mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
53fd3cbe5e
Add virtual function number in pci_epc ops. EPC controller driver can perform virtual function specific initialization based on the virtual function number. Link: https://lore.kernel.org/r/20210819123343.1951-5-kishon@ti.com Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
859 lines
23 KiB
C
859 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* PCI Endpoint *Controller* (EPC) library
|
|
*
|
|
* Copyright (C) 2017 Texas Instruments
|
|
* Author: Kishon Vijay Abraham I <kishon@ti.com>
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
|
|
#include <linux/pci-epc.h>
|
|
#include <linux/pci-epf.h>
|
|
#include <linux/pci-ep-cfs.h>
|
|
|
|
static struct class *pci_epc_class;
|
|
|
|
static void devm_pci_epc_release(struct device *dev, void *res)
|
|
{
|
|
struct pci_epc *epc = *(struct pci_epc **)res;
|
|
|
|
pci_epc_destroy(epc);
|
|
}
|
|
|
|
static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
|
|
{
|
|
struct pci_epc **epc = res;
|
|
|
|
return *epc == match_data;
|
|
}
|
|
|
|
/**
|
|
* pci_epc_put() - release the PCI endpoint controller
|
|
* @epc: epc returned by pci_epc_get()
|
|
*
|
|
* release the refcount the caller obtained by invoking pci_epc_get()
|
|
*/
|
|
void pci_epc_put(struct pci_epc *epc)
|
|
{
|
|
if (!epc || IS_ERR(epc))
|
|
return;
|
|
|
|
module_put(epc->ops->owner);
|
|
put_device(&epc->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_put);
|
|
|
|
/**
|
|
* pci_epc_get() - get the PCI endpoint controller
|
|
* @epc_name: device name of the endpoint controller
|
|
*
|
|
* Invoke to get struct pci_epc * corresponding to the device name of the
|
|
* endpoint controller
|
|
*/
|
|
struct pci_epc *pci_epc_get(const char *epc_name)
|
|
{
|
|
int ret = -EINVAL;
|
|
struct pci_epc *epc;
|
|
struct device *dev;
|
|
struct class_dev_iter iter;
|
|
|
|
class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
|
|
while ((dev = class_dev_iter_next(&iter))) {
|
|
if (strcmp(epc_name, dev_name(dev)))
|
|
continue;
|
|
|
|
epc = to_pci_epc(dev);
|
|
if (!try_module_get(epc->ops->owner)) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
class_dev_iter_exit(&iter);
|
|
get_device(&epc->dev);
|
|
return epc;
|
|
}
|
|
|
|
err:
|
|
class_dev_iter_exit(&iter);
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_get);
|
|
|
|
/**
|
|
* pci_epc_get_first_free_bar() - helper to get first unreserved BAR
|
|
* @epc_features: pci_epc_features structure that holds the reserved bar bitmap
|
|
*
|
|
* Invoke to get the first unreserved BAR that can be used by the endpoint
|
|
* function. For any incorrect value in reserved_bar return '0'.
|
|
*/
|
|
enum pci_barno
|
|
pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
|
|
{
|
|
return pci_epc_get_next_free_bar(epc_features, BAR_0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
|
|
|
|
/**
|
|
* pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
|
|
* @epc_features: pci_epc_features structure that holds the reserved bar bitmap
|
|
* @bar: the starting BAR number from where unreserved BAR should be searched
|
|
*
|
|
* Invoke to get the next unreserved BAR starting from @bar that can be used
|
|
* for endpoint function. For any incorrect value in reserved_bar return '0'.
|
|
*/
|
|
enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
|
|
*epc_features, enum pci_barno bar)
|
|
{
|
|
unsigned long free_bar;
|
|
|
|
if (!epc_features)
|
|
return BAR_0;
|
|
|
|
/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
|
|
if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
|
|
bar++;
|
|
|
|
/* Find if the reserved BAR is also a 64-bit BAR */
|
|
free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
|
|
|
|
/* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
|
|
free_bar <<= 1;
|
|
free_bar |= epc_features->reserved_bar;
|
|
|
|
free_bar = find_next_zero_bit(&free_bar, 6, bar);
|
|
if (free_bar > 5)
|
|
return NO_BAR;
|
|
|
|
return free_bar;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
|
|
|
|
/**
|
|
* pci_epc_get_features() - get the features supported by EPC
|
|
* @epc: the features supported by *this* EPC device will be returned
|
|
* @func_no: the features supported by the EPC device specific to the
|
|
* endpoint function with func_no will be returned
|
|
* @vfunc_no: the features supported by the EPC device specific to the
|
|
* virtual endpoint function with vfunc_no will be returned
|
|
*
|
|
* Invoke to get the features provided by the EPC which may be
|
|
* specific to an endpoint function. Returns pci_epc_features on success
|
|
* and NULL for any failures.
|
|
*/
|
|
const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
|
|
u8 func_no, u8 vfunc_no)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return NULL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return NULL;
|
|
|
|
if (!epc->ops->get_features)
|
|
return NULL;
|
|
|
|
mutex_lock(&epc->lock);
|
|
epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return epc_features;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_get_features);
|
|
|
|
/**
|
|
* pci_epc_stop() - stop the PCI link
|
|
* @epc: the link of the EPC device that has to be stopped
|
|
*
|
|
* Invoke to stop the PCI link
|
|
*/
|
|
void pci_epc_stop(struct pci_epc *epc)
|
|
{
|
|
if (IS_ERR(epc) || !epc->ops->stop)
|
|
return;
|
|
|
|
mutex_lock(&epc->lock);
|
|
epc->ops->stop(epc);
|
|
mutex_unlock(&epc->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_stop);
|
|
|
|
/**
|
|
* pci_epc_start() - start the PCI link
|
|
* @epc: the link of *this* EPC device has to be started
|
|
*
|
|
* Invoke to start the PCI link
|
|
*/
|
|
int pci_epc_start(struct pci_epc *epc)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ERR(epc))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->start)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->start(epc);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_start);
|
|
|
|
/**
|
|
* pci_epc_raise_irq() - interrupt the host system
|
|
* @epc: the EPC device which has to interrupt the host
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @type: specify the type of interrupt; legacy, MSI or MSI-X
|
|
* @interrupt_num: the MSI or MSI-X interrupt number
|
|
*
|
|
* Invoke to raise an legacy, MSI or MSI-X interrupt
|
|
*/
|
|
int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
enum pci_epc_irq_type type, u16 interrupt_num)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->raise_irq)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
|
|
|
|
/**
|
|
* pci_epc_map_msi_irq() - Map physical address to MSI address and return
|
|
* MSI data
|
|
* @epc: the EPC device which has the MSI capability
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @phys_addr: the physical address of the outbound region
|
|
* @interrupt_num: the MSI interrupt number
|
|
* @entry_size: Size of Outbound address region for each interrupt
|
|
* @msi_data: the data that should be written in order to raise MSI interrupt
|
|
* with interrupt number as 'interrupt num'
|
|
* @msi_addr_offset: Offset of MSI address from the aligned outbound address
|
|
* to which the MSI address is mapped
|
|
*
|
|
* Invoke to map physical address to MSI address and return MSI data. The
|
|
* physical address should be an address in the outbound region. This is
|
|
* required to implement doorbell functionality of NTB wherein EPC on either
|
|
* side of the interface (primary and secondary) can directly write to the
|
|
* physical address (in outbound region) of the other interface to ring
|
|
* doorbell.
|
|
*/
|
|
int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
|
|
u32 *msi_data, u32 *msi_addr_offset)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ERR_OR_NULL(epc))
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->map_msi_irq)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
|
|
interrupt_num, entry_size, msi_data,
|
|
msi_addr_offset);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
|
|
|
|
/**
|
|
* pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
|
|
* @epc: the EPC device to which MSI interrupts was requested
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
*
|
|
* Invoke to get the number of MSI interrupts allocated by the RC
|
|
*/
|
|
int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
|
|
{
|
|
int interrupt;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return 0;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return 0;
|
|
|
|
if (!epc->ops->get_msi)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
if (interrupt < 0)
|
|
return 0;
|
|
|
|
interrupt = 1 << interrupt;
|
|
|
|
return interrupt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_get_msi);
|
|
|
|
/**
|
|
* pci_epc_set_msi() - set the number of MSI interrupt numbers required
|
|
* @epc: the EPC device on which MSI has to be configured
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @interrupts: number of MSI interrupts required by the EPF
|
|
*
|
|
* Invoke to set the required number of MSI interrupts.
|
|
*/
|
|
int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
|
|
{
|
|
int ret;
|
|
u8 encode_int;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
|
|
interrupts > 32)
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->set_msi)
|
|
return 0;
|
|
|
|
encode_int = order_base_2(interrupts);
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_set_msi);
|
|
|
|
/**
|
|
* pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
|
|
* @epc: the EPC device to which MSI-X interrupts was requested
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
*
|
|
* Invoke to get the number of MSI-X interrupts allocated by the RC
|
|
*/
|
|
int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
|
|
{
|
|
int interrupt;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return 0;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return 0;
|
|
|
|
if (!epc->ops->get_msix)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
if (interrupt < 0)
|
|
return 0;
|
|
|
|
return interrupt + 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_get_msix);
|
|
|
|
/**
|
|
* pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
|
|
* @epc: the EPC device on which MSI-X has to be configured
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @interrupts: number of MSI-X interrupts required by the EPF
|
|
* @bir: BAR where the MSI-X table resides
|
|
* @offset: Offset pointing to the start of MSI-X table
|
|
*
|
|
* Invoke to set the required number of MSI-X interrupts.
|
|
*/
|
|
int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
u16 interrupts, enum pci_barno bir, u32 offset)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
|
|
interrupts < 1 || interrupts > 2048)
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->set_msix)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
|
|
offset);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_set_msix);
|
|
|
|
/**
|
|
* pci_epc_unmap_addr() - unmap CPU address from PCI address
|
|
* @epc: the EPC device on which address is allocated
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @phys_addr: physical address of the local system
|
|
*
|
|
* Invoke to unmap the CPU address from PCI address.
|
|
*/
|
|
void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
phys_addr_t phys_addr)
|
|
{
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return;
|
|
|
|
if (!epc->ops->unmap_addr)
|
|
return;
|
|
|
|
mutex_lock(&epc->lock);
|
|
epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
|
|
mutex_unlock(&epc->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
|
|
|
|
/**
|
|
* pci_epc_map_addr() - map CPU address to PCI address
|
|
* @epc: the EPC device on which address is allocated
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @phys_addr: physical address of the local system
|
|
* @pci_addr: PCI address to which the physical address should be mapped
|
|
* @size: the size of the allocation
|
|
*
|
|
* Invoke to map CPU address with PCI address.
|
|
*/
|
|
int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
phys_addr_t phys_addr, u64 pci_addr, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->map_addr)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
|
|
size);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_map_addr);
|
|
|
|
/**
|
|
* pci_epc_clear_bar() - reset the BAR
|
|
* @epc: the EPC device for which the BAR has to be cleared
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @epf_bar: the struct epf_bar that contains the BAR information
|
|
*
|
|
* Invoke to reset the BAR of the endpoint device.
|
|
*/
|
|
void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
struct pci_epf_bar *epf_bar)
|
|
{
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
|
|
(epf_bar->barno == BAR_5 &&
|
|
epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
|
|
return;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return;
|
|
|
|
if (!epc->ops->clear_bar)
|
|
return;
|
|
|
|
mutex_lock(&epc->lock);
|
|
epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
|
|
mutex_unlock(&epc->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
|
|
|
|
/**
|
|
* pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
|
|
* @epc: the EPC device on which BAR has to be configured
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @epf_bar: the struct epf_bar that contains the BAR information
|
|
*
|
|
* Invoke to configure the BAR of the endpoint device.
|
|
*/
|
|
int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
struct pci_epf_bar *epf_bar)
|
|
{
|
|
int ret;
|
|
int flags = epf_bar->flags;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
|
|
(epf_bar->barno == BAR_5 &&
|
|
flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
|
|
(flags & PCI_BASE_ADDRESS_SPACE_IO &&
|
|
flags & PCI_BASE_ADDRESS_IO_MASK) ||
|
|
(upper_32_bits(epf_bar->size) &&
|
|
!(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->set_bar)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_set_bar);
|
|
|
|
/**
|
|
* pci_epc_write_header() - write standard configuration header
|
|
* @epc: the EPC device to which the configuration header should be written
|
|
* @func_no: the physical endpoint function number in the EPC device
|
|
* @vfunc_no: the virtual endpoint function number in the physical function
|
|
* @header: standard configuration header fields
|
|
*
|
|
* Invoke to write the configuration header to the endpoint controller. Every
|
|
* endpoint controller will have a dedicated location to which the standard
|
|
* configuration header would be written. The callback function should write
|
|
* the header fields to this dedicated location.
|
|
*/
|
|
int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
|
|
struct pci_epf_header *header)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
|
|
return -EINVAL;
|
|
|
|
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
|
|
return -EINVAL;
|
|
|
|
/* Only Virtual Function #1 has deviceID */
|
|
if (vfunc_no > 1)
|
|
return -EINVAL;
|
|
|
|
if (!epc->ops->write_header)
|
|
return 0;
|
|
|
|
mutex_lock(&epc->lock);
|
|
ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_write_header);
|
|
|
|
/**
|
|
* pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
|
|
* @epc: the EPC device to which the endpoint function should be added
|
|
* @epf: the endpoint function to be added
|
|
* @type: Identifies if the EPC is connected to the primary or secondary
|
|
* interface of EPF
|
|
*
|
|
* A PCI endpoint device can have one or more functions. In the case of PCIe,
|
|
* the specification allows up to 8 PCIe endpoint functions. Invoke
|
|
* pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
|
|
*/
|
|
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct list_head *list;
|
|
u32 func_no;
|
|
int ret = 0;
|
|
|
|
if (IS_ERR_OR_NULL(epc) || epf->is_vf)
|
|
return -EINVAL;
|
|
|
|
if (type == PRIMARY_INTERFACE && epf->epc)
|
|
return -EBUSY;
|
|
|
|
if (type == SECONDARY_INTERFACE && epf->sec_epc)
|
|
return -EBUSY;
|
|
|
|
mutex_lock(&epc->lock);
|
|
func_no = find_first_zero_bit(&epc->function_num_map,
|
|
BITS_PER_LONG);
|
|
if (func_no >= BITS_PER_LONG) {
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
if (func_no > epc->max_functions - 1) {
|
|
dev_err(&epc->dev, "Exceeding max supported Function Number\n");
|
|
ret = -EINVAL;
|
|
goto ret;
|
|
}
|
|
|
|
set_bit(func_no, &epc->function_num_map);
|
|
if (type == PRIMARY_INTERFACE) {
|
|
epf->func_no = func_no;
|
|
epf->epc = epc;
|
|
list = &epf->list;
|
|
} else {
|
|
epf->sec_epc_func_no = func_no;
|
|
epf->sec_epc = epc;
|
|
list = &epf->sec_epc_list;
|
|
}
|
|
|
|
list_add_tail(list, &epc->pci_epf);
|
|
ret:
|
|
mutex_unlock(&epc->lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_add_epf);
|
|
|
|
/**
|
|
* pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
|
|
* @epc: the EPC device from which the endpoint function should be removed
|
|
* @epf: the endpoint function to be removed
|
|
* @type: identifies if the EPC is connected to the primary or secondary
|
|
* interface of EPF
|
|
*
|
|
* Invoke to remove PCI endpoint function from the endpoint controller.
|
|
*/
|
|
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct list_head *list;
|
|
u32 func_no = 0;
|
|
|
|
if (!epc || IS_ERR(epc) || !epf)
|
|
return;
|
|
|
|
if (type == PRIMARY_INTERFACE) {
|
|
func_no = epf->func_no;
|
|
list = &epf->list;
|
|
} else {
|
|
func_no = epf->sec_epc_func_no;
|
|
list = &epf->sec_epc_list;
|
|
}
|
|
|
|
mutex_lock(&epc->lock);
|
|
clear_bit(func_no, &epc->function_num_map);
|
|
list_del(list);
|
|
epf->epc = NULL;
|
|
mutex_unlock(&epc->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
|
|
|
|
/**
|
|
* pci_epc_linkup() - Notify the EPF device that EPC device has established a
|
|
* connection with the Root Complex.
|
|
* @epc: the EPC device which has established link with the host
|
|
*
|
|
* Invoke to Notify the EPF device that the EPC device has established a
|
|
* connection with the Root Complex.
|
|
*/
|
|
void pci_epc_linkup(struct pci_epc *epc)
|
|
{
|
|
if (!epc || IS_ERR(epc))
|
|
return;
|
|
|
|
atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_linkup);
|
|
|
|
/**
|
|
* pci_epc_init_notify() - Notify the EPF device that EPC device's core
|
|
* initialization is completed.
|
|
* @epc: the EPC device whose core initialization is completeds
|
|
*
|
|
* Invoke to Notify the EPF device that the EPC device's initialization
|
|
* is completed.
|
|
*/
|
|
void pci_epc_init_notify(struct pci_epc *epc)
|
|
{
|
|
if (!epc || IS_ERR(epc))
|
|
return;
|
|
|
|
atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_init_notify);
|
|
|
|
/**
|
|
* pci_epc_destroy() - destroy the EPC device
|
|
* @epc: the EPC device that has to be destroyed
|
|
*
|
|
* Invoke to destroy the PCI EPC device
|
|
*/
|
|
void pci_epc_destroy(struct pci_epc *epc)
|
|
{
|
|
pci_ep_cfs_remove_epc_group(epc->group);
|
|
device_unregister(&epc->dev);
|
|
kfree(epc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_epc_destroy);
|
|
|
|
/**
|
|
* devm_pci_epc_destroy() - destroy the EPC device
|
|
* @dev: device that wants to destroy the EPC
|
|
* @epc: the EPC device that has to be destroyed
|
|
*
|
|
* Invoke to destroy the devres associated with this
|
|
* pci_epc and destroy the EPC device.
|
|
*/
|
|
void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
|
|
{
|
|
int r;
|
|
|
|
r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
|
|
epc);
|
|
dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
|
|
|
|
/**
|
|
* __pci_epc_create() - create a new endpoint controller (EPC) device
|
|
* @dev: device that is creating the new EPC
|
|
* @ops: function pointers for performing EPC operations
|
|
* @owner: the owner of the module that creates the EPC device
|
|
*
|
|
* Invoke to create a new EPC device and add it to pci_epc class.
|
|
*/
|
|
struct pci_epc *
|
|
__pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
|
|
struct module *owner)
|
|
{
|
|
int ret;
|
|
struct pci_epc *epc;
|
|
|
|
if (WARN_ON(!dev)) {
|
|
ret = -EINVAL;
|
|
goto err_ret;
|
|
}
|
|
|
|
epc = kzalloc(sizeof(*epc), GFP_KERNEL);
|
|
if (!epc) {
|
|
ret = -ENOMEM;
|
|
goto err_ret;
|
|
}
|
|
|
|
mutex_init(&epc->lock);
|
|
INIT_LIST_HEAD(&epc->pci_epf);
|
|
ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier);
|
|
|
|
device_initialize(&epc->dev);
|
|
epc->dev.class = pci_epc_class;
|
|
epc->dev.parent = dev;
|
|
epc->ops = ops;
|
|
|
|
ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
|
|
if (ret)
|
|
goto put_dev;
|
|
|
|
ret = device_add(&epc->dev);
|
|
if (ret)
|
|
goto put_dev;
|
|
|
|
epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
|
|
|
|
return epc;
|
|
|
|
put_dev:
|
|
put_device(&epc->dev);
|
|
kfree(epc);
|
|
|
|
err_ret:
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pci_epc_create);
|
|
|
|
/**
|
|
* __devm_pci_epc_create() - create a new endpoint controller (EPC) device
|
|
* @dev: device that is creating the new EPC
|
|
* @ops: function pointers for performing EPC operations
|
|
* @owner: the owner of the module that creates the EPC device
|
|
*
|
|
* Invoke to create a new EPC device and add it to pci_epc class.
|
|
* While at that, it also associates the device with the pci_epc using devres.
|
|
* On driver detach, release function is invoked on the devres data,
|
|
* then, devres data is freed.
|
|
*/
|
|
struct pci_epc *
|
|
__devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
|
|
struct module *owner)
|
|
{
|
|
struct pci_epc **ptr, *epc;
|
|
|
|
ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
epc = __pci_epc_create(dev, ops, owner);
|
|
if (!IS_ERR(epc)) {
|
|
*ptr = epc;
|
|
devres_add(dev, ptr);
|
|
} else {
|
|
devres_free(ptr);
|
|
}
|
|
|
|
return epc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
|
|
|
|
static int __init pci_epc_init(void)
|
|
{
|
|
pci_epc_class = class_create(THIS_MODULE, "pci_epc");
|
|
if (IS_ERR(pci_epc_class)) {
|
|
pr_err("failed to create pci epc class --> %ld\n",
|
|
PTR_ERR(pci_epc_class));
|
|
return PTR_ERR(pci_epc_class);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
module_init(pci_epc_init);
|
|
|
|
static void __exit pci_epc_exit(void)
|
|
{
|
|
class_destroy(pci_epc_class);
|
|
}
|
|
module_exit(pci_epc_exit);
|
|
|
|
MODULE_DESCRIPTION("PCI EPC Library");
|
|
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
|
|
MODULE_LICENSE("GPL v2");
|