linux-stable/drivers/hid/hid-mcp2221.c
Hamish Martin 73ce9f1f27 HID: mcp2221: Allow IO to start during probe
During the probe we add an I2C adapter and as soon as we add that adapter
it may be used for a transfer (e.g via the code in i2cdetect()).
Those transfers are not able to complete and time out. This is because the
HID raw_event callback (mcp2221_raw_event) will not be invoked until the
HID device's 'driver_input_lock' is marked up at the completion of the
probe in hid_device_probe(). This starves the driver of the responses it
is waiting for.
In order to allow the I2C transfers to complete while we are still in the
probe, start the IO once we have completed init of the HID device.

This issue seems to have been seen before and a patch was submitted but
it seems it was never accepted. See:
https://lore.kernel.org/all/20221103222714.21566-3-Enrik.Berkhan@inka.de/

Signed-off-by: Hamish Martin <hamish.martin@alliedtelesis.co.nz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2023-11-21 09:29:47 +01:00

1218 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* MCP2221A - Microchip USB to I2C Host Protocol Bridge
*
* Copyright (c) 2020, Rishi Gupta <gupt21@gmail.com>
*
* Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/20005565B.pdf
*/
#include <linux/module.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/hid.h>
#include <linux/hidraw.h>
#include <linux/i2c.h>
#include <linux/gpio/driver.h>
#include <linux/iio/iio.h>
#include "hid-ids.h"
/* Commands codes in a raw output report */
enum {
MCP2221_I2C_WR_DATA = 0x90,
MCP2221_I2C_WR_NO_STOP = 0x94,
MCP2221_I2C_RD_DATA = 0x91,
MCP2221_I2C_RD_RPT_START = 0x93,
MCP2221_I2C_GET_DATA = 0x40,
MCP2221_I2C_PARAM_OR_STATUS = 0x10,
MCP2221_I2C_SET_SPEED = 0x20,
MCP2221_I2C_CANCEL = 0x10,
MCP2221_GPIO_SET = 0x50,
MCP2221_GPIO_GET = 0x51,
MCP2221_SET_SRAM_SETTINGS = 0x60,
MCP2221_GET_SRAM_SETTINGS = 0x61,
MCP2221_READ_FLASH_DATA = 0xb0,
};
/* Response codes in a raw input report */
enum {
MCP2221_SUCCESS = 0x00,
MCP2221_I2C_ENG_BUSY = 0x01,
MCP2221_I2C_START_TOUT = 0x12,
MCP2221_I2C_STOP_TOUT = 0x62,
MCP2221_I2C_WRADDRL_TOUT = 0x23,
MCP2221_I2C_WRDATA_TOUT = 0x44,
MCP2221_I2C_WRADDRL_NACK = 0x25,
MCP2221_I2C_MASK_ADDR_NACK = 0x40,
MCP2221_I2C_WRADDRL_SEND = 0x21,
MCP2221_I2C_ADDR_NACK = 0x25,
MCP2221_I2C_READ_COMPL = 0x55,
MCP2221_ALT_F_NOT_GPIOV = 0xEE,
MCP2221_ALT_F_NOT_GPIOD = 0xEF,
};
/* MCP GPIO direction encoding */
enum {
MCP2221_DIR_OUT = 0x00,
MCP2221_DIR_IN = 0x01,
};
#define MCP_NGPIO 4
/* MCP GPIO set command layout */
struct mcp_set_gpio {
u8 cmd;
u8 dummy;
struct {
u8 change_value;
u8 value;
u8 change_direction;
u8 direction;
} gpio[MCP_NGPIO];
} __packed;
/* MCP GPIO get command layout */
struct mcp_get_gpio {
u8 cmd;
u8 dummy;
struct {
u8 value;
u8 direction;
} gpio[MCP_NGPIO];
} __packed;
/*
* There is no way to distinguish responses. Therefore next command
* is sent only after response to previous has been received. Mutex
* lock is used for this purpose mainly.
*/
struct mcp2221 {
struct hid_device *hdev;
struct i2c_adapter adapter;
struct mutex lock;
struct completion wait_in_report;
struct delayed_work init_work;
u8 *rxbuf;
u8 txbuf[64];
int rxbuf_idx;
int status;
u8 cur_i2c_clk_div;
struct gpio_chip *gc;
u8 gp_idx;
u8 gpio_dir;
u8 mode[4];
#if IS_REACHABLE(CONFIG_IIO)
struct iio_chan_spec iio_channels[3];
u16 adc_values[3];
u8 adc_scale;
u8 dac_value;
u16 dac_scale;
#endif
};
struct mcp2221_iio {
struct mcp2221 *mcp;
};
/*
* Default i2c bus clock frequency 400 kHz. Modify this if you
* want to set some other frequency (min 50 kHz - max 400 kHz).
*/
static uint i2c_clk_freq = 400;
/* Synchronously send output report to the device */
static int mcp_send_report(struct mcp2221 *mcp,
u8 *out_report, size_t len)
{
u8 *buf;
int ret;
buf = kmemdup(out_report, len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* mcp2221 uses interrupt endpoint for out reports */
ret = hid_hw_output_report(mcp->hdev, buf, len);
kfree(buf);
if (ret < 0)
return ret;
return 0;
}
/*
* Send o/p report to the device and wait for i/p report to be
* received from the device. If the device does not respond,
* we timeout.
*/
static int mcp_send_data_req_status(struct mcp2221 *mcp,
u8 *out_report, int len)
{
int ret;
unsigned long t;
reinit_completion(&mcp->wait_in_report);
ret = mcp_send_report(mcp, out_report, len);
if (ret)
return ret;
t = wait_for_completion_timeout(&mcp->wait_in_report,
msecs_to_jiffies(4000));
if (!t)
return -ETIMEDOUT;
return mcp->status;
}
/* Check pass/fail for actual communication with i2c slave */
static int mcp_chk_last_cmd_status(struct mcp2221 *mcp)
{
memset(mcp->txbuf, 0, 8);
mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
return mcp_send_data_req_status(mcp, mcp->txbuf, 8);
}
/* Cancels last command releasing i2c bus just in case occupied */
static int mcp_cancel_last_cmd(struct mcp2221 *mcp)
{
memset(mcp->txbuf, 0, 8);
mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
mcp->txbuf[2] = MCP2221_I2C_CANCEL;
return mcp_send_data_req_status(mcp, mcp->txbuf, 8);
}
static int mcp_set_i2c_speed(struct mcp2221 *mcp)
{
int ret;
memset(mcp->txbuf, 0, 8);
mcp->txbuf[0] = MCP2221_I2C_PARAM_OR_STATUS;
mcp->txbuf[3] = MCP2221_I2C_SET_SPEED;
mcp->txbuf[4] = mcp->cur_i2c_clk_div;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 8);
if (ret) {
/* Small delay is needed here */
usleep_range(980, 1000);
mcp_cancel_last_cmd(mcp);
}
return 0;
}
/*
* An output report can contain minimum 1 and maximum 60 user data
* bytes. If the number of data bytes is more then 60, we send it
* in chunks of 60 bytes. Last chunk may contain exactly 60 or less
* bytes. Total number of bytes is informed in very first report to
* mcp2221, from that point onwards it first collect all the data
* from host and then send to i2c slave device.
*/
static int mcp_i2c_write(struct mcp2221 *mcp,
struct i2c_msg *msg, int type, u8 last_status)
{
int ret, len, idx, sent;
idx = 0;
sent = 0;
if (msg->len < 60)
len = msg->len;
else
len = 60;
do {
mcp->txbuf[0] = type;
mcp->txbuf[1] = msg->len & 0xff;
mcp->txbuf[2] = msg->len >> 8;
mcp->txbuf[3] = (u8)(msg->addr << 1);
memcpy(&mcp->txbuf[4], &msg->buf[idx], len);
ret = mcp_send_data_req_status(mcp, mcp->txbuf, len + 4);
if (ret)
return ret;
usleep_range(980, 1000);
if (last_status) {
ret = mcp_chk_last_cmd_status(mcp);
if (ret)
return ret;
}
sent = sent + len;
if (sent >= msg->len)
break;
idx = idx + len;
if ((msg->len - sent) < 60)
len = msg->len - sent;
else
len = 60;
/*
* Testing shows delay is needed between successive writes
* otherwise next write fails on first-try from i2c core.
* This value is obtained through automated stress testing.
*/
usleep_range(980, 1000);
} while (len > 0);
return ret;
}
/*
* Device reads all data (0 - 65535 bytes) from i2c slave device and
* stores it in device itself. This data is read back from device to
* host in multiples of 60 bytes using input reports.
*/
static int mcp_i2c_smbus_read(struct mcp2221 *mcp,
struct i2c_msg *msg, int type, u16 smbus_addr,
u8 smbus_len, u8 *smbus_buf)
{
int ret;
u16 total_len;
mcp->txbuf[0] = type;
if (msg) {
mcp->txbuf[1] = msg->len & 0xff;
mcp->txbuf[2] = msg->len >> 8;
mcp->txbuf[3] = (u8)(msg->addr << 1);
total_len = msg->len;
mcp->rxbuf = msg->buf;
} else {
mcp->txbuf[1] = smbus_len;
mcp->txbuf[2] = 0;
mcp->txbuf[3] = (u8)(smbus_addr << 1);
total_len = smbus_len;
mcp->rxbuf = smbus_buf;
}
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 4);
if (ret)
return ret;
mcp->rxbuf_idx = 0;
do {
memset(mcp->txbuf, 0, 4);
mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret)
return ret;
ret = mcp_chk_last_cmd_status(mcp);
if (ret)
return ret;
usleep_range(980, 1000);
} while (mcp->rxbuf_idx < total_len);
return ret;
}
static int mcp_i2c_xfer(struct i2c_adapter *adapter,
struct i2c_msg msgs[], int num)
{
int ret;
struct mcp2221 *mcp = i2c_get_adapdata(adapter);
hid_hw_power(mcp->hdev, PM_HINT_FULLON);
mutex_lock(&mcp->lock);
/* Setting speed before every transaction is required for mcp2221 */
ret = mcp_set_i2c_speed(mcp);
if (ret)
goto exit;
if (num == 1) {
if (msgs->flags & I2C_M_RD) {
ret = mcp_i2c_smbus_read(mcp, msgs, MCP2221_I2C_RD_DATA,
0, 0, NULL);
} else {
ret = mcp_i2c_write(mcp, msgs, MCP2221_I2C_WR_DATA, 1);
}
if (ret)
goto exit;
ret = num;
} else if (num == 2) {
/* Ex transaction; send reg address and read its contents */
if (msgs[0].addr == msgs[1].addr &&
!(msgs[0].flags & I2C_M_RD) &&
(msgs[1].flags & I2C_M_RD)) {
ret = mcp_i2c_write(mcp, &msgs[0],
MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, &msgs[1],
MCP2221_I2C_RD_RPT_START,
0, 0, NULL);
if (ret)
goto exit;
ret = num;
} else {
dev_err(&adapter->dev,
"unsupported multi-msg i2c transaction\n");
ret = -EOPNOTSUPP;
}
} else {
dev_err(&adapter->dev,
"unsupported multi-msg i2c transaction\n");
ret = -EOPNOTSUPP;
}
exit:
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
mutex_unlock(&mcp->lock);
return ret;
}
static int mcp_smbus_write(struct mcp2221 *mcp, u16 addr,
u8 command, u8 *buf, u8 len, int type,
u8 last_status)
{
int data_len, ret;
mcp->txbuf[0] = type;
mcp->txbuf[1] = len + 1; /* 1 is due to command byte itself */
mcp->txbuf[2] = 0;
mcp->txbuf[3] = (u8)(addr << 1);
mcp->txbuf[4] = command;
switch (len) {
case 0:
data_len = 5;
break;
case 1:
mcp->txbuf[5] = buf[0];
data_len = 6;
break;
case 2:
mcp->txbuf[5] = buf[0];
mcp->txbuf[6] = buf[1];
data_len = 7;
break;
default:
if (len > I2C_SMBUS_BLOCK_MAX)
return -EINVAL;
memcpy(&mcp->txbuf[5], buf, len);
data_len = len + 5;
}
ret = mcp_send_data_req_status(mcp, mcp->txbuf, data_len);
if (ret)
return ret;
if (last_status) {
usleep_range(980, 1000);
ret = mcp_chk_last_cmd_status(mcp);
if (ret)
return ret;
}
return ret;
}
static int mcp_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char read_write,
u8 command, int size,
union i2c_smbus_data *data)
{
int ret;
struct mcp2221 *mcp = i2c_get_adapdata(adapter);
hid_hw_power(mcp->hdev, PM_HINT_FULLON);
mutex_lock(&mcp->lock);
ret = mcp_set_i2c_speed(mcp);
if (ret)
goto exit;
switch (size) {
case I2C_SMBUS_QUICK:
if (read_write == I2C_SMBUS_READ)
ret = mcp_i2c_smbus_read(mcp, NULL, MCP2221_I2C_RD_DATA,
addr, 0, &data->byte);
else
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_DATA, 1);
break;
case I2C_SMBUS_BYTE:
if (read_write == I2C_SMBUS_READ)
ret = mcp_i2c_smbus_read(mcp, NULL, MCP2221_I2C_RD_DATA,
addr, 1, &data->byte);
else
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_DATA, 1);
break;
case I2C_SMBUS_BYTE_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, 1, &data->byte);
} else {
ret = mcp_smbus_write(mcp, addr, command, &data->byte,
1, MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_WORD_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, 2, (u8 *)&data->word);
} else {
ret = mcp_smbus_write(mcp, addr, command,
(u8 *)&data->word, 2,
MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_BLOCK_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 1);
if (ret)
goto exit;
mcp->rxbuf_idx = 0;
mcp->rxbuf = data->block;
mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret)
goto exit;
} else {
if (!data->block[0]) {
ret = -EINVAL;
goto exit;
}
ret = mcp_smbus_write(mcp, addr, command, data->block,
data->block[0] + 1,
MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_I2C_BLOCK_DATA:
if (read_write == I2C_SMBUS_READ) {
ret = mcp_smbus_write(mcp, addr, command, NULL,
0, MCP2221_I2C_WR_NO_STOP, 1);
if (ret)
goto exit;
mcp->rxbuf_idx = 0;
mcp->rxbuf = data->block;
mcp->txbuf[0] = MCP2221_I2C_GET_DATA;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret)
goto exit;
} else {
if (!data->block[0]) {
ret = -EINVAL;
goto exit;
}
ret = mcp_smbus_write(mcp, addr, command,
&data->block[1], data->block[0],
MCP2221_I2C_WR_DATA, 1);
}
break;
case I2C_SMBUS_PROC_CALL:
ret = mcp_smbus_write(mcp, addr, command,
(u8 *)&data->word,
2, MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, 2, (u8 *)&data->word);
break;
case I2C_SMBUS_BLOCK_PROC_CALL:
ret = mcp_smbus_write(mcp, addr, command, data->block,
data->block[0] + 1,
MCP2221_I2C_WR_NO_STOP, 0);
if (ret)
goto exit;
ret = mcp_i2c_smbus_read(mcp, NULL,
MCP2221_I2C_RD_RPT_START,
addr, I2C_SMBUS_BLOCK_MAX,
data->block);
break;
default:
dev_err(&mcp->adapter.dev,
"unsupported smbus transaction size:%d\n", size);
ret = -EOPNOTSUPP;
}
exit:
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
mutex_unlock(&mcp->lock);
return ret;
}
static u32 mcp_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C |
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_PEC);
}
static const struct i2c_algorithm mcp_i2c_algo = {
.master_xfer = mcp_i2c_xfer,
.smbus_xfer = mcp_smbus_xfer,
.functionality = mcp_i2c_func,
};
#if IS_REACHABLE(CONFIG_GPIOLIB)
static int mcp_gpio_get(struct gpio_chip *gc,
unsigned int offset)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mcp->txbuf[0] = MCP2221_GPIO_GET;
mcp->gp_idx = offsetof(struct mcp_get_gpio, gpio[offset]);
mutex_lock(&mcp->lock);
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
mutex_unlock(&mcp->lock);
return ret;
}
static void mcp_gpio_set(struct gpio_chip *gc,
unsigned int offset, int value)
{
struct mcp2221 *mcp = gpiochip_get_data(gc);
memset(mcp->txbuf, 0, 18);
mcp->txbuf[0] = MCP2221_GPIO_SET;
mcp->gp_idx = offsetof(struct mcp_set_gpio, gpio[offset].value);
mcp->txbuf[mcp->gp_idx - 1] = 1;
mcp->txbuf[mcp->gp_idx] = !!value;
mutex_lock(&mcp->lock);
mcp_send_data_req_status(mcp, mcp->txbuf, 18);
mutex_unlock(&mcp->lock);
}
static int mcp_gpio_dir_set(struct mcp2221 *mcp,
unsigned int offset, u8 val)
{
memset(mcp->txbuf, 0, 18);
mcp->txbuf[0] = MCP2221_GPIO_SET;
mcp->gp_idx = offsetof(struct mcp_set_gpio, gpio[offset].direction);
mcp->txbuf[mcp->gp_idx - 1] = 1;
mcp->txbuf[mcp->gp_idx] = val;
return mcp_send_data_req_status(mcp, mcp->txbuf, 18);
}
static int mcp_gpio_direction_input(struct gpio_chip *gc,
unsigned int offset)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mutex_lock(&mcp->lock);
ret = mcp_gpio_dir_set(mcp, offset, MCP2221_DIR_IN);
mutex_unlock(&mcp->lock);
return ret;
}
static int mcp_gpio_direction_output(struct gpio_chip *gc,
unsigned int offset, int value)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mutex_lock(&mcp->lock);
ret = mcp_gpio_dir_set(mcp, offset, MCP2221_DIR_OUT);
mutex_unlock(&mcp->lock);
/* Can't configure as output, bailout early */
if (ret)
return ret;
mcp_gpio_set(gc, offset, value);
return 0;
}
static int mcp_gpio_get_direction(struct gpio_chip *gc,
unsigned int offset)
{
int ret;
struct mcp2221 *mcp = gpiochip_get_data(gc);
mcp->txbuf[0] = MCP2221_GPIO_GET;
mcp->gp_idx = offsetof(struct mcp_get_gpio, gpio[offset]);
mutex_lock(&mcp->lock);
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
mutex_unlock(&mcp->lock);
if (ret)
return ret;
if (mcp->gpio_dir == MCP2221_DIR_IN)
return GPIO_LINE_DIRECTION_IN;
return GPIO_LINE_DIRECTION_OUT;
}
#endif
/* Gives current state of i2c engine inside mcp2221 */
static int mcp_get_i2c_eng_state(struct mcp2221 *mcp,
u8 *data, u8 idx)
{
int ret;
switch (data[idx]) {
case MCP2221_I2C_WRADDRL_NACK:
case MCP2221_I2C_WRADDRL_SEND:
ret = -ENXIO;
break;
case MCP2221_I2C_START_TOUT:
case MCP2221_I2C_STOP_TOUT:
case MCP2221_I2C_WRADDRL_TOUT:
case MCP2221_I2C_WRDATA_TOUT:
ret = -ETIMEDOUT;
break;
case MCP2221_I2C_ENG_BUSY:
ret = -EAGAIN;
break;
case MCP2221_SUCCESS:
ret = 0x00;
break;
default:
ret = -EIO;
}
return ret;
}
/*
* MCP2221 uses interrupt endpoint for input reports. This function
* is called by HID layer when it receives i/p report from mcp2221,
* which is actually a response to the previously sent command.
*
* MCP2221A firmware specific return codes are parsed and 0 or
* appropriate negative error code is returned. Delayed response
* results in timeout error and stray reponses results in -EIO.
*/
static int mcp2221_raw_event(struct hid_device *hdev,
struct hid_report *report, u8 *data, int size)
{
u8 *buf;
struct mcp2221 *mcp = hid_get_drvdata(hdev);
switch (data[0]) {
case MCP2221_I2C_WR_DATA:
case MCP2221_I2C_WR_NO_STOP:
case MCP2221_I2C_RD_DATA:
case MCP2221_I2C_RD_RPT_START:
switch (data[1]) {
case MCP2221_SUCCESS:
mcp->status = 0;
break;
default:
mcp->status = mcp_get_i2c_eng_state(mcp, data, 2);
}
complete(&mcp->wait_in_report);
break;
case MCP2221_I2C_PARAM_OR_STATUS:
switch (data[1]) {
case MCP2221_SUCCESS:
if ((mcp->txbuf[3] == MCP2221_I2C_SET_SPEED) &&
(data[3] != MCP2221_I2C_SET_SPEED)) {
mcp->status = -EAGAIN;
break;
}
if (data[20] & MCP2221_I2C_MASK_ADDR_NACK) {
mcp->status = -ENXIO;
break;
}
mcp->status = mcp_get_i2c_eng_state(mcp, data, 8);
#if IS_REACHABLE(CONFIG_IIO)
memcpy(&mcp->adc_values, &data[50], sizeof(mcp->adc_values));
#endif
break;
default:
mcp->status = -EIO;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_I2C_GET_DATA:
switch (data[1]) {
case MCP2221_SUCCESS:
if (data[2] == MCP2221_I2C_ADDR_NACK) {
mcp->status = -ENXIO;
break;
}
if (!mcp_get_i2c_eng_state(mcp, data, 2)
&& (data[3] == 0)) {
mcp->status = 0;
break;
}
if (data[3] == 127) {
mcp->status = -EIO;
break;
}
if (data[2] == MCP2221_I2C_READ_COMPL) {
buf = mcp->rxbuf;
memcpy(&buf[mcp->rxbuf_idx], &data[4], data[3]);
mcp->rxbuf_idx = mcp->rxbuf_idx + data[3];
mcp->status = 0;
break;
}
mcp->status = -EIO;
break;
default:
mcp->status = -EIO;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_GPIO_GET:
switch (data[1]) {
case MCP2221_SUCCESS:
if ((data[mcp->gp_idx] == MCP2221_ALT_F_NOT_GPIOV) ||
(data[mcp->gp_idx + 1] == MCP2221_ALT_F_NOT_GPIOD)) {
mcp->status = -ENOENT;
} else {
mcp->status = !!data[mcp->gp_idx];
mcp->gpio_dir = data[mcp->gp_idx + 1];
}
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_GPIO_SET:
switch (data[1]) {
case MCP2221_SUCCESS:
if ((data[mcp->gp_idx] == MCP2221_ALT_F_NOT_GPIOV) ||
(data[mcp->gp_idx - 1] == MCP2221_ALT_F_NOT_GPIOV)) {
mcp->status = -ENOENT;
} else {
mcp->status = 0;
}
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_SET_SRAM_SETTINGS:
switch (data[1]) {
case MCP2221_SUCCESS:
mcp->status = 0;
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_GET_SRAM_SETTINGS:
switch (data[1]) {
case MCP2221_SUCCESS:
memcpy(&mcp->mode, &data[22], 4);
#if IS_REACHABLE(CONFIG_IIO)
mcp->dac_value = data[6] & GENMASK(4, 0);
#endif
mcp->status = 0;
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
case MCP2221_READ_FLASH_DATA:
switch (data[1]) {
case MCP2221_SUCCESS:
mcp->status = 0;
/* Only handles CHIP SETTINGS subpage currently */
if (mcp->txbuf[1] != 0) {
mcp->status = -EIO;
break;
}
#if IS_REACHABLE(CONFIG_IIO)
{
u8 tmp;
/* DAC scale value */
tmp = FIELD_GET(GENMASK(7, 6), data[6]);
if ((data[6] & BIT(5)) && tmp)
mcp->dac_scale = tmp + 4;
else
mcp->dac_scale = 5;
/* ADC scale value */
tmp = FIELD_GET(GENMASK(4, 3), data[7]);
if ((data[7] & BIT(2)) && tmp)
mcp->adc_scale = tmp - 1;
else
mcp->adc_scale = 0;
}
#endif
break;
default:
mcp->status = -EAGAIN;
}
complete(&mcp->wait_in_report);
break;
default:
mcp->status = -EIO;
complete(&mcp->wait_in_report);
}
return 1;
}
/* Device resource managed function for HID unregistration */
static void mcp2221_hid_unregister(void *ptr)
{
struct hid_device *hdev = ptr;
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
/* This is needed to be sure hid_hw_stop() isn't called twice by the subsystem */
static void mcp2221_remove(struct hid_device *hdev)
{
struct mcp2221 *mcp = hid_get_drvdata(hdev);
cancel_delayed_work_sync(&mcp->init_work);
}
#if IS_REACHABLE(CONFIG_IIO)
static int mcp2221_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel, int *val,
int *val2, long mask)
{
struct mcp2221_iio *priv = iio_priv(indio_dev);
struct mcp2221 *mcp = priv->mcp;
int ret;
if (mask == IIO_CHAN_INFO_SCALE) {
if (channel->output)
*val = 1 << mcp->dac_scale;
else
*val = 1 << mcp->adc_scale;
return IIO_VAL_INT;
}
mutex_lock(&mcp->lock);
if (channel->output) {
*val = mcp->dac_value;
ret = IIO_VAL_INT;
} else {
/* Read ADC values */
ret = mcp_chk_last_cmd_status(mcp);
if (!ret) {
*val = le16_to_cpu((__force __le16) mcp->adc_values[channel->address]);
if (*val >= BIT(10))
ret = -EINVAL;
else
ret = IIO_VAL_INT;
}
}
mutex_unlock(&mcp->lock);
return ret;
}
static int mcp2221_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct mcp2221_iio *priv = iio_priv(indio_dev);
struct mcp2221 *mcp = priv->mcp;
int ret;
if (val < 0 || val >= BIT(5))
return -EINVAL;
mutex_lock(&mcp->lock);
memset(mcp->txbuf, 0, 12);
mcp->txbuf[0] = MCP2221_SET_SRAM_SETTINGS;
mcp->txbuf[4] = BIT(7) | val;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 12);
if (!ret)
mcp->dac_value = val;
mutex_unlock(&mcp->lock);
return ret;
}
static const struct iio_info mcp2221_info = {
.read_raw = &mcp2221_read_raw,
.write_raw = &mcp2221_write_raw,
};
static int mcp_iio_channels(struct mcp2221 *mcp)
{
int idx, cnt = 0;
bool dac_created = false;
/* GP0 doesn't have ADC/DAC alternative function */
for (idx = 1; idx < MCP_NGPIO; idx++) {
struct iio_chan_spec *chan = &mcp->iio_channels[cnt];
switch (mcp->mode[idx]) {
case 2:
chan->address = idx - 1;
chan->channel = cnt++;
break;
case 3:
/* GP1 doesn't have DAC alternative function */
if (idx == 1 || dac_created)
continue;
/* DAC1 and DAC2 outputs are connected to the same DAC */
dac_created = true;
chan->output = 1;
cnt++;
break;
default:
continue;
};
chan->type = IIO_VOLTAGE;
chan->indexed = 1;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_index = -1;
}
return cnt;
}
static void mcp_init_work(struct work_struct *work)
{
struct iio_dev *indio_dev;
struct mcp2221 *mcp = container_of(work, struct mcp2221, init_work.work);
struct mcp2221_iio *data;
static int retries = 5;
int ret, num_channels;
hid_hw_power(mcp->hdev, PM_HINT_FULLON);
mutex_lock(&mcp->lock);
mcp->txbuf[0] = MCP2221_GET_SRAM_SETTINGS;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 1);
if (ret == -EAGAIN)
goto reschedule_task;
num_channels = mcp_iio_channels(mcp);
if (!num_channels)
goto unlock;
mcp->txbuf[0] = MCP2221_READ_FLASH_DATA;
mcp->txbuf[1] = 0;
ret = mcp_send_data_req_status(mcp, mcp->txbuf, 2);
if (ret == -EAGAIN)
goto reschedule_task;
indio_dev = devm_iio_device_alloc(&mcp->hdev->dev, sizeof(*data));
if (!indio_dev)
goto unlock;
data = iio_priv(indio_dev);
data->mcp = mcp;
indio_dev->name = "mcp2221";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &mcp2221_info;
indio_dev->channels = mcp->iio_channels;
indio_dev->num_channels = num_channels;
devm_iio_device_register(&mcp->hdev->dev, indio_dev);
unlock:
mutex_unlock(&mcp->lock);
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
return;
reschedule_task:
mutex_unlock(&mcp->lock);
hid_hw_power(mcp->hdev, PM_HINT_NORMAL);
if (!retries--)
return;
/* Device is not ready to read SRAM or FLASH data, try again */
schedule_delayed_work(&mcp->init_work, msecs_to_jiffies(100));
}
#endif
static int mcp2221_probe(struct hid_device *hdev,
const struct hid_device_id *id)
{
int ret;
struct mcp2221 *mcp;
mcp = devm_kzalloc(&hdev->dev, sizeof(*mcp), GFP_KERNEL);
if (!mcp)
return -ENOMEM;
ret = hid_parse(hdev);
if (ret) {
hid_err(hdev, "can't parse reports\n");
return ret;
}
/*
* This driver uses the .raw_event callback and therefore does not need any
* HID_CONNECT_xxx flags.
*/
ret = hid_hw_start(hdev, 0);
if (ret) {
hid_err(hdev, "can't start hardware\n");
return ret;
}
hid_info(hdev, "USB HID v%x.%02x Device [%s] on %s\n", hdev->version >> 8,
hdev->version & 0xff, hdev->name, hdev->phys);
ret = hid_hw_open(hdev);
if (ret) {
hid_err(hdev, "can't open device\n");
hid_hw_stop(hdev);
return ret;
}
mutex_init(&mcp->lock);
init_completion(&mcp->wait_in_report);
hid_set_drvdata(hdev, mcp);
mcp->hdev = hdev;
ret = devm_add_action_or_reset(&hdev->dev, mcp2221_hid_unregister, hdev);
if (ret)
return ret;
hid_device_io_start(hdev);
/* Set I2C bus clock diviser */
if (i2c_clk_freq > 400)
i2c_clk_freq = 400;
if (i2c_clk_freq < 50)
i2c_clk_freq = 50;
mcp->cur_i2c_clk_div = (12000000 / (i2c_clk_freq * 1000)) - 3;
mcp->adapter.owner = THIS_MODULE;
mcp->adapter.class = I2C_CLASS_HWMON;
mcp->adapter.algo = &mcp_i2c_algo;
mcp->adapter.retries = 1;
mcp->adapter.dev.parent = &hdev->dev;
snprintf(mcp->adapter.name, sizeof(mcp->adapter.name),
"MCP2221 usb-i2c bridge");
i2c_set_adapdata(&mcp->adapter, mcp);
ret = devm_i2c_add_adapter(&hdev->dev, &mcp->adapter);
if (ret) {
hid_err(hdev, "can't add usb-i2c adapter: %d\n", ret);
return ret;
}
#if IS_REACHABLE(CONFIG_GPIOLIB)
/* Setup GPIO chip */
mcp->gc = devm_kzalloc(&hdev->dev, sizeof(*mcp->gc), GFP_KERNEL);
if (!mcp->gc)
return -ENOMEM;
mcp->gc->label = "mcp2221_gpio";
mcp->gc->direction_input = mcp_gpio_direction_input;
mcp->gc->direction_output = mcp_gpio_direction_output;
mcp->gc->get_direction = mcp_gpio_get_direction;
mcp->gc->set = mcp_gpio_set;
mcp->gc->get = mcp_gpio_get;
mcp->gc->ngpio = MCP_NGPIO;
mcp->gc->base = -1;
mcp->gc->can_sleep = 1;
mcp->gc->parent = &hdev->dev;
ret = devm_gpiochip_add_data(&hdev->dev, mcp->gc, mcp);
if (ret)
return ret;
#endif
#if IS_REACHABLE(CONFIG_IIO)
INIT_DELAYED_WORK(&mcp->init_work, mcp_init_work);
schedule_delayed_work(&mcp->init_work, msecs_to_jiffies(100));
#endif
return 0;
}
static const struct hid_device_id mcp2221_devices[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_MCP2221) },
{ }
};
MODULE_DEVICE_TABLE(hid, mcp2221_devices);
static struct hid_driver mcp2221_driver = {
.name = "mcp2221",
.id_table = mcp2221_devices,
.probe = mcp2221_probe,
.remove = mcp2221_remove,
.raw_event = mcp2221_raw_event,
};
/* Register with HID core */
module_hid_driver(mcp2221_driver);
MODULE_AUTHOR("Rishi Gupta <gupt21@gmail.com>");
MODULE_DESCRIPTION("MCP2221 Microchip HID USB to I2C master bridge");
MODULE_LICENSE("GPL v2");