
unsigned size, gfp_t gfp)
{
struct buffer_head *bh = __find_get_block(bdev, block, size);
might_sleep();
if (bh == NULL)
bh = __getblk_slow(bdev, block, size, gfp);
return bh;
}
EXPORT_SYMBOL(__getblk_gfp);
/*
* Do async read-ahead on a buffer..
*/
void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
{
struct buffer_head *bh = __getblk(bdev, block, size);
if (likely(bh)) {
ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
brelse(bh);
}
}
EXPORT_SYMBOL(__breadahead);
/**
* __bread_gfp() - reads a specified block and returns the bh
* @bdev: the block_device to read from
* @block: number of block
* @size: size (in bytes) to read
* @gfp: page allocation flag
*
* Reads a specified block, and returns buffer head that contains it.
* The page cache can be allocated from non-movable area
* not to prevent page migration if you set gfp to zero.
* It returns NULL if the block was unreadable.
*/
struct buffer_head *
__bread_gfp(struct block_device *bdev, sector_t block,
unsigned size, gfp_t gfp)
{
struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
if (likely(bh) && !buffer_uptodate(bh))
bh = __bread_slow(bh);
return bh;
}
EXPORT_SYMBOL(__bread_gfp);
/*
* invalidate_bh_lrus() is called rarely - but not only at unmount.
* This doesn't race because it runs in each cpu either in irq
* or with preempt disabled.
*/
static void invalidate_bh_lru(void *arg)
{
struct bh_lru *b = &get_cpu_var(bh_lrus);
int i;
for (i = 0; i < BH_LRU_SIZE; i++) {
brelse(b->bhs[i]);
b->bhs[i] = NULL;
}
put_cpu_var(bh_lrus);
}
static bool has_bh_in_lru(int cpu, void *dummy)
{
struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
int i;
for (i = 0; i < BH_LRU_SIZE; i++) {
if (b->bhs[i])
return 1;
}
return 0;
}
void invalidate_bh_lrus(void)
{
on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
void set_bh_page(struct buffer_head *bh,
struct page *page, unsigned long offset)
{
bh->b_page = page;
BUG_ON(offset >= PAGE_SIZE);
if (PageHighMem(page))
/*
* This catches illegal uses and preserves the offset:
*/
bh->b_data = (char *)(0 + offset);
else
bh->b_data = page_address(page) + offset;
}
EXPORT_SYMBOL(set_bh_page);
/*
* Called when truncating a buffer on a page completely.
*/
/* Bits that are cleared during an invalidate */
#define BUFFER_FLAGS_DISCARD \
(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1 << BH_Delay | 1 << BH_Unwritten)
static void discard_buffer(struct buffer_head * bh)
{
unsigned long b_state, b_state_old;
lock_buffer(bh);
clear_buffer_dirty(bh);
bh->b_bdev = NULL;
b_state = bh->b_state;
for (;;) {
b_state_old = cmpxchg(&bh->b_state, b_state,
(b_state & ~BUFFER_FLAGS_DISCARD));
if (b_state_old == b_state)
break;
b_state = b_state_old;
}
unlock_buffer(bh);
}
/**
* block_invalidatepage - invalidate part or all of a buffer-backed page
*
* @page: the page which is affected
* @offset: start of the range to invalidate
* @length: length of the range to invalidate
*
* block_invalidatepage() is called when all or part of the page has become
* invalidated by a truncate operation.
*
* block_invalidatepage() does not have to release all buffers, but it must
* ensure that no dirty buffer is left outside @offset and that no I/O
* is underway against any of the blocks which are outside the truncation
* point. Because the caller is about to free (and possibly reuse) those
* blocks on-disk.
*/
void block_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct buffer_head *head, *bh, *next;
unsigned int curr_off = 0;
unsigned int stop = length + offset;
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
goto out;
/*
* Check for overflow
*/
BUG_ON(stop > PAGE_SIZE || stop < length);
head = page_buffers(page);
bh = head;
do {
unsigned int next_off = curr_off + bh->b_size;
next = bh->b_this_page;
/*
* Are we still fully in range ?
*/
if (next_off > stop)
goto out;
/*
* is this block fully invalidated?
*/
if (offset <= curr_off)
discard_buffer(bh);
curr_off = next_off;
bh = next;
} while (bh != head);
/*
* We release buffers only if the entire page is being invalidated.
* The get_block cached value has been unconditionally invalidated,
* so real IO is not possible anymore.
*/
if (length == PAGE_SIZE)
try_to_release_page(page, 0);
out:
return;
}
EXPORT_SYMBOL(block_invalidatepage);
/*
* We attach and possibly dirty the buffers atomically wrt
* __set_page_dirty_buffers() via private_lock. try_to_free_buffers
* is already excluded via the page lock.
*/
void create_empty_buffers(struct page *page,
unsigned long blocksize, unsigned long b_state)
{
struct buffer_head *bh, *head, *tail;
head = alloc_page_buffers(page, blocksize, true);
bh = head;
do {
bh->b_state |= b_state;
tail = bh;
bh = bh->b_this_page;
} while (bh);
tail->b_this_page = head;
spin_lock(&page->mapping->private_lock);
if (PageUptodate(page) || PageDirty(page)) {
bh = head;
do {
if (PageDirty(page))
set_buffer_dirty(bh);
if (PageUptodate(page))
set_buffer_uptodate(bh);
bh = bh->b_this_page;
} while (bh != head);
}
attach_page_buffers(page, head);
spin_unlock(&page->mapping->private_lock);
}
EXPORT_SYMBOL(create_empty_buffers);
/**
* clean_bdev_aliases: clean a range of buffers in block device
* @bdev: Block device to clean buffers in
* @block: Start of a range of blocks to clean
* @len: Number of blocks to clean
*
* We are taking a range of blocks for data and we don't want writeback of any
* buffer-cache aliases starting from return from this function and until the
* moment when something will explicitly mark the buffer dirty (hopefully that
* will not happen until we will free that block ;-) We don't even need to mark
* it not-uptodate - nobody can expect anything from a newly allocated buffer
* anyway. We used to use unmap_buffer() for such invalidation, but that was
* wrong. We definitely don't want to mark the alias unmapped, for example - it
* would confuse anyone who might pick it with bread() afterwards...
*
* Also.. Note that bforget() doesn't lock the buffer. So there can be
* writeout I/O going on against recently-freed buffers. We don't wait on that
* I/O in bforget() - it's more efficient to wait on the I/O only if we really
* need to. That happens here.
*/
void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
{
struct inode *bd_inode = bdev->bd_inode;
struct address_space *bd_mapping = bd_inode->i_mapping;
struct pagevec pvec;
pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
pgoff_t end;
int i, count;
struct buffer_head *bh;
struct buffer_head *head;
end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
pagevec_init(&pvec);
while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
count = pagevec_count(&pvec);
for (i = 0; i < count; i++) {
struct page *page = pvec.pages[i];
if (!page_has_buffers(page))
continue;
/*
* We use page lock instead of bd_mapping->private_lock
* to pin buffers here since we can afford to sleep and
* it scales better than a global spinlock lock.
*/
lock_page(page);
/* Recheck when the page is locked which pins bhs */
if (!page_has_buffers(page))
goto unlock_page;
head = page_buffers(page);
bh = head;
do {
if (!buffer_mapped(bh) || (bh->b_blocknr < block))
goto next;
if (bh->b_blocknr >= block + len)
break;
clear_buffer_dirty(bh);
wait_on_buffer(bh);
clear_buffer_req(bh);
next:
bh = bh->b_this_page;
} while (bh != head);
unlock_page:
unlock_page(page);
}
pagevec_release(&pvec);
cond_resched();
/* End of range already reached? */
if (index > end || !index)
break;
}
}
EXPORT_SYMBOL(clean_bdev_aliases);
/*
* Size is a power-of-two in the range 512..PAGE_SIZE,
* and the case we care about most is PAGE_SIZE.
*
* So this *could* possibly be written with those
* constraints in mind (relevant mostly if some
* architecture has a slow bit-scan instruction)
*/
static inline int block_size_bits(unsigned int blocksize)
{
return ilog2(blocksize);
}
static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
{
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
b_state);
return page_buffers(page);
}
/*
* NOTE! All mapped/uptodate combinations are valid:
*
* Mapped Uptodate Meaning
*
* No No "unknown" - must do get_block()
* No Yes "hole" - zero-filled
* Yes No "allocated" - allocated on disk, not read in
* Yes Yes "valid" - allocated and up-to-date in memory.
*
* "Dirty" is valid only with the last case (mapped+uptodate).
*/
/*
* While block_write_full_page is writing back the dirty buffers under
* the page lock, whoever dirtied the buffers may decide to clean them
* again at any time. We handle that by only looking at the buffer
* state inside lock_buffer().
*
* If block_write_full_page() is called for regular writeback
* (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
* locked buffer. This only can happen if someone has written the buffer
* directly, with submit_bh(). At the address_space level PageWriteback
* prevents this contention from occurring.
*
* If block_write_full_page() is called with wbc->sync_mode ==
* WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
* causes the writes to be flagged as synchronous writes.
*/
int __block_write_full_page(struct inode *inode, struct page *page,
get_block_t *get_block, struct writeback_control *wbc,
bh_end_io_t *handler)
{
int err;
sector_t block;
sector_t last_block;
struct buffer_head *bh, *head;
unsigned int blocksize, bbits;
int nr_underway = 0;
int write_flags = wbc_to_write_flags(wbc);
head = create_page_buffers(page, inode,
(1 << BH_Dirty)|(1 << BH_Uptodate));
/*
* Be very careful. We have no exclusion from __set_page_dirty_buffers
* here, and the (potentially unmapped) buffers may become dirty at
* any time. If a buffer becomes dirty here after we've inspected it
* then we just miss that fact, and the page stays dirty.
*
* Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
* handle that here by just cleaning them.
*/
bh = head;
blocksize = bh->b_size;
bbits = block_size_bits(blocksize);
block = (sector_t)page->index << (PAGE_SHIFT - bbits);
last_block = (i_size_read(inode) - 1) >> bbits;
/*
* Get all the dirty buffers mapped to disk addresses and
* handle any aliases from the underlying blockdev's mapping.
*/
do {
if (block > last_block) {
/*
* mapped buffers outside i_size will occur, because
* this page can be outside i_size when there is a
* truncate in progress.
*/
/*
* The buffer was zeroed by block_write_full_page()
*/
clear_buffer_dirty(bh);
set_buffer_uptodate(bh);
} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
buffer_dirty(bh)) {
WARN_ON(bh->b_size != blocksize);
err = get_block(inode, block, bh, 1);
if (err)
goto recover;
clear_buffer_delay(bh);
if (buffer_new(bh)) {
/* blockdev mappings never come here */
clear_buffer_new(bh);
clean_bdev_bh_alias(bh);
}
}
bh = bh->b_this_page;
block++;
} while (bh != head);
do {
if (!buffer_mapped(bh))
continue;
/*
* If it's a fully non-blocking write attempt and we cannot
* lock the buffer then redirty the page. Note that this can
* potentially cause a busy-wait loop from writeback threads
* and kswapd activity, but those code paths have their own
* higher-level throttling.
*/
if (wbc->sync_mode != WB_SYNC_NONE) {
lock_buffer(bh);
} else if (!trylock_buffer(bh)) {
redirty_page_for_writepage(wbc, page);
continue;
}
if (test_clear_buffer_dirty(bh)) {
mark_buffer_async_write_endio(bh, handler);
} else {
unlock_buffer(bh);
}
} while ((bh = bh->b_this_page) != head);
/*
* The page and its buffers are protected by PageWriteback(), so we can
* drop the bh refcounts early.
*/
BUG_ON(PageWriteback(page));
set_page_writeback(page);
do {
struct buffer_head *next = bh->b_this_page;
if (buffer_async_write(bh)) {
submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
inode->i_write_hint, wbc);
nr_underway++;
}
bh = next;
} while (bh != head);
unlock_page(page);
err = 0;
done:
if (nr_underway == 0) {
/*
* The page was marked dirty, but the buffers were
* clean. Someone wrote them back by hand with
* ll_rw_block/submit_bh. A rare case.
*/
end_page_writeback(page);
/*
* The page and buffer_heads can be released at any time from
* here on.
*/
}
return err;
recover:
/*
* ENOSPC, or some other error. We may already have added some
* blocks to the file, so we need to write these out to avoid
* exposing stale data.
* The page is currently locked and not marked for writeback
*/
bh = head;
/* Recovery: lock and submit the mapped buffers */
do {
if (buffer_mapped(bh) && buffer_dirty(bh) &&
!buffer_delay(bh)) {
lock_buffer(bh);
mark_buffer_async_write_endio(bh, handler);
} else {
/*
* The buffer may have been set dirty during
* attachment to a dirty page.
*/
clear_buffer_dirty(bh);
}
} while ((bh = bh->b_this_page) != head);
SetPageError(page);
BUG_ON(PageWriteback(page));
mapping_set_error(page->mapping, err);
set_page_writeback(page);
do {
struct buffer_head *next = bh->b_this_page;
if (buffer_async_write(bh)) {
clear_buffer_dirty(bh);
submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
inode->i_write_hint, wbc);
nr_underway++;
}
bh = next;
} while (bh != head);
unlock_page(page);
goto done;
}
EXPORT_SYMBOL(__block_write_full_page);
/*
* If a page has any new buffers, zero them out here, and mark them uptodate
* and dirty so they'll be written out (in order to prevent uninitialised
* block data from leaking). And clear the new bit.
*/
void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
{
unsigned int block_start, block_end;
struct buffer_head *head, *bh;
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
return;
bh = head = page_buffers(page);
block_start = 0;
do {
block_end = block_start + bh->b_size;
if (buffer_new(bh)) {
if (block_end > from && block_start < to) {
if (!PageUptodate(page)) {
unsigned start, size;
start = max(from, block_start);
size = min(to, block_end) - start;
zero_user(page, start, size);
set_buffer_uptodate(bh);
}
clear_buffer_new(bh);
mark_buffer_dirty(bh);
}
}
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
}
EXPORT_SYMBOL(page_zero_new_buffers);
static void
iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
struct iomap *iomap)
{
loff_t offset = block << inode->i_blkbits;
bh->b_bdev = iomap->bdev;
/*
* Block points to offset in file we need to map, iomap contains
* the offset at which the map starts. If the map ends before the
* current block, then do not map the buffer and let the caller
* handle it.
*/
BUG_ON(offset >= iomap->offset + iomap->length);
switch (iomap->type) {
case IOMAP_HOLE:
/*
* If the buffer is not up to date or beyond the current EOF,
* we need to mark it as new to ensure sub-block zeroing is
* executed if necessary.
*/
if (!buffer_uptodate(bh) ||
(offset >= i_size_read(inode)))
set_buffer_new(bh);
break;
case IOMAP_DELALLOC:
if (!buffer_uptodate(bh) ||
(offset >= i_size_read(inode)))
set_buffer_new(bh);
set_buffer_uptodate(bh);
set_buffer_mapped(bh);
set_buffer_delay(bh);
break;
case IOMAP_UNWRITTEN:
/*
* For unwritten regions, we always need to ensure that regions
* in the block we are not writing to are zeroed. Mark the
* buffer as new to ensure this.
*/
set_buffer_new(bh);
set_buffer_unwritten(bh);
/* FALLTHRU */
case IOMAP_MAPPED:
if ((iomap->flags & IOMAP_F_NEW) ||
offset >= i_size_read(inode))
set_buffer_new(bh);
bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
inode->i_blkbits;
set_buffer_mapped(bh);
break;
}
}
int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
get_block_t *get_block, struct iomap *iomap)
{
unsigned from = pos & (PAGE_SIZE - 1);
unsigned to = from + len;
struct inode *inode = page->mapping->host;
unsigned block_start, block_end;
sector_t block;
int err = 0;
unsigned blocksize, bbits;
struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
BUG_ON(!PageLocked(page));
BUG_ON(from > PAGE_SIZE);
BUG_ON(to > PAGE_SIZE);
BUG_ON(from > to);
head = create_page_buffers(page, inode, 0);
blocksize = head->b_size;
bbits = block_size_bits(blocksize);
block = (sector_t)page->index << (PAGE_SHIFT - bbits);
for(bh = head, block_start = 0; bh != head || !block_start;
block++, block_start=block_end, bh = bh->b_this_page) {
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
}
continue;
}
if (buffer_new(bh))
clear_buffer_new(bh);
if (!buffer_mapped(bh)) {
WARN_ON(bh->b_size != blocksize);
if (get_block) {
err = get_block(inode, block, bh, 1);
if (err)
break;
} else {
iomap_to_bh(inode, block, bh, iomap);
}
if (buffer_new(bh)) {
clean_bdev_bh_alias(bh);
if (PageUptodate(page)) {
clear_buffer_new(bh);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
continue;
}
if (block_end > to || block_start < from)
zero_user_segments(page,
to, block_end,
block_start, from);
continue;
}
}
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
continue;
}
if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
!buffer_unwritten(bh) &&
(block_start < from || block_end > to)) {
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
*wait_bh++=bh;
}
}
/*
* If we issued read requests - let them complete.
*/
while(wait_bh > wait) {
wait_on_buffer(*--wait_bh);
if (!buffer_uptodate(*wait_bh))
err = -EIO;
}
if (unlikely(err))
page_zero_new_buffers(page, from, to);
return err;
}
int __block_write_begin(struct page *page, loff_t pos, unsigned len,
get_block_t *get_block)
{
return __block_write_begin_int(page, pos, len, get_block, NULL);
}
EXPORT_SYMBOL(__block_write_begin);
static int __block_commit_write(struct inode *inode, struct page *page,
unsigned from, unsigned to)
{
unsigned block_start, block_end;
int partial = 0;
unsigned blocksize;
struct buffer_head *bh, *head;
bh = head = page_buffers(page);
blocksize = bh->b_size;
block_start = 0;
do {
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (!buffer_uptodate(bh))
partial = 1;
} else {
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
}
clear_buffer_new(bh);
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
/*
* If this is a partial write which happened to make all buffers
* uptodate then we can optimize away a bogus readpage() for
* the next read(). Here we 'discover' whether the page went
* uptodate as a result of this (potentially partial) write.
*/
if (!partial)
SetPageUptodate(page);
return 0;
}
/*
* block_write_begin takes care of the basic task of block allocation and
* bringing partial write blocks uptodate first.
*
* The filesystem needs to handle block truncation upon failure.
*/
int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
unsigned flags, struct page **pagep, get_block_t *get_block)
{
pgoff_t index = pos >> PAGE_SHIFT;
struct page *page;
int status;
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
status = __block_write_begin(page, pos, len, get_block);
if (unlikely(status)) {
unlock_page(page);
put_page(page);
page = NULL;
}
*pagep = page;
return status;
}
EXPORT_SYMBOL(block_write_begin);
int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
struct page *page)
{
loff_t old_size = inode->i_size;
bool i_size_changed = false;
/*
* No need to use i_size_read() here, the i_size cannot change under us
* because we hold i_rwsem.
*
* But it's important to update i_size while still holding page lock:
* page writeout could otherwise come in and zero beyond i_size.
*/
if (pos + copied > inode->i_size) {
i_size_write(inode, pos + copied);
i_size_changed = true;
}
unlock_page(page);
put_page(page);
if (old_size < pos)
pagecache_isize_extended(inode, old_size, pos);
/*
* Don't mark the inode dirty under page lock. First, it unnecessarily
* makes the holding time of page lock longer. Second, it forces lock
* ordering of page lock and transaction start for journaling
* filesystems.
*/
if (i_size_changed)
mark_inode_dirty(inode);
return copied;
}
int block_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
unsigned start;
start = pos & (PAGE_SIZE - 1);
if (unlikely(copied < len)) {
/*
* The buffers that were written will now be uptodate, so we
* don't have to worry about a readpage reading them and
* overwriting a partial write. However if we have encountered
* a short write and only partially written into a buffer, it
* will not be marked uptodate, so a readpage might come in and
* destroy our partial write.
*
* Do the simplest thing, and just treat any short write to a
* non uptodate page as a zero-length write, and force the
* caller to redo the whole thing.
*/
if (!PageUptodate(page))
copied = 0;
page_zero_new_buffers(page, start+copied, start+len);
}
flush_dcache_page(page);
/* This could be a short (even 0-length) commit */
__block_commit_write(inode, page, start, start+copied);
return copied;
}
EXPORT_SYMBOL(block_write_end);
int generic_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
return __generic_write_end(mapping->host, pos, copied, page);
}
EXPORT_SYMBOL(generic_write_end);
/*
* block_is_partially_uptodate checks whether buffers within a page are
* uptodate or not.
*
* Returns true if all buffers which correspond to a file portion
* we want to read are uptodate.
*/
int block_is_partially_uptodate(struct page *page, unsigned long from,
unsigned long count)
{
unsigned block_start, block_end, blocksize;
unsigned to;
struct buffer_head *bh, *head;
int ret = 1;
if (!page_has_buffers(page))
return 0;
head = page_buffers(page);
blocksize = head->b_size;
to = min_t(unsigned, PAGE_SIZE - from, count);
to = from + to;
if (from < blocksize && to > PAGE_SIZE - blocksize)
return 0;
bh = head;
block_start = 0;
do {
block_end = block_start + blocksize;
if (block_end > from && block_start < to) {
if (!buffer_uptodate(bh)) {
ret = 0;
break;
}
if (block_end >= to)
break;
}
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
return ret;
}
EXPORT_SYMBOL(block_is_partially_uptodate);
/*
* Generic "read page" function for block devices that have the normal
* get_block functionality. This is most of the block device filesystems.
* Reads the page asynchronously --- the unlock_buffer() and
* set/clear_buffer_uptodate() functions propagate buffer state into the
* page struct once IO has completed.
*/
int block_read_full_page(struct page *page, get_block_t *get_block)
{
struct inode *inode = page->mapping->host;
sector_t iblock, lblock;
struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
unsigned int blocksize, bbits;
int nr, i;
int fully_mapped = 1;
head = create_page_buffers(page, inode, 0);
blocksize = head->b_size;
bbits = block_size_bits(blocksize);
iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
lblock = (i_size_read(inode)+blocksize-1) >> bbits;
bh = head;
nr = 0;
i = 0;
do {
if (buffer_uptodate(bh))
continue;
if (!buffer_mapped(bh)) {
int err = 0;
fully_mapped = 0;
if (iblock < lblock) {
WARN_ON(bh->b_size != blocksize);
err = get_block(inode, iblock, bh, 0);
if (err)
SetPageError(page);
}
if (!buffer_mapped(bh)) {
zero_user(page, i * blocksize, blocksize);
if (!err)
set_buffer_uptodate(bh);
continue;
}
/*
* get_block() might have updated the buffer
* synchronously
*/
if (buffer_uptodate(bh))
continue;
}
arr[nr++] = bh;
} while (i++, iblock++, (bh = bh->b_this_page) != head);
if (fully_mapped)
SetPageMappedToDisk(page);
if (!nr) {
/*
* All buffers are uptodate - we can set the page uptodate
* as well. But not if get_block() returned an error.
*/
if (!PageError(page))
SetPageUptodate(page);
unlock_page(page);
return 0;
}
/* Stage two: lock the buffers */
for (i = 0; i < nr; i++) {
bh = arr[i];
lock_buffer(bh);
mark_buffer_async_read(bh);
}
/*
* Stage 3: start the IO. Check for uptodateness
* inside the buffer lock in case another process reading
* the underlying blockdev brought it uptodate (the sct fix).
*/
for (i = 0; i < nr; i++) {
bh = arr[i];
if (buffer_uptodate(bh))
end_buffer_async_read(bh, 1);
else
submit_bh(REQ_OP_READ, 0, bh);
}
return 0;
}
EXPORT_SYMBOL(block_read_full_page);
/* utility function for filesystems that need to do work on expanding
* truncates. Uses filesystem pagecache writes to allow the filesystem to
* deal with the hole.
*/
int generic_cont_expand_simple(struct inode *inode, loff_t size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
void *fsdata;
int err;
err = inode_newsize_ok(inode, size);
if (err)
goto out;
err = pagecache_write_begin(NULL, mapping, size, 0,
AOP_FLAG_CONT_EXPAND, &page, &fsdata);
if (err)
goto out;
err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
BUG_ON(err > 0);
out:
return err;
}
EXPORT_SYMBOL(generic_cont_expand_simple);
static int cont_expand_zero(struct file *file, struct address_space *mapping,
loff_t pos, loff_t *bytes)
{
struct inode *inode = mapping->host;
unsigned int blocksize = i_blocksize(inode);
struct page *page;
void *fsdata;
pgoff_t index, curidx;
loff_t curpos;
unsigned zerofrom, offset, len;
int err = 0;
index = pos >> PAGE_SHIFT;
offset = pos & ~PAGE_MASK;
while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
zerofrom = curpos & ~PAGE_MASK;
if (zerofrom & (blocksize-1)) {
*bytes |= (blocksize-1);
(*bytes)++;
}
len = PAGE_SIZE - zerofrom;
err = pagecache_write_begin(file, mapping, curpos, len, 0,
&page, &fsdata);
if (err)
goto out;
zero_user(page, zerofrom, len);
err = pagecache_write_end(file, mapping, curpos, len, len,
page, fsdata);
if (err < 0)
goto out;
BUG_ON(err != len);
err = 0;
balance_dirty_pages_ratelimited(mapping);
if (unlikely(fatal_signal_pending(current))) {
err = -EINTR;
goto out;
}
}
/* page covers the boundary, find the boundary offset */
if (index == curidx) {
zerofrom = curpos & ~PAGE_MASK;
/* if we will expand the thing last block will be filled */
if (offset <= zerofrom) {
goto out;
}
if (zerofrom & (blocksize-1)) {
*bytes |= (blocksize-1);
(*bytes)++;
}
len = offset - zerofrom;
err = pagecache_write_begin(file, mapping, curpos, len, 0,
&page, &fsdata);
if (err)
goto out;
zero_user(page, zerofrom, len);
err = pagecache_write_end(file, mapping, curpos, len, len,
page, fsdata);
if (err < 0)
goto out;
BUG_ON(err != len);
err = 0;
}
out:
return err;
}
/*
* For moronic filesystems that do not allow holes in file.
* We may have to extend the file.
*/
int cont_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata,
get_block_t *get_block, loff_t *bytes)
{
struct inode *inode = mapping->host;
unsigned int blocksize = i_blocksize(inode);
unsigned int zerofrom;
int err;
err = cont_expand_zero(file, mapping, pos, bytes);
if (err)
return err;
zerofrom = *bytes & ~PAGE_MASK;
if (pos+len > *bytes && zerofrom & (blocksize-1)) {
*bytes |= (blocksize-1);
(*bytes)++;
}
return block_write_begin(mapping, pos, len, flags, pagep, get_block);
}
EXPORT_SYMBOL(cont_write_begin);
int block_commit_write(struct page *page, unsigned from, unsigned to)
{
struct inode *inode = page->mapping->host;
__block_commit_write(inode,page,from,to);
return 0;
}
EXPORT_SYMBOL(block_commit_write);
/*
* block_page_mkwrite() is not allowed to change the file size as it gets
* called from a page fault handler when a page is first dirtied. Hence we must
* be careful to check for EOF conditions here. We set the page up correctly
* for a written page which means we get ENOSPC checking when writing into
* holes and correct delalloc and unwritten extent mapping on filesystems that
* support these features.
*
* We are not allowed to take the i_mutex here so we have to play games to
* protect against truncate races as the page could now be beyond EOF. Because
* truncate writes the inode size before removing pages, once we have the
* page lock we can determine safely if the page is beyond EOF. If it is not
* beyond EOF, then the page is guaranteed safe against truncation until we
* unlock the page.
*
* Direct callers of this function should protect against filesystem freezing
* using sb_start_pagefault() - sb_end_pagefault() functions.
*/
int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vma->vm_file);
unsigned long end;
loff_t size;
int ret;
lock_page(page);
size = i_size_read(inode);
if ((page->mapping != inode->i_mapping) ||
(page_offset(page) > size)) {
/* We overload EFAULT to mean page got truncated */
ret = -EFAULT;
goto out_unlock;
}
/* page is wholly or partially inside EOF */
if (((page->index + 1) << PAGE_SHIFT) > size)
end = size & ~PAGE_MASK;
else
end = PAGE_SIZE;
ret = __block_write_begin(page, 0, end, get_block);
if (!ret)
ret = block_commit_write(page, 0, end);
if (unlikely(ret < 0))
goto out_unlock;
set_page_dirty(page);
wait_for_stable_page(page);
return 0;
out_unlock:
unlock_page(page);
return ret;
}
EXPORT_SYMBOL(block_page_mkwrite);
/*
* nobh_write_begin()'s prereads are special: the buffer_heads are freed
* immediately, while under the page lock. So it needs a special end_io
* handler which does not touch the bh after unlocking it.
*/
static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
{
__end_buffer_read_notouch(bh, uptodate);
}
/*
* Attach the singly-linked list of buffers created by nobh_write_begin, to
* the page (converting it to circular linked list and taking care of page
* dirty races).
*/
static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
{
struct buffer_head *bh;
BUG_ON(!PageLocked(page));
spin_lock(&page->mapping->private_lock);
bh = head;
do {
if (PageDirty(page))
set_buffer_dirty(bh);
if (!bh->b_this_page)
bh->b_this_page = head;
bh = bh->b_this_page;
} while (bh != head);
attach_page_buffers(page, head);
spin_unlock(&page->mapping->private_lock);
}
/*
* On entry, the page is fully not uptodate.
* On exit the page is fully uptodate in the areas outside (from,to)
* The filesystem needs to handle block truncation upon failure.
*/
int nobh_write_begin(struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata,
get_block_t *get_block)
{
struct inode *inode = mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocksize = 1 << blkbits;
struct buffer_head *head, *bh;
struct page *page;
pgoff_t index;
unsigned from, to;
unsigned block_in_page;
unsigned block_start, block_end;
sector_t block_in_file;
int nr_reads = 0;
int ret = 0;
int is_mapped_to_disk = 1;
index = pos >> PAGE_SHIFT;
from = pos & (PAGE_SIZE - 1);
to = from + len;
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
*pagep = page;
*fsdata = NULL;
if (page_has_buffers(page)) {
ret = __block_write_begin(page, pos, len, get_block);
if (unlikely(ret))
goto out_release;
return ret;
}
if (PageMappedToDisk(page))
return 0;
/*
* Allocate buffers so that we can keep track of state, and potentially
* attach them to the page if an error occurs. In the common case of
* no error, they will just be freed again without ever being attached
* to the page (which is all OK, because we're under the page lock).
*
* Be careful: the buffer linked list is a NULL terminated one, rather
* than the circular one we're used to.
*/
head = alloc_page_buffers(page, blocksize, false);
if (!head) {
ret = -ENOMEM;
goto out_release;
}
block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
/*
* We loop across all blocks in the page, whether or not they are
* part of the affected region. This is so we can discover if the
* page is fully mapped-to-disk.
*/
for (block_start = 0, block_in_page = 0, bh = head;
block_start < PAGE_SIZE;
block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
int create;
block_end = block_start + blocksize;
bh->b_state = 0;
create = 1;
if (block_start >= to)
create = 0;
ret = get_block(inode, block_in_file + block_in_page,
bh, create);
if (ret)
goto failed;
if (!buffer_mapped(bh))
is_mapped_to_disk = 0;
if (buffer_new(bh))
clean_bdev_bh_alias(bh);
if (PageUptodate(page)) {
set_buffer_uptodate(bh);
continue;
}
if (buffer_new(bh) || !buffer_mapped(bh)) {
zero_user_segments(page, block_start, from,
to, block_end);
continue;
}
if (buffer_uptodate(bh))
continue; /* reiserfs does this */
if (block_start < from || block_end > to) {
lock_buffer(bh);
bh->b_end_io = end_buffer_read_nobh;
submit_bh(REQ_OP_READ, 0, bh);
nr_reads++;
}
}
if (nr_reads) {
/*
* The page is locked, so these buffers are protected from
* any VM or truncate activity. Hence we don't need to care
* for the buffer_head refcounts.
*/
for (bh = head; bh; bh = bh->b_this_page) {
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
ret = -EIO;
}
if (ret)
goto failed;
}
if (is_mapped_to_disk)
SetPageMappedToDisk(page);
*fsdata = head; /* to be released by nobh_write_end */
return 0;
failed:
BUG_ON(!ret);
/*
* Error recovery is a bit difficult. We need to zero out blocks that
* were newly allocated, and dirty them to ensure they get written out.
* Buffers need to be attached to the page at this point, otherwise
* the handling of potential IO errors during writeout would be hard
* (could try doing synchronous writeout, but what if that fails too?)
*/
attach_nobh_buffers(page, head);
page_zero_new_buffers(page, from, to);
out_release:
unlock_page(page);
put_page(page);
*pagep = NULL;
return ret;
}
EXPORT_SYMBOL(nobh_write_begin);
int nobh_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
struct buffer_head *head = fsdata;
struct buffer_head *bh;
BUG_ON(fsdata != NULL && page_has_buffers(page));
if (unlikely(copied < len) && head)
attach_nobh_buffers(page, head);
if (page_has_buffers(page))
return generic_write_end(file, mapping, pos, len,
copied, page, fsdata);
SetPageUptodate(page);
set_page_dirty(page);
if (pos+copied > inode->i_size) {
i_size_write(inode, pos+copied);
mark_inode_dirty(inode);
}
unlock_page(page);
put_page(page);
while (head) {
bh = head;
head = head->b_this_page;
free_buffer_head(bh);
}
return copied;
}
EXPORT_SYMBOL(nobh_write_end);
/*
* nobh_writepage() - based on block_full_write_page() except
* that it tries to operate without attaching bufferheads to
* the page.
*/
int nobh_writepage(struct page *page, get_block_t *get_block,
struct writeback_control *wbc)
{
struct inode * const inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = i_size >> PAGE_SHIFT;
unsigned offset;
int ret;
/* Is the page fully inside i_size? */
if (page->index < end_index)
goto out;
/* Is the page fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_SIZE-1);
if (page->index >= end_index+1 || !offset) {
/*
* The page may have dirty, unmapped buffers. For example,
* they may have been added in ext3_writepage(). Make them
* freeable here, so the page does not leak.
*/
#if 0
/* Not really sure about this - do we need this ? */
if (page->mapping->a_ops->invalidatepage)
page->mapping->a_ops->invalidatepage(page, offset);
#endif
unlock_page(page);
return 0; /* don't care */
}
/*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
zero_user_segment(page, offset, PAGE_SIZE);
out:
ret = mpage_writepage(page, get_block, wbc);
if (ret == -EAGAIN)
ret = __block_write_full_page(inode, page, get_block, wbc,
end_buffer_async_write);
return ret;
}
EXPORT_SYMBOL(nobh_writepage);
int nobh_truncate_page(struct address_space *mapping,
loff_t from, get_block_t *get_block)
{
pgoff_t index = from >> PAGE_SHIFT;
unsigned offset = from & (PAGE_SIZE-1);
unsigned blocksize;
sector_t iblock;
unsigned length, pos;
struct inode *inode = mapping->host;
struct page *page;
struct buffer_head map_bh;
int err;
blocksize = i_blocksize(inode);
length = offset & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!length)
return 0;
length = blocksize - length;
iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
page = grab_cache_page(mapping, index);
err = -ENOMEM;
if (!page)
goto out;
if (page_has_buffers(page)) {
has_buffers:
unlock_page(page);
put_page(page);
return block_truncate_page(mapping, from, get_block);
}
/* Find the buffer that contains "offset" */
pos = blocksize;
while (offset >= pos) {
iblock++;
pos += blocksize;
}
map_bh.b_size = blocksize;
map_bh.b_state = 0;
err = get_block(inode, iblock, &map_bh, 0);
if (err)
goto unlock;
/* unmapped? It's a hole - nothing to do */
if (!buffer_mapped(&map_bh))
goto unlock;
/* Ok, it's mapped. Make sure it's up-to-date */
if (!PageUptodate(page)) {
err = mapping->a_ops->readpage(NULL, page);
if (err) {
put_page(page);
goto out;
}
lock_page(page);
if (!PageUptodate(page)) {
err = -EIO;
goto unlock;
}
if (page_has_buffers(page))
goto has_buffers;
}
zero_user(page, offset, length);
set_page_dirty(page);
err = 0;
unlock:
unlock_page(page);
put_page(page);
out:
return err;
}
EXPORT_SYMBOL(nobh_truncate_page);
int block_truncate_page(struct address_space *mapping,
loff_t from, get_block_t *get_block)
{
pgoff_t index = from >> PAGE_SHIFT;
unsigned offset = from & (PAGE_SIZE-1);
unsigned blocksize;
sector_t iblock;
unsigned length, pos;
struct inode *inode = mapping->host;
struct page *page;
struct buffer_head *bh;
int err;
blocksize = i_blocksize(inode);
length = offset & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!length)
return 0;
length = blocksize - length;
iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
page = grab_cache_page(mapping, index);
err = -ENOMEM;
if (!page)
goto out;
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
/* Find the buffer that contains "offset" */
bh = page_buffers(page);
pos = blocksize;
while (offset >= pos) {
bh = bh->b_this_page;
iblock++;
pos += blocksize;
}
err = 0;
if (!buffer_mapped(bh)) {
WARN_ON(bh->b_size != blocksize);
err = get_block(inode, iblock, bh, 0);
if (err)
goto unlock;
/* unmapped? It's a hole - nothing to do */
if (!buffer_mapped(bh))
goto unlock;
}
/* Ok, it's mapped. Make sure it's up-to-date */
if (PageUptodate(page))
set_buffer_uptodate(bh);
if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
err = -EIO;
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
wait_on_buffer(bh);
/* Uhhuh. Read error. Complain and punt. */
if (!buffer_uptodate(bh))
goto unlock;
}
zero_user(page, offset, length);
mark_buffer_dirty(bh);
err = 0;
unlock:
unlock_page(page);
put_page(page);
out:
return err;
}
EXPORT_SYMBOL(block_truncate_page);
/*
* The generic ->writepage function for buffer-backed address_spaces
*/
int block_write_full_page(struct page *page, get_block_t *get_block,
struct writeback_control *wbc)
{
struct inode * const inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = i_size >> PAGE_SHIFT;
unsigned offset;
/* Is the page fully inside i_size? */
if (page->index < end_index)
return __block_write_full_page(inode, page, get_block, wbc,
end_buffer_async_write);
/* Is the page fully outside i_size? (truncate in progress) */
offset = i_size & (PAGE_SIZE-1);
if (page->index >= end_index+1 || !offset) {
/*
* The page may have dirty, unmapped buffers. For example,
* they may have been added in ext3_writepage(). Make them
* freeable here, so the page does not leak.
*/
do_invalidatepage(page, 0, PAGE_SIZE);
unlock_page(page);
return 0; /* don't care */
}
/*
* The page straddles i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
zero_user_segment(page, offset, PAGE_SIZE);
return __block_write_full_page(inode, page, get_block, wbc,
end_buffer_async_write);
}
EXPORT_SYMBOL(block_write_full_page);
sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
get_block_t *get_block)
{
struct inode *inode = mapping->host;
struct buffer_head tmp = {
.b_size = i_blocksize(inode),
};
get_block(inode, block, &tmp, 0);
return tmp.b_blocknr;
}
EXPORT_SYMBOL(generic_block_bmap);
static void end_bio_bh_io_sync(struct bio *bio)
{
struct buffer_head *bh = bio->bi_private;
if (unlikely(bio_flagged(bio, BIO_QUIET)))
set_bit(BH_Quiet, &bh->b_state);
bh->b_end_io(bh, !bio->bi_status);
bio_put(bio);
}
/*
* This allows us to do IO even on the odd last sectors
* of a device, even if the block size is some multiple
* of the physical sector size.
*
* We'll just truncate the bio to the size of the device,
* and clear the end of the buffer head manually.
*
* Truly out-of-range accesses will turn into actual IO
* errors, this only handles the "we need to be able to
* do IO at the final sector" case.
*/
void guard_bio_eod(int op, struct bio *bio)
{
sector_t maxsector;
struct bio_vec *bvec = bio_last_bvec_all(bio);
unsigned truncated_bytes;
struct hd_struct *part;
rcu_read_lock();
part = __disk_get_part(bio->bi_disk, bio->bi_partno);
if (part)
maxsector = part_nr_sects_read(part);
else
maxsector = get_capacity(bio->bi_disk);
rcu_read_unlock();
if (!maxsector)
return;
/*
* If the *whole* IO is past the end of the device,
* let it through, and the IO layer will turn it into
* an EIO.
*/
if (unlikely(bio->bi_iter.bi_sector >= maxsector))
return;
maxsector -= bio->bi_iter.bi_sector;
if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
return;
/* Uhhuh. We've got a bio that straddles the device size! */
truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
/* Truncate the bio.. */
bio->bi_iter.bi_size -= truncated_bytes;
bvec->bv_len -= truncated_bytes;
/* ..and clear the end of the buffer for reads */
if (op == REQ_OP_READ) {
zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
truncated_bytes);
}
}
static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
enum rw_hint write_hint, struct writeback_control *wbc)
{
struct bio *bio;
BUG_ON(!buffer_locked(bh));
BUG_ON(!buffer_mapped(bh));
BUG_ON(!bh->b_end_io);
BUG_ON(buffer_delay(bh));
BUG_ON(buffer_unwritten(bh));
/*
* Only clear out a write error when rewriting
*/
if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
clear_buffer_write_io_error(bh);
/*
* from here on down, it's all bio -- do the initial mapping,
* submit_bio -> generic_make_request may further map this bio around
*/
bio = bio_alloc(GFP_NOIO, 1);
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
bio_set_dev(bio, bh->b_bdev);
bio->bi_write_hint = write_hint;
bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
BUG_ON(bio->bi_iter.bi_size != bh->b_size);
bio->bi_end_io = end_bio_bh_io_sync;
bio->bi_private = bh;
/* Take care of bh's that straddle the end of the device */
guard_bio_eod(op, bio);
if (buffer_meta(bh))
op_flags |= REQ_META;
if (buffer_prio(bh))
op_flags |= REQ_PRIO;
bio_set_op_attrs(bio, op, op_flags);
if (wbc) {
wbc_init_bio(wbc, bio);
wbc_account_io(wbc, bh->b_page, bh->b_size);
}
submit_bio(bio);
return 0;
}
int submit_bh(int op, int op_flags, struct buffer_head *bh)
{
return submit_bh_wbc(op, op_flags, bh, 0, NULL);
}
EXPORT_SYMBOL(submit_bh);
/**
* ll_rw_block: low-level access to block devices (DEPRECATED)
* @op: whether to %READ or %WRITE
* @op_flags: req_flag_bits
* @nr: number of &struct buffer_heads in the array
* @bhs: array of pointers to &struct buffer_head
*
* ll_rw_block() takes an array of pointers to &struct buffer_heads, and
* requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
* @op_flags contains flags modifying the detailed I/O behavior, most notably
* %REQ_RAHEAD.
*
* This function drops any buffer that it cannot get a lock on (with the
* BH_Lock state bit), any buffer that appears to be clean when doing a write
* request, and any buffer that appears to be up-to-date when doing read
* request. Further it marks as clean buffers that are processed for
* writing (the buffer cache won't assume that they are actually clean
* until the buffer gets unlocked).
*
* ll_rw_block sets b_end_io to simple completion handler that marks
* the buffer up-to-date (if appropriate), unlocks the buffer and wakes
* any waiters.
*
* All of the buffers must be for the same device, and must also be a
* multiple of the current approved size for the device.
*/
void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
{
int i;
for (i = 0; i < nr; i++) {
struct buffer_head *bh = bhs[i];
if (!trylock_buffer(bh))
continue;
if (op == WRITE) {
if (test_clear_buffer_dirty(bh)) {
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
submit_bh(op, op_flags, bh);
continue;
}
} else {
if (!buffer_uptodate(bh)) {
bh->b_end_io = end_buffer_read_sync;
get_bh(bh);
submit_bh(op, op_flags, bh);
continue;
}
}
unlock_buffer(bh);
}
}
EXPORT_SYMBOL(ll_rw_block);
void write_dirty_buffer(struct buffer_head *bh, int op_flags)
{
lock_buffer(bh);
if (!test_clear_buffer_dirty(bh)) {
unlock_buffer(bh);
return;
}
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
submit_bh(REQ_OP_WRITE, op_flags, bh);
}
EXPORT_SYMBOL(write_dirty_buffer);
/*
* For a data-integrity writeout, we need to wait upon any in-progress I/O
* and then start new I/O and then wait upon it. The caller must have a ref on
* the buffer_head.
*/
int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
{
int ret = 0;
WARN_ON(atomic_read(&bh->b_count) < 1);
lock_buffer(bh);
if (test_clear_buffer_dirty(bh)) {
get_bh(bh);
bh->b_end_io = end_buffer_write_sync;
ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
wait_on_buffer(bh);
if (!ret && !buffer_uptodate(bh))
ret = -EIO;
} else {
unlock_buffer(bh);
}
return ret;
}
EXPORT_SYMBOL(__sync_dirty_buffer);
int sync_dirty_buffer(struct buffer_head *bh)
{
return __sync_dirty_buffer(bh, REQ_SYNC);
}
EXPORT_SYMBOL(sync_dirty_buffer);
/*
* try_to_free_buffers() checks if all the buffers on this particular page
* are unused, and releases them if so.
*
* Exclusion against try_to_free_buffers may be obtained by either
* locking the page or by holding its mapping's private_lock.
*
* If the page is dirty but all the buffers are clean then we need to
* be sure to mark the page clean as well. This is because the page
* may be against a block device, and a later reattachment of buffers
* to a dirty page will set *all* buffers dirty. Which would corrupt
* filesystem data on the same device.
*
* The same applies to regular filesystem pages: if all the buffers are
* clean then we set the page clean and proceed. To do that, we require
* total exclusion from __set_page_dirty_buffers(). That is obtained with
* private_lock.
*
* try_to_free_buffers() is non-blocking.
*/
static inline int buffer_busy(struct buffer_head *bh)
{
return atomic_read(&bh->b_count) |
(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
}
static int
drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
{
struct buffer_head *head = page_buffers(page);
struct buffer_head *bh;
bh = head;
do {
if (buffer_busy(bh))
goto failed;
bh = bh->b_this_page;
} while (bh != head);
do {
struct buffer_head *next = bh->b_this_page;
if (bh->b_assoc_map)
__remove_assoc_queue(bh);
bh = next;
} while (bh != head);
*buffers_to_free = head;
__clear_page_buffers(page);
return 1;
failed:
return 0;
}
int try_to_free_buffers(struct page *page)
{
struct address_space * const mapping = page->mapping;
struct buffer_head *buffers_to_free = NULL;
int ret = 0;
BUG_ON(!PageLocked(page));
if (PageWriteback(page))
return 0;
if (mapping == NULL) { /* can this still happen? */
ret = drop_buffers(page, &buffers_to_free);
goto out;
}
spin_lock(&mapping->private_lock);
ret = drop_buffers(page, &buffers_to_free);
/*
* If the filesystem writes its buffers by hand (eg ext3)
* then we can have clean buffers against a dirty page. We
* clean the page here; otherwise the VM will never notice
* that the filesystem did any IO at all.
*
* Also, during truncate, discard_buffer will have marked all
* the page's buffers clean. We discover that here and clean
* the page also.
*
* private_lock must be held over this entire operation in order
* to synchronise against __set_page_dirty_buffers and prevent the
* dirty bit from being lost.
*/
if (ret)
cancel_dirty_page(page);
spin_unlock(&mapping->private_lock);
out:
if (buffers_to_free) {
struct buffer_head *bh = buffers_to_free;
do {
struct buffer_head *next = bh->b_this_page;
free_buffer_head(bh);
bh = next;
} while (bh != buffers_to_free);
}
return ret;
}
EXPORT_SYMBOL(try_to_free_buffers);
/*
* There are no bdflush tunables left. But distributions are
* still running obsolete flush daemons, so we terminate them here.
*
* Use of bdflush() is deprecated and will be removed in a future kernel.
* The `flush-X' kernel threads fully replace bdflush daemons and this call.
*/
SYSCALL_DEFINE2(bdflush, int, func, long, data)
{
static int msg_count;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (msg_count < 5) {
msg_count++;
printk(KERN_INFO
"warning: process `%s' used the obsolete bdflush"
" system call\n", current->comm);
printk(KERN_INFO "Fix your initscripts?\n");
}
if (func == 1)
do_exit(0);
return 0;
}
/*
* Buffer-head allocation
*/
static struct kmem_cache *bh_cachep __read_mostly;
/*
* Once the number of bh's in the machine exceeds this level, we start
* stripping them in writeback.
*/
static unsigned long max_buffer_heads;
int buffer_heads_over_limit;
struct bh_accounting {
int nr; /* Number of live bh's */
int ratelimit; /* Limit cacheline bouncing */
};
static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
static void recalc_bh_state(void)
{
int i;
int tot = 0;
if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
return;
__this_cpu_write(bh_accounting.ratelimit, 0);
for_each_online_cpu(i)
tot += per_cpu(bh_accounting, i).nr;
buffer_heads_over_limit = (tot > max_buffer_heads);
}
struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
{
struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
if (ret) {
INIT_LIST_HEAD(&ret->b_assoc_buffers);
preempt_disable();
__this_cpu_inc(bh_accounting.nr);
recalc_bh_state();
preempt_enable();
}
return ret;
}
EXPORT_SYMBOL(alloc_buffer_head);
void free_buffer_head(struct buffer_head *bh)
{
BUG_ON(!list_empty(&bh->b_assoc_buffers));
kmem_cache_free(bh_cachep, bh);
preempt_disable();
__this_cpu_dec(bh_accounting.nr);
recalc_bh_state();
preempt_enable();
}
EXPORT_SYMBOL(free_buffer_head);
static int buffer_exit_cpu_dead(unsigned int cpu)
{
int i;
struct bh_lru *b = &per_cpu(bh_lrus, cpu);
for (i = 0; i < BH_LRU_SIZE; i++) {
brelse(b->bhs[i]);
b->bhs[i] = NULL;
}
this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
per_cpu(bh_accounting, cpu).nr = 0;
return 0;
}
/**
* bh_uptodate_or_lock - Test whether the buffer is uptodate
* @bh: struct buffer_head
*
* Return true if the buffer is up-to-date and false,
* with the buffer locked, if not.
*/
int bh_uptodate_or_lock(struct buffer_head *bh)
{
if (!buffer_uptodate(bh)) {
lock_buffer(bh);
if (!buffer_uptodate(bh))
return 0;
unlock_buffer(bh);
}
return 1;
}
EXPORT_SYMBOL(bh_uptodate_or_lock);
/**
* bh_submit_read - Submit a locked buffer for reading
* @bh: struct buffer_head
*
* Returns zero on success and -EIO on error.
*/
int bh_submit_read(struct buffer_head *bh)
{
BUG_ON(!buffer_locked(bh));
if (buffer_uptodate(bh)) {
unlock_buffer(bh);
return 0;
}
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
submit_bh(REQ_OP_READ, 0, bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return 0;
return -EIO;
}
EXPORT_SYMBOL(bh_submit_read);
void __init buffer_init(void)
{
unsigned long nrpages;
int ret;
bh_cachep = kmem_cache_create("buffer_head",
sizeof(struct buffer_head), 0,
(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
SLAB_MEM_SPREAD),
NULL);
/*
* Limit the bh occupancy to 10% of ZONE_NORMAL
*/
nrpages = (nr_free_buffer_pages() * 10) / 100;
max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
NULL, buffer_exit_cpu_dead);
WARN_ON(ret < 0);
}