mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
729a611e6f
The driver defined several functions related to handling of frequency
and voltage changes:
- freq_post_notify_handling
- freq_pre_notify_handling
- volt_notify_handling
All these are static, not used inside or outside of driver, and marked
as unused with comment: "TODO: voltage notify handling should be hooked
up to regulator framework as soon as the necessary support is available
in mainline kernel. This function is un-used right now.".
These have been added with commit a93de288aa
("memory: emif: handle
frequency and voltage change events") in 2012 and are unused since then.
Additionally mentioned regulator and clock hooking did not happen since
then. If it did not happen for nine years, let's assume it will not
happen suddenly now.
Remove all unused functions which also allows removal of "t_ck" static
variable "t_ck" and "addressing" member of private structure.
No functionality is lost.
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Link: https://lore.kernel.org/r/20210527154101.80556-1-krzysztof.kozlowski@canonical.com
1210 lines
35 KiB
C
1210 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* EMIF driver
|
|
*
|
|
* Copyright (C) 2012 Texas Instruments, Inc.
|
|
*
|
|
* Aneesh V <aneesh@ti.com>
|
|
* Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
*/
|
|
#include <linux/err.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/platform_data/emif_plat.h>
|
|
#include <linux/io.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/pm.h>
|
|
|
|
#include "emif.h"
|
|
#include "jedec_ddr.h"
|
|
#include "of_memory.h"
|
|
|
|
/**
|
|
* struct emif_data - Per device static data for driver's use
|
|
* @duplicate: Whether the DDR devices attached to this EMIF
|
|
* instance are exactly same as that on EMIF1. In
|
|
* this case we can save some memory and processing
|
|
* @temperature_level: Maximum temperature of LPDDR2 devices attached
|
|
* to this EMIF - read from MR4 register. If there
|
|
* are two devices attached to this EMIF, this
|
|
* value is the maximum of the two temperature
|
|
* levels.
|
|
* @node: node in the device list
|
|
* @base: base address of memory-mapped IO registers.
|
|
* @dev: device pointer.
|
|
* @regs_cache: An array of 'struct emif_regs' that stores
|
|
* calculated register values for different
|
|
* frequencies, to avoid re-calculating them on
|
|
* each DVFS transition.
|
|
* @curr_regs: The set of register values used in the last
|
|
* frequency change (i.e. corresponding to the
|
|
* frequency in effect at the moment)
|
|
* @plat_data: Pointer to saved platform data.
|
|
* @debugfs_root: dentry to the root folder for EMIF in debugfs
|
|
* @np_ddr: Pointer to ddr device tree node
|
|
*/
|
|
struct emif_data {
|
|
u8 duplicate;
|
|
u8 temperature_level;
|
|
u8 lpmode;
|
|
struct list_head node;
|
|
unsigned long irq_state;
|
|
void __iomem *base;
|
|
struct device *dev;
|
|
struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
|
|
struct emif_regs *curr_regs;
|
|
struct emif_platform_data *plat_data;
|
|
struct dentry *debugfs_root;
|
|
struct device_node *np_ddr;
|
|
};
|
|
|
|
static struct emif_data *emif1;
|
|
static DEFINE_SPINLOCK(emif_lock);
|
|
static unsigned long irq_state;
|
|
static LIST_HEAD(device_list);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
|
|
struct emif_regs *regs)
|
|
{
|
|
u32 type = emif->plat_data->device_info->type;
|
|
u32 ip_rev = emif->plat_data->ip_rev;
|
|
|
|
seq_printf(s, "EMIF register cache dump for %dMHz\n",
|
|
regs->freq/1000000);
|
|
|
|
seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
|
|
seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
|
|
seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
|
|
seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
|
|
|
|
if (ip_rev == EMIF_4D) {
|
|
seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
|
|
regs->read_idle_ctrl_shdw_normal);
|
|
seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
|
|
regs->read_idle_ctrl_shdw_volt_ramp);
|
|
} else if (ip_rev == EMIF_4D5) {
|
|
seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
|
|
regs->dll_calib_ctrl_shdw_normal);
|
|
seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
|
|
regs->dll_calib_ctrl_shdw_volt_ramp);
|
|
}
|
|
|
|
if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
|
|
seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
|
|
regs->ref_ctrl_shdw_derated);
|
|
seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
|
|
regs->sdram_tim1_shdw_derated);
|
|
seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
|
|
regs->sdram_tim3_shdw_derated);
|
|
}
|
|
}
|
|
|
|
static int emif_regdump_show(struct seq_file *s, void *unused)
|
|
{
|
|
struct emif_data *emif = s->private;
|
|
struct emif_regs **regs_cache;
|
|
int i;
|
|
|
|
if (emif->duplicate)
|
|
regs_cache = emif1->regs_cache;
|
|
else
|
|
regs_cache = emif->regs_cache;
|
|
|
|
for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
|
|
do_emif_regdump_show(s, emif, regs_cache[i]);
|
|
seq_putc(s, '\n');
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(emif_regdump);
|
|
|
|
static int emif_mr4_show(struct seq_file *s, void *unused)
|
|
{
|
|
struct emif_data *emif = s->private;
|
|
|
|
seq_printf(s, "MR4=%d\n", emif->temperature_level);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(emif_mr4);
|
|
|
|
static int __init_or_module emif_debugfs_init(struct emif_data *emif)
|
|
{
|
|
emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
|
|
debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
|
|
&emif_regdump_fops);
|
|
debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
|
|
&emif_mr4_fops);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit emif_debugfs_exit(struct emif_data *emif)
|
|
{
|
|
debugfs_remove_recursive(emif->debugfs_root);
|
|
emif->debugfs_root = NULL;
|
|
}
|
|
#else
|
|
static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void __exit emif_debugfs_exit(struct emif_data *emif)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get bus width used by EMIF. Note that this may be different from the
|
|
* bus width of the DDR devices used. For instance two 16-bit DDR devices
|
|
* may be connected to a given CS of EMIF. In this case bus width as far
|
|
* as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
|
|
*/
|
|
static u32 get_emif_bus_width(struct emif_data *emif)
|
|
{
|
|
u32 width;
|
|
void __iomem *base = emif->base;
|
|
|
|
width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
|
|
>> NARROW_MODE_SHIFT;
|
|
width = width == 0 ? 32 : 16;
|
|
|
|
return width;
|
|
}
|
|
|
|
static void set_lpmode(struct emif_data *emif, u8 lpmode)
|
|
{
|
|
u32 temp;
|
|
void __iomem *base = emif->base;
|
|
|
|
/*
|
|
* Workaround for errata i743 - LPDDR2 Power-Down State is Not
|
|
* Efficient
|
|
*
|
|
* i743 DESCRIPTION:
|
|
* The EMIF supports power-down state for low power. The EMIF
|
|
* automatically puts the SDRAM into power-down after the memory is
|
|
* not accessed for a defined number of cycles and the
|
|
* EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
|
|
* As the EMIF supports automatic output impedance calibration, a ZQ
|
|
* calibration long command is issued every time it exits active
|
|
* power-down and precharge power-down modes. The EMIF waits and
|
|
* blocks any other command during this calibration.
|
|
* The EMIF does not allow selective disabling of ZQ calibration upon
|
|
* exit of power-down mode. Due to very short periods of power-down
|
|
* cycles, ZQ calibration overhead creates bandwidth issues and
|
|
* increases overall system power consumption. On the other hand,
|
|
* issuing ZQ calibration long commands when exiting self-refresh is
|
|
* still required.
|
|
*
|
|
* WORKAROUND
|
|
* Because there is no power consumption benefit of the power-down due
|
|
* to the calibration and there is a performance risk, the guideline
|
|
* is to not allow power-down state and, therefore, to not have set
|
|
* the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
|
|
*/
|
|
if ((emif->plat_data->ip_rev == EMIF_4D) &&
|
|
(lpmode == EMIF_LP_MODE_PWR_DN)) {
|
|
WARN_ONCE(1,
|
|
"REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
|
|
/* rollback LP_MODE to Self-refresh mode */
|
|
lpmode = EMIF_LP_MODE_SELF_REFRESH;
|
|
}
|
|
|
|
temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
|
|
temp &= ~LP_MODE_MASK;
|
|
temp |= (lpmode << LP_MODE_SHIFT);
|
|
writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
|
|
}
|
|
|
|
static void do_freq_update(void)
|
|
{
|
|
struct emif_data *emif;
|
|
|
|
/*
|
|
* Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
|
|
*
|
|
* i728 DESCRIPTION:
|
|
* The EMIF automatically puts the SDRAM into self-refresh mode
|
|
* after the EMIF has not performed accesses during
|
|
* EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
|
|
* and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
|
|
* to 0x2. If during a small window the following three events
|
|
* occur:
|
|
* - The SR_TIMING counter expires
|
|
* - And frequency change is requested
|
|
* - And OCP access is requested
|
|
* Then it causes instable clock on the DDR interface.
|
|
*
|
|
* WORKAROUND
|
|
* To avoid the occurrence of the three events, the workaround
|
|
* is to disable the self-refresh when requesting a frequency
|
|
* change. Before requesting a frequency change the software must
|
|
* program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
|
|
* frequency change has been done, the software can reprogram
|
|
* EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
|
|
*/
|
|
list_for_each_entry(emif, &device_list, node) {
|
|
if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
|
|
set_lpmode(emif, EMIF_LP_MODE_DISABLE);
|
|
}
|
|
|
|
/*
|
|
* TODO: Do FREQ_UPDATE here when an API
|
|
* is available for this as part of the new
|
|
* clock framework
|
|
*/
|
|
|
|
list_for_each_entry(emif, &device_list, node) {
|
|
if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
|
|
set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
|
|
}
|
|
}
|
|
|
|
/* Find addressing table entry based on the device's type and density */
|
|
static const struct lpddr2_addressing *get_addressing_table(
|
|
const struct ddr_device_info *device_info)
|
|
{
|
|
u32 index, type, density;
|
|
|
|
type = device_info->type;
|
|
density = device_info->density;
|
|
|
|
switch (type) {
|
|
case DDR_TYPE_LPDDR2_S4:
|
|
index = density - 1;
|
|
break;
|
|
case DDR_TYPE_LPDDR2_S2:
|
|
switch (density) {
|
|
case DDR_DENSITY_1Gb:
|
|
case DDR_DENSITY_2Gb:
|
|
index = density + 3;
|
|
break;
|
|
default:
|
|
index = density - 1;
|
|
}
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return &lpddr2_jedec_addressing_table[index];
|
|
}
|
|
|
|
static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
|
|
bool cs1_used, bool cal_resistors_per_cs)
|
|
{
|
|
u32 zq = 0, val = 0;
|
|
|
|
val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
|
|
zq |= val << ZQ_REFINTERVAL_SHIFT;
|
|
|
|
val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
|
|
zq |= val << ZQ_ZQCL_MULT_SHIFT;
|
|
|
|
val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
|
|
zq |= val << ZQ_ZQINIT_MULT_SHIFT;
|
|
|
|
zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
|
|
|
|
if (cal_resistors_per_cs)
|
|
zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
|
|
else
|
|
zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
|
|
|
|
zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
|
|
|
|
val = cs1_used ? 1 : 0;
|
|
zq |= val << ZQ_CS1EN_SHIFT;
|
|
|
|
return zq;
|
|
}
|
|
|
|
static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
|
|
const struct emif_custom_configs *custom_configs, bool cs1_used,
|
|
u32 sdram_io_width, u32 emif_bus_width)
|
|
{
|
|
u32 alert = 0, interval, devcnt;
|
|
|
|
if (custom_configs && (custom_configs->mask &
|
|
EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
|
|
interval = custom_configs->temp_alert_poll_interval_ms;
|
|
else
|
|
interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
|
|
|
|
interval *= 1000000; /* Convert to ns */
|
|
interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
|
|
alert |= (interval << TA_REFINTERVAL_SHIFT);
|
|
|
|
/*
|
|
* sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
|
|
* also to this form and subtract to get TA_DEVCNT, which is
|
|
* in log2(x) form.
|
|
*/
|
|
emif_bus_width = __fls(emif_bus_width) - 1;
|
|
devcnt = emif_bus_width - sdram_io_width;
|
|
alert |= devcnt << TA_DEVCNT_SHIFT;
|
|
|
|
/* DEVWDT is in 'log2(x) - 3' form */
|
|
alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
|
|
|
|
alert |= 1 << TA_SFEXITEN_SHIFT;
|
|
alert |= 1 << TA_CS0EN_SHIFT;
|
|
alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
|
|
|
|
return alert;
|
|
}
|
|
|
|
static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
|
|
{
|
|
u32 pwr_mgmt_ctrl = 0, timeout;
|
|
u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
|
|
u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
|
|
u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
|
|
u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
|
|
u32 mask;
|
|
u8 shift;
|
|
|
|
struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
|
|
|
|
if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
|
|
lpmode = cust_cfgs->lpmode;
|
|
timeout_perf = cust_cfgs->lpmode_timeout_performance;
|
|
timeout_pwr = cust_cfgs->lpmode_timeout_power;
|
|
freq_threshold = cust_cfgs->lpmode_freq_threshold;
|
|
}
|
|
|
|
/* Timeout based on DDR frequency */
|
|
timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
|
|
|
|
/*
|
|
* The value to be set in register is "log2(timeout) - 3"
|
|
* if timeout < 16 load 0 in register
|
|
* if timeout is not a power of 2, round to next highest power of 2
|
|
*/
|
|
if (timeout < 16) {
|
|
timeout = 0;
|
|
} else {
|
|
if (timeout & (timeout - 1))
|
|
timeout <<= 1;
|
|
timeout = __fls(timeout) - 3;
|
|
}
|
|
|
|
switch (lpmode) {
|
|
case EMIF_LP_MODE_CLOCK_STOP:
|
|
shift = CS_TIM_SHIFT;
|
|
mask = CS_TIM_MASK;
|
|
break;
|
|
case EMIF_LP_MODE_SELF_REFRESH:
|
|
/* Workaround for errata i735 */
|
|
if (timeout < 6)
|
|
timeout = 6;
|
|
|
|
shift = SR_TIM_SHIFT;
|
|
mask = SR_TIM_MASK;
|
|
break;
|
|
case EMIF_LP_MODE_PWR_DN:
|
|
shift = PD_TIM_SHIFT;
|
|
mask = PD_TIM_MASK;
|
|
break;
|
|
case EMIF_LP_MODE_DISABLE:
|
|
default:
|
|
mask = 0;
|
|
shift = 0;
|
|
break;
|
|
}
|
|
/* Round to maximum in case of overflow, BUT warn! */
|
|
if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
|
|
pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
|
|
lpmode,
|
|
timeout_perf,
|
|
timeout_pwr,
|
|
freq_threshold);
|
|
WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
|
|
timeout, mask >> shift);
|
|
timeout = mask >> shift;
|
|
}
|
|
|
|
/* Setup required timing */
|
|
pwr_mgmt_ctrl = (timeout << shift) & mask;
|
|
/* setup a default mask for rest of the modes */
|
|
pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
|
|
~mask;
|
|
|
|
/* No CS_TIM in EMIF_4D5 */
|
|
if (ip_rev == EMIF_4D5)
|
|
pwr_mgmt_ctrl &= ~CS_TIM_MASK;
|
|
|
|
pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
|
|
|
|
return pwr_mgmt_ctrl;
|
|
}
|
|
|
|
/*
|
|
* Get the temperature level of the EMIF instance:
|
|
* Reads the MR4 register of attached SDRAM parts to find out the temperature
|
|
* level. If there are two parts attached(one on each CS), then the temperature
|
|
* level for the EMIF instance is the higher of the two temperatures.
|
|
*/
|
|
static void get_temperature_level(struct emif_data *emif)
|
|
{
|
|
u32 temp, temperature_level;
|
|
void __iomem *base;
|
|
|
|
base = emif->base;
|
|
|
|
/* Read mode register 4 */
|
|
writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
|
|
temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
|
|
temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
|
|
MR4_SDRAM_REF_RATE_SHIFT;
|
|
|
|
if (emif->plat_data->device_info->cs1_used) {
|
|
writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
|
|
temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
|
|
temp = (temp & MR4_SDRAM_REF_RATE_MASK)
|
|
>> MR4_SDRAM_REF_RATE_SHIFT;
|
|
temperature_level = max(temp, temperature_level);
|
|
}
|
|
|
|
/* treat everything less than nominal(3) in MR4 as nominal */
|
|
if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
|
|
temperature_level = SDRAM_TEMP_NOMINAL;
|
|
|
|
/* if we get reserved value in MR4 persist with the existing value */
|
|
if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
|
|
emif->temperature_level = temperature_level;
|
|
}
|
|
|
|
/*
|
|
* setup_temperature_sensitive_regs() - set the timings for temperature
|
|
* sensitive registers. This happens once at initialisation time based
|
|
* on the temperature at boot time and subsequently based on the temperature
|
|
* alert interrupt. Temperature alert can happen when the temperature
|
|
* increases or drops. So this function can have the effect of either
|
|
* derating the timings or going back to nominal values.
|
|
*/
|
|
static void setup_temperature_sensitive_regs(struct emif_data *emif,
|
|
struct emif_regs *regs)
|
|
{
|
|
u32 tim1, tim3, ref_ctrl, type;
|
|
void __iomem *base = emif->base;
|
|
u32 temperature;
|
|
|
|
type = emif->plat_data->device_info->type;
|
|
|
|
tim1 = regs->sdram_tim1_shdw;
|
|
tim3 = regs->sdram_tim3_shdw;
|
|
ref_ctrl = regs->ref_ctrl_shdw;
|
|
|
|
/* No de-rating for non-lpddr2 devices */
|
|
if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
|
|
goto out;
|
|
|
|
temperature = emif->temperature_level;
|
|
if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
|
|
ref_ctrl = regs->ref_ctrl_shdw_derated;
|
|
} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
|
|
tim1 = regs->sdram_tim1_shdw_derated;
|
|
tim3 = regs->sdram_tim3_shdw_derated;
|
|
ref_ctrl = regs->ref_ctrl_shdw_derated;
|
|
}
|
|
|
|
out:
|
|
writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
|
|
writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
|
|
writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
|
|
}
|
|
|
|
static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
|
|
{
|
|
u32 old_temp_level;
|
|
irqreturn_t ret = IRQ_HANDLED;
|
|
struct emif_custom_configs *custom_configs;
|
|
|
|
spin_lock_irqsave(&emif_lock, irq_state);
|
|
old_temp_level = emif->temperature_level;
|
|
get_temperature_level(emif);
|
|
|
|
if (unlikely(emif->temperature_level == old_temp_level)) {
|
|
goto out;
|
|
} else if (!emif->curr_regs) {
|
|
dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
|
|
goto out;
|
|
}
|
|
|
|
custom_configs = emif->plat_data->custom_configs;
|
|
|
|
/*
|
|
* IF we detect higher than "nominal rating" from DDR sensor
|
|
* on an unsupported DDR part, shutdown system
|
|
*/
|
|
if (custom_configs && !(custom_configs->mask &
|
|
EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
|
|
if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
|
|
dev_err(emif->dev,
|
|
"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
|
|
__func__, emif->temperature_level);
|
|
/*
|
|
* Temperature far too high - do kernel_power_off()
|
|
* from thread context
|
|
*/
|
|
emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
|
|
ret = IRQ_WAKE_THREAD;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (emif->temperature_level < old_temp_level ||
|
|
emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
|
|
/*
|
|
* Temperature coming down - defer handling to thread OR
|
|
* Temperature far too high - do kernel_power_off() from
|
|
* thread context
|
|
*/
|
|
ret = IRQ_WAKE_THREAD;
|
|
} else {
|
|
/* Temperature is going up - handle immediately */
|
|
setup_temperature_sensitive_regs(emif, emif->curr_regs);
|
|
do_freq_update();
|
|
}
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&emif_lock, irq_state);
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
|
|
{
|
|
u32 interrupts;
|
|
struct emif_data *emif = dev_id;
|
|
void __iomem *base = emif->base;
|
|
struct device *dev = emif->dev;
|
|
irqreturn_t ret = IRQ_HANDLED;
|
|
|
|
/* Save the status and clear it */
|
|
interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
|
|
writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
|
|
|
|
/*
|
|
* Handle temperature alert
|
|
* Temperature alert should be same for all ports
|
|
* So, it's enough to process it only for one of the ports
|
|
*/
|
|
if (interrupts & TA_SYS_MASK)
|
|
ret = handle_temp_alert(base, emif);
|
|
|
|
if (interrupts & ERR_SYS_MASK)
|
|
dev_err(dev, "Access error from SYS port - %x\n", interrupts);
|
|
|
|
if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
|
|
/* Save the status and clear it */
|
|
interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
|
|
writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
|
|
|
|
if (interrupts & ERR_LL_MASK)
|
|
dev_err(dev, "Access error from LL port - %x\n",
|
|
interrupts);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
|
|
{
|
|
struct emif_data *emif = dev_id;
|
|
|
|
if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
|
|
dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
|
|
|
|
/* If we have Power OFF ability, use it, else try restarting */
|
|
if (pm_power_off) {
|
|
kernel_power_off();
|
|
} else {
|
|
WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
|
|
kernel_restart("SDRAM Over-temp Emergency restart");
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
spin_lock_irqsave(&emif_lock, irq_state);
|
|
|
|
if (emif->curr_regs) {
|
|
setup_temperature_sensitive_regs(emif, emif->curr_regs);
|
|
do_freq_update();
|
|
} else {
|
|
dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
|
|
}
|
|
|
|
spin_unlock_irqrestore(&emif_lock, irq_state);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void clear_all_interrupts(struct emif_data *emif)
|
|
{
|
|
void __iomem *base = emif->base;
|
|
|
|
writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
|
|
base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
|
|
if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
|
|
writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
|
|
base + EMIF_LL_OCP_INTERRUPT_STATUS);
|
|
}
|
|
|
|
static void disable_and_clear_all_interrupts(struct emif_data *emif)
|
|
{
|
|
void __iomem *base = emif->base;
|
|
|
|
/* Disable all interrupts */
|
|
writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
|
|
base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
|
|
if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
|
|
writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
|
|
base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
|
|
|
|
/* Clear all interrupts */
|
|
clear_all_interrupts(emif);
|
|
}
|
|
|
|
static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
|
|
{
|
|
u32 interrupts, type;
|
|
void __iomem *base = emif->base;
|
|
|
|
type = emif->plat_data->device_info->type;
|
|
|
|
clear_all_interrupts(emif);
|
|
|
|
/* Enable interrupts for SYS interface */
|
|
interrupts = EN_ERR_SYS_MASK;
|
|
if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
|
|
interrupts |= EN_TA_SYS_MASK;
|
|
writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
|
|
|
|
/* Enable interrupts for LL interface */
|
|
if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
|
|
/* TA need not be enabled for LL */
|
|
interrupts = EN_ERR_LL_MASK;
|
|
writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
|
|
}
|
|
|
|
/* setup IRQ handlers */
|
|
return devm_request_threaded_irq(emif->dev, irq,
|
|
emif_interrupt_handler,
|
|
emif_threaded_isr,
|
|
0, dev_name(emif->dev),
|
|
emif);
|
|
|
|
}
|
|
|
|
static void __init_or_module emif_onetime_settings(struct emif_data *emif)
|
|
{
|
|
u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
|
|
void __iomem *base = emif->base;
|
|
const struct lpddr2_addressing *addressing;
|
|
const struct ddr_device_info *device_info;
|
|
|
|
device_info = emif->plat_data->device_info;
|
|
addressing = get_addressing_table(device_info);
|
|
|
|
/*
|
|
* Init power management settings
|
|
* We don't know the frequency yet. Use a high frequency
|
|
* value for a conservative timeout setting
|
|
*/
|
|
pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
|
|
emif->plat_data->ip_rev);
|
|
emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
|
|
writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
|
|
|
|
/* Init ZQ calibration settings */
|
|
zq = get_zq_config_reg(addressing, device_info->cs1_used,
|
|
device_info->cal_resistors_per_cs);
|
|
writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
|
|
|
|
/* Check temperature level temperature level*/
|
|
get_temperature_level(emif);
|
|
if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
|
|
dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
|
|
|
|
/* Init temperature polling */
|
|
temp_alert_cfg = get_temp_alert_config(addressing,
|
|
emif->plat_data->custom_configs, device_info->cs1_used,
|
|
device_info->io_width, get_emif_bus_width(emif));
|
|
writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
|
|
|
|
/*
|
|
* Program external PHY control registers that are not frequency
|
|
* dependent
|
|
*/
|
|
if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
|
|
return;
|
|
writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
|
|
writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
|
|
}
|
|
|
|
static void get_default_timings(struct emif_data *emif)
|
|
{
|
|
struct emif_platform_data *pd = emif->plat_data;
|
|
|
|
pd->timings = lpddr2_jedec_timings;
|
|
pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
|
|
|
|
dev_warn(emif->dev, "%s: using default timings\n", __func__);
|
|
}
|
|
|
|
static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
|
|
u32 ip_rev, struct device *dev)
|
|
{
|
|
int valid;
|
|
|
|
valid = (type == DDR_TYPE_LPDDR2_S4 ||
|
|
type == DDR_TYPE_LPDDR2_S2)
|
|
&& (density >= DDR_DENSITY_64Mb
|
|
&& density <= DDR_DENSITY_8Gb)
|
|
&& (io_width >= DDR_IO_WIDTH_8
|
|
&& io_width <= DDR_IO_WIDTH_32);
|
|
|
|
/* Combinations of EMIF and PHY revisions that we support today */
|
|
switch (ip_rev) {
|
|
case EMIF_4D:
|
|
valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
|
|
break;
|
|
case EMIF_4D5:
|
|
valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
|
|
break;
|
|
default:
|
|
valid = 0;
|
|
}
|
|
|
|
if (!valid)
|
|
dev_err(dev, "%s: invalid DDR details\n", __func__);
|
|
return valid;
|
|
}
|
|
|
|
static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
|
|
struct device *dev)
|
|
{
|
|
int valid = 1;
|
|
|
|
if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
|
|
(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
|
|
valid = cust_cfgs->lpmode_freq_threshold &&
|
|
cust_cfgs->lpmode_timeout_performance &&
|
|
cust_cfgs->lpmode_timeout_power;
|
|
|
|
if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
|
|
valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
|
|
|
|
if (!valid)
|
|
dev_warn(dev, "%s: invalid custom configs\n", __func__);
|
|
|
|
return valid;
|
|
}
|
|
|
|
#if defined(CONFIG_OF)
|
|
static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
|
|
struct emif_data *emif)
|
|
{
|
|
struct emif_custom_configs *cust_cfgs = NULL;
|
|
int len;
|
|
const __be32 *lpmode, *poll_intvl;
|
|
|
|
lpmode = of_get_property(np_emif, "low-power-mode", &len);
|
|
poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
|
|
|
|
if (lpmode || poll_intvl)
|
|
cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
|
|
GFP_KERNEL);
|
|
|
|
if (!cust_cfgs)
|
|
return;
|
|
|
|
if (lpmode) {
|
|
cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
|
|
cust_cfgs->lpmode = be32_to_cpup(lpmode);
|
|
of_property_read_u32(np_emif,
|
|
"low-power-mode-timeout-performance",
|
|
&cust_cfgs->lpmode_timeout_performance);
|
|
of_property_read_u32(np_emif,
|
|
"low-power-mode-timeout-power",
|
|
&cust_cfgs->lpmode_timeout_power);
|
|
of_property_read_u32(np_emif,
|
|
"low-power-mode-freq-threshold",
|
|
&cust_cfgs->lpmode_freq_threshold);
|
|
}
|
|
|
|
if (poll_intvl) {
|
|
cust_cfgs->mask |=
|
|
EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
|
|
cust_cfgs->temp_alert_poll_interval_ms =
|
|
be32_to_cpup(poll_intvl);
|
|
}
|
|
|
|
if (of_find_property(np_emif, "extended-temp-part", &len))
|
|
cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
|
|
|
|
if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
|
|
devm_kfree(emif->dev, cust_cfgs);
|
|
return;
|
|
}
|
|
|
|
emif->plat_data->custom_configs = cust_cfgs;
|
|
}
|
|
|
|
static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
|
|
struct device_node *np_ddr,
|
|
struct ddr_device_info *dev_info)
|
|
{
|
|
u32 density = 0, io_width = 0;
|
|
int len;
|
|
|
|
if (of_find_property(np_emif, "cs1-used", &len))
|
|
dev_info->cs1_used = true;
|
|
|
|
if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
|
|
dev_info->cal_resistors_per_cs = true;
|
|
|
|
if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
|
|
dev_info->type = DDR_TYPE_LPDDR2_S4;
|
|
else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
|
|
dev_info->type = DDR_TYPE_LPDDR2_S2;
|
|
|
|
of_property_read_u32(np_ddr, "density", &density);
|
|
of_property_read_u32(np_ddr, "io-width", &io_width);
|
|
|
|
/* Convert from density in Mb to the density encoding in jedc_ddr.h */
|
|
if (density & (density - 1))
|
|
dev_info->density = 0;
|
|
else
|
|
dev_info->density = __fls(density) - 5;
|
|
|
|
/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
|
|
if (io_width & (io_width - 1))
|
|
dev_info->io_width = 0;
|
|
else
|
|
dev_info->io_width = __fls(io_width) - 1;
|
|
}
|
|
|
|
static struct emif_data * __init_or_module of_get_memory_device_details(
|
|
struct device_node *np_emif, struct device *dev)
|
|
{
|
|
struct emif_data *emif = NULL;
|
|
struct ddr_device_info *dev_info = NULL;
|
|
struct emif_platform_data *pd = NULL;
|
|
struct device_node *np_ddr;
|
|
int len;
|
|
|
|
np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
|
|
if (!np_ddr)
|
|
goto error;
|
|
emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
|
|
pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
|
|
dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
|
|
|
|
if (!emif || !pd || !dev_info) {
|
|
dev_err(dev, "%s: Out of memory!!\n",
|
|
__func__);
|
|
goto error;
|
|
}
|
|
|
|
emif->plat_data = pd;
|
|
pd->device_info = dev_info;
|
|
emif->dev = dev;
|
|
emif->np_ddr = np_ddr;
|
|
emif->temperature_level = SDRAM_TEMP_NOMINAL;
|
|
|
|
if (of_device_is_compatible(np_emif, "ti,emif-4d"))
|
|
emif->plat_data->ip_rev = EMIF_4D;
|
|
else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
|
|
emif->plat_data->ip_rev = EMIF_4D5;
|
|
|
|
of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
|
|
|
|
if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
|
|
pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
|
|
|
|
of_get_ddr_info(np_emif, np_ddr, dev_info);
|
|
if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
|
|
pd->device_info->io_width, pd->phy_type, pd->ip_rev,
|
|
emif->dev)) {
|
|
dev_err(dev, "%s: invalid device data!!\n", __func__);
|
|
goto error;
|
|
}
|
|
/*
|
|
* For EMIF instances other than EMIF1 see if the devices connected
|
|
* are exactly same as on EMIF1(which is typically the case). If so,
|
|
* mark it as a duplicate of EMIF1. This will save some memory and
|
|
* computation.
|
|
*/
|
|
if (emif1 && emif1->np_ddr == np_ddr) {
|
|
emif->duplicate = true;
|
|
goto out;
|
|
} else if (emif1) {
|
|
dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
|
|
__func__);
|
|
}
|
|
|
|
of_get_custom_configs(np_emif, emif);
|
|
emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
|
|
emif->plat_data->device_info->type,
|
|
&emif->plat_data->timings_arr_size);
|
|
|
|
emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
|
|
goto out;
|
|
|
|
error:
|
|
return NULL;
|
|
out:
|
|
return emif;
|
|
}
|
|
|
|
#else
|
|
|
|
static struct emif_data * __init_or_module of_get_memory_device_details(
|
|
struct device_node *np_emif, struct device *dev)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static struct emif_data *__init_or_module get_device_details(
|
|
struct platform_device *pdev)
|
|
{
|
|
u32 size;
|
|
struct emif_data *emif = NULL;
|
|
struct ddr_device_info *dev_info;
|
|
struct emif_custom_configs *cust_cfgs;
|
|
struct emif_platform_data *pd;
|
|
struct device *dev;
|
|
void *temp;
|
|
|
|
pd = pdev->dev.platform_data;
|
|
dev = &pdev->dev;
|
|
|
|
if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
|
|
pd->device_info->density, pd->device_info->io_width,
|
|
pd->phy_type, pd->ip_rev, dev))) {
|
|
dev_err(dev, "%s: invalid device data\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
|
|
temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
|
|
dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
|
|
|
|
if (!emif || !pd || !dev_info) {
|
|
dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
|
|
goto error;
|
|
}
|
|
|
|
memcpy(temp, pd, sizeof(*pd));
|
|
pd = temp;
|
|
memcpy(dev_info, pd->device_info, sizeof(*dev_info));
|
|
|
|
pd->device_info = dev_info;
|
|
emif->plat_data = pd;
|
|
emif->dev = dev;
|
|
emif->temperature_level = SDRAM_TEMP_NOMINAL;
|
|
|
|
/*
|
|
* For EMIF instances other than EMIF1 see if the devices connected
|
|
* are exactly same as on EMIF1(which is typically the case). If so,
|
|
* mark it as a duplicate of EMIF1 and skip copying timings data.
|
|
* This will save some memory and some computation later.
|
|
*/
|
|
emif->duplicate = emif1 && (memcmp(dev_info,
|
|
emif1->plat_data->device_info,
|
|
sizeof(struct ddr_device_info)) == 0);
|
|
|
|
if (emif->duplicate) {
|
|
pd->timings = NULL;
|
|
pd->min_tck = NULL;
|
|
goto out;
|
|
} else if (emif1) {
|
|
dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
|
|
__func__);
|
|
}
|
|
|
|
/*
|
|
* Copy custom configs - ignore allocation error, if any, as
|
|
* custom_configs is not very critical
|
|
*/
|
|
cust_cfgs = pd->custom_configs;
|
|
if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
|
|
temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
|
|
if (temp)
|
|
memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
|
|
else
|
|
dev_warn(dev, "%s:%d: allocation error\n", __func__,
|
|
__LINE__);
|
|
pd->custom_configs = temp;
|
|
}
|
|
|
|
/*
|
|
* Copy timings and min-tck values from platform data. If it is not
|
|
* available or if memory allocation fails, use JEDEC defaults
|
|
*/
|
|
size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
|
|
if (pd->timings) {
|
|
temp = devm_kzalloc(dev, size, GFP_KERNEL);
|
|
if (temp) {
|
|
memcpy(temp, pd->timings, size);
|
|
pd->timings = temp;
|
|
} else {
|
|
dev_warn(dev, "%s:%d: allocation error\n", __func__,
|
|
__LINE__);
|
|
get_default_timings(emif);
|
|
}
|
|
} else {
|
|
get_default_timings(emif);
|
|
}
|
|
|
|
if (pd->min_tck) {
|
|
temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
|
|
if (temp) {
|
|
memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
|
|
pd->min_tck = temp;
|
|
} else {
|
|
dev_warn(dev, "%s:%d: allocation error\n", __func__,
|
|
__LINE__);
|
|
pd->min_tck = &lpddr2_jedec_min_tck;
|
|
}
|
|
} else {
|
|
pd->min_tck = &lpddr2_jedec_min_tck;
|
|
}
|
|
|
|
out:
|
|
return emif;
|
|
|
|
error:
|
|
return NULL;
|
|
}
|
|
|
|
static int __init_or_module emif_probe(struct platform_device *pdev)
|
|
{
|
|
struct emif_data *emif;
|
|
struct resource *res;
|
|
int irq;
|
|
|
|
if (pdev->dev.of_node)
|
|
emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
|
|
else
|
|
emif = get_device_details(pdev);
|
|
|
|
if (!emif) {
|
|
pr_err("%s: error getting device data\n", __func__);
|
|
goto error;
|
|
}
|
|
|
|
list_add(&emif->node, &device_list);
|
|
|
|
/* Save pointers to each other in emif and device structures */
|
|
emif->dev = &pdev->dev;
|
|
platform_set_drvdata(pdev, emif);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
emif->base = devm_ioremap_resource(emif->dev, res);
|
|
if (IS_ERR(emif->base))
|
|
goto error;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
goto error;
|
|
|
|
emif_onetime_settings(emif);
|
|
emif_debugfs_init(emif);
|
|
disable_and_clear_all_interrupts(emif);
|
|
setup_interrupts(emif, irq);
|
|
|
|
/* One-time actions taken on probing the first device */
|
|
if (!emif1) {
|
|
emif1 = emif;
|
|
|
|
/*
|
|
* TODO: register notifiers for frequency and voltage
|
|
* change here once the respective frameworks are
|
|
* available
|
|
*/
|
|
}
|
|
|
|
dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
|
|
__func__, emif->base, irq);
|
|
|
|
return 0;
|
|
error:
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int __exit emif_remove(struct platform_device *pdev)
|
|
{
|
|
struct emif_data *emif = platform_get_drvdata(pdev);
|
|
|
|
emif_debugfs_exit(emif);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void emif_shutdown(struct platform_device *pdev)
|
|
{
|
|
struct emif_data *emif = platform_get_drvdata(pdev);
|
|
|
|
disable_and_clear_all_interrupts(emif);
|
|
}
|
|
|
|
#if defined(CONFIG_OF)
|
|
static const struct of_device_id emif_of_match[] = {
|
|
{ .compatible = "ti,emif-4d" },
|
|
{ .compatible = "ti,emif-4d5" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, emif_of_match);
|
|
#endif
|
|
|
|
static struct platform_driver emif_driver = {
|
|
.remove = __exit_p(emif_remove),
|
|
.shutdown = emif_shutdown,
|
|
.driver = {
|
|
.name = "emif",
|
|
.of_match_table = of_match_ptr(emif_of_match),
|
|
},
|
|
};
|
|
|
|
module_platform_driver_probe(emif_driver, emif_probe);
|
|
|
|
MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:emif");
|
|
MODULE_AUTHOR("Texas Instruments Inc");
|