linux-stable/drivers/soc/qcom/smem.c
Uwe Kleine-König 4b8dee9a34 soc: qcom: smem: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.
To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new() which already returns void. Eventually after all drivers
are converted, .remove_new() will be renamed to .remove().

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Konrad Dybcio <konrad.dybcio@linaro.org> # qcom
Link: https://lore.kernel.org/r/20230925095532.1984344-27-u.kleine-koenig@pengutronix.de
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
2023-10-02 11:30:28 -07:00

1228 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, Sony Mobile Communications AB.
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*/
#include <linux/hwspinlock.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/soc/qcom/smem.h>
#include <linux/soc/qcom/socinfo.h>
/*
* The Qualcomm shared memory system is a allocate only heap structure that
* consists of one of more memory areas that can be accessed by the processors
* in the SoC.
*
* All systems contains a global heap, accessible by all processors in the SoC,
* with a table of contents data structure (@smem_header) at the beginning of
* the main shared memory block.
*
* The global header contains meta data for allocations as well as a fixed list
* of 512 entries (@smem_global_entry) that can be initialized to reference
* parts of the shared memory space.
*
*
* In addition to this global heap a set of "private" heaps can be set up at
* boot time with access restrictions so that only certain processor pairs can
* access the data.
*
* These partitions are referenced from an optional partition table
* (@smem_ptable), that is found 4kB from the end of the main smem region. The
* partition table entries (@smem_ptable_entry) lists the involved processors
* (or hosts) and their location in the main shared memory region.
*
* Each partition starts with a header (@smem_partition_header) that identifies
* the partition and holds properties for the two internal memory regions. The
* two regions are cached and non-cached memory respectively. Each region
* contain a link list of allocation headers (@smem_private_entry) followed by
* their data.
*
* Items in the non-cached region are allocated from the start of the partition
* while items in the cached region are allocated from the end. The free area
* is hence the region between the cached and non-cached offsets. The header of
* cached items comes after the data.
*
* Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
* for the global heap. A new global partition is created from the global heap
* region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
* set by the bootloader.
*
* To synchronize allocations in the shared memory heaps a remote spinlock must
* be held - currently lock number 3 of the sfpb or tcsr is used for this on all
* platforms.
*
*/
/*
* The version member of the smem header contains an array of versions for the
* various software components in the SoC. We verify that the boot loader
* version is a valid version as a sanity check.
*/
#define SMEM_MASTER_SBL_VERSION_INDEX 7
#define SMEM_GLOBAL_HEAP_VERSION 11
#define SMEM_GLOBAL_PART_VERSION 12
/*
* The first 8 items are only to be allocated by the boot loader while
* initializing the heap.
*/
#define SMEM_ITEM_LAST_FIXED 8
/* Highest accepted item number, for both global and private heaps */
#define SMEM_ITEM_COUNT 512
/* Processor/host identifier for the application processor */
#define SMEM_HOST_APPS 0
/* Processor/host identifier for the global partition */
#define SMEM_GLOBAL_HOST 0xfffe
/* Max number of processors/hosts in a system */
#define SMEM_HOST_COUNT 20
/**
* struct smem_proc_comm - proc_comm communication struct (legacy)
* @command: current command to be executed
* @status: status of the currently requested command
* @params: parameters to the command
*/
struct smem_proc_comm {
__le32 command;
__le32 status;
__le32 params[2];
};
/**
* struct smem_global_entry - entry to reference smem items on the heap
* @allocated: boolean to indicate if this entry is used
* @offset: offset to the allocated space
* @size: size of the allocated space, 8 byte aligned
* @aux_base: base address for the memory region used by this unit, or 0 for
* the default region. bits 0,1 are reserved
*/
struct smem_global_entry {
__le32 allocated;
__le32 offset;
__le32 size;
__le32 aux_base; /* bits 1:0 reserved */
};
#define AUX_BASE_MASK 0xfffffffc
/**
* struct smem_header - header found in beginning of primary smem region
* @proc_comm: proc_comm communication interface (legacy)
* @version: array of versions for the various subsystems
* @initialized: boolean to indicate that smem is initialized
* @free_offset: index of the first unallocated byte in smem
* @available: number of bytes available for allocation
* @reserved: reserved field, must be 0
* @toc: array of references to items
*/
struct smem_header {
struct smem_proc_comm proc_comm[4];
__le32 version[32];
__le32 initialized;
__le32 free_offset;
__le32 available;
__le32 reserved;
struct smem_global_entry toc[SMEM_ITEM_COUNT];
};
/**
* struct smem_ptable_entry - one entry in the @smem_ptable list
* @offset: offset, within the main shared memory region, of the partition
* @size: size of the partition
* @flags: flags for the partition (currently unused)
* @host0: first processor/host with access to this partition
* @host1: second processor/host with access to this partition
* @cacheline: alignment for "cached" entries
* @reserved: reserved entries for later use
*/
struct smem_ptable_entry {
__le32 offset;
__le32 size;
__le32 flags;
__le16 host0;
__le16 host1;
__le32 cacheline;
__le32 reserved[7];
};
/**
* struct smem_ptable - partition table for the private partitions
* @magic: magic number, must be SMEM_PTABLE_MAGIC
* @version: version of the partition table
* @num_entries: number of partitions in the table
* @reserved: for now reserved entries
* @entry: list of @smem_ptable_entry for the @num_entries partitions
*/
struct smem_ptable {
u8 magic[4];
__le32 version;
__le32 num_entries;
__le32 reserved[5];
struct smem_ptable_entry entry[];
};
static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
/**
* struct smem_partition_header - header of the partitions
* @magic: magic number, must be SMEM_PART_MAGIC
* @host0: first processor/host with access to this partition
* @host1: second processor/host with access to this partition
* @size: size of the partition
* @offset_free_uncached: offset to the first free byte of uncached memory in
* this partition
* @offset_free_cached: offset to the first free byte of cached memory in this
* partition
* @reserved: for now reserved entries
*/
struct smem_partition_header {
u8 magic[4];
__le16 host0;
__le16 host1;
__le32 size;
__le32 offset_free_uncached;
__le32 offset_free_cached;
__le32 reserved[3];
};
/**
* struct smem_partition - describes smem partition
* @virt_base: starting virtual address of partition
* @phys_base: starting physical address of partition
* @cacheline: alignment for "cached" entries
* @size: size of partition
*/
struct smem_partition {
void __iomem *virt_base;
phys_addr_t phys_base;
size_t cacheline;
size_t size;
};
static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
/**
* struct smem_private_entry - header of each item in the private partition
* @canary: magic number, must be SMEM_PRIVATE_CANARY
* @item: identifying number of the smem item
* @size: size of the data, including padding bytes
* @padding_data: number of bytes of padding of data
* @padding_hdr: number of bytes of padding between the header and the data
* @reserved: for now reserved entry
*/
struct smem_private_entry {
u16 canary; /* bytes are the same so no swapping needed */
__le16 item;
__le32 size; /* includes padding bytes */
__le16 padding_data;
__le16 padding_hdr;
__le32 reserved;
};
#define SMEM_PRIVATE_CANARY 0xa5a5
/**
* struct smem_info - smem region info located after the table of contents
* @magic: magic number, must be SMEM_INFO_MAGIC
* @size: size of the smem region
* @base_addr: base address of the smem region
* @reserved: for now reserved entry
* @num_items: highest accepted item number
*/
struct smem_info {
u8 magic[4];
__le32 size;
__le32 base_addr;
__le32 reserved;
__le16 num_items;
};
static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
/**
* struct smem_region - representation of a chunk of memory used for smem
* @aux_base: identifier of aux_mem base
* @virt_base: virtual base address of memory with this aux_mem identifier
* @size: size of the memory region
*/
struct smem_region {
phys_addr_t aux_base;
void __iomem *virt_base;
size_t size;
};
/**
* struct qcom_smem - device data for the smem device
* @dev: device pointer
* @hwlock: reference to a hwspinlock
* @ptable: virtual base of partition table
* @global_partition: describes for global partition when in use
* @partitions: list of partitions of current processor/host
* @item_count: max accepted item number
* @socinfo: platform device pointer
* @num_regions: number of @regions
* @regions: list of the memory regions defining the shared memory
*/
struct qcom_smem {
struct device *dev;
struct hwspinlock *hwlock;
u32 item_count;
struct platform_device *socinfo;
struct smem_ptable *ptable;
struct smem_partition global_partition;
struct smem_partition partitions[SMEM_HOST_COUNT];
unsigned num_regions;
struct smem_region regions[] __counted_by(num_regions);
};
static void *
phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
{
void *p = phdr;
return p + le32_to_cpu(phdr->offset_free_uncached);
}
static struct smem_private_entry *
phdr_to_first_cached_entry(struct smem_partition_header *phdr,
size_t cacheline)
{
void *p = phdr;
struct smem_private_entry *e;
return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
}
static void *
phdr_to_last_cached_entry(struct smem_partition_header *phdr)
{
void *p = phdr;
return p + le32_to_cpu(phdr->offset_free_cached);
}
static struct smem_private_entry *
phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
{
void *p = phdr;
return p + sizeof(*phdr);
}
static struct smem_private_entry *
uncached_entry_next(struct smem_private_entry *e)
{
void *p = e;
return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
le32_to_cpu(e->size);
}
static struct smem_private_entry *
cached_entry_next(struct smem_private_entry *e, size_t cacheline)
{
void *p = e;
return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
}
static void *uncached_entry_to_item(struct smem_private_entry *e)
{
void *p = e;
return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
}
static void *cached_entry_to_item(struct smem_private_entry *e)
{
void *p = e;
return p - le32_to_cpu(e->size);
}
/* Pointer to the one and only smem handle */
static struct qcom_smem *__smem;
/* Timeout (ms) for the trylock of remote spinlocks */
#define HWSPINLOCK_TIMEOUT 1000
/**
* qcom_smem_is_available() - Check if SMEM is available
*
* Return: true if SMEM is available, false otherwise.
*/
bool qcom_smem_is_available(void)
{
return !!__smem;
}
EXPORT_SYMBOL_GPL(qcom_smem_is_available);
static int qcom_smem_alloc_private(struct qcom_smem *smem,
struct smem_partition *part,
unsigned item,
size_t size)
{
struct smem_private_entry *hdr, *end;
struct smem_partition_header *phdr;
size_t alloc_size;
void *cached;
void *p_end;
phdr = (struct smem_partition_header __force *)part->virt_base;
p_end = (void *)phdr + part->size;
hdr = phdr_to_first_uncached_entry(phdr);
end = phdr_to_last_uncached_entry(phdr);
cached = phdr_to_last_cached_entry(phdr);
if (WARN_ON((void *)end > p_end || cached > p_end))
return -EINVAL;
while (hdr < end) {
if (hdr->canary != SMEM_PRIVATE_CANARY)
goto bad_canary;
if (le16_to_cpu(hdr->item) == item)
return -EEXIST;
hdr = uncached_entry_next(hdr);
}
if (WARN_ON((void *)hdr > p_end))
return -EINVAL;
/* Check that we don't grow into the cached region */
alloc_size = sizeof(*hdr) + ALIGN(size, 8);
if ((void *)hdr + alloc_size > cached) {
dev_err(smem->dev, "Out of memory\n");
return -ENOSPC;
}
hdr->canary = SMEM_PRIVATE_CANARY;
hdr->item = cpu_to_le16(item);
hdr->size = cpu_to_le32(ALIGN(size, 8));
hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
hdr->padding_hdr = 0;
/*
* Ensure the header is written before we advance the free offset, so
* that remote processors that does not take the remote spinlock still
* gets a consistent view of the linked list.
*/
wmb();
le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
return 0;
bad_canary:
dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
return -EINVAL;
}
static int qcom_smem_alloc_global(struct qcom_smem *smem,
unsigned item,
size_t size)
{
struct smem_global_entry *entry;
struct smem_header *header;
header = smem->regions[0].virt_base;
entry = &header->toc[item];
if (entry->allocated)
return -EEXIST;
size = ALIGN(size, 8);
if (WARN_ON(size > le32_to_cpu(header->available)))
return -ENOMEM;
entry->offset = header->free_offset;
entry->size = cpu_to_le32(size);
/*
* Ensure the header is consistent before we mark the item allocated,
* so that remote processors will get a consistent view of the item
* even though they do not take the spinlock on read.
*/
wmb();
entry->allocated = cpu_to_le32(1);
le32_add_cpu(&header->free_offset, size);
le32_add_cpu(&header->available, -size);
return 0;
}
/**
* qcom_smem_alloc() - allocate space for a smem item
* @host: remote processor id, or -1
* @item: smem item handle
* @size: number of bytes to be allocated
*
* Allocate space for a given smem item of size @size, given that the item is
* not yet allocated.
*/
int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
{
struct smem_partition *part;
unsigned long flags;
int ret;
if (!__smem)
return -EPROBE_DEFER;
if (item < SMEM_ITEM_LAST_FIXED) {
dev_err(__smem->dev,
"Rejecting allocation of static entry %d\n", item);
return -EINVAL;
}
if (WARN_ON(item >= __smem->item_count))
return -EINVAL;
ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
HWSPINLOCK_TIMEOUT,
&flags);
if (ret)
return ret;
if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
part = &__smem->partitions[host];
ret = qcom_smem_alloc_private(__smem, part, item, size);
} else if (__smem->global_partition.virt_base) {
part = &__smem->global_partition;
ret = qcom_smem_alloc_private(__smem, part, item, size);
} else {
ret = qcom_smem_alloc_global(__smem, item, size);
}
hwspin_unlock_irqrestore(__smem->hwlock, &flags);
return ret;
}
EXPORT_SYMBOL_GPL(qcom_smem_alloc);
static void *qcom_smem_get_global(struct qcom_smem *smem,
unsigned item,
size_t *size)
{
struct smem_header *header;
struct smem_region *region;
struct smem_global_entry *entry;
u64 entry_offset;
u32 e_size;
u32 aux_base;
unsigned i;
header = smem->regions[0].virt_base;
entry = &header->toc[item];
if (!entry->allocated)
return ERR_PTR(-ENXIO);
aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
for (i = 0; i < smem->num_regions; i++) {
region = &smem->regions[i];
if ((u32)region->aux_base == aux_base || !aux_base) {
e_size = le32_to_cpu(entry->size);
entry_offset = le32_to_cpu(entry->offset);
if (WARN_ON(e_size + entry_offset > region->size))
return ERR_PTR(-EINVAL);
if (size != NULL)
*size = e_size;
return region->virt_base + entry_offset;
}
}
return ERR_PTR(-ENOENT);
}
static void *qcom_smem_get_private(struct qcom_smem *smem,
struct smem_partition *part,
unsigned item,
size_t *size)
{
struct smem_private_entry *e, *end;
struct smem_partition_header *phdr;
void *item_ptr, *p_end;
u32 padding_data;
u32 e_size;
phdr = (struct smem_partition_header __force *)part->virt_base;
p_end = (void *)phdr + part->size;
e = phdr_to_first_uncached_entry(phdr);
end = phdr_to_last_uncached_entry(phdr);
while (e < end) {
if (e->canary != SMEM_PRIVATE_CANARY)
goto invalid_canary;
if (le16_to_cpu(e->item) == item) {
if (size != NULL) {
e_size = le32_to_cpu(e->size);
padding_data = le16_to_cpu(e->padding_data);
if (WARN_ON(e_size > part->size || padding_data > e_size))
return ERR_PTR(-EINVAL);
*size = e_size - padding_data;
}
item_ptr = uncached_entry_to_item(e);
if (WARN_ON(item_ptr > p_end))
return ERR_PTR(-EINVAL);
return item_ptr;
}
e = uncached_entry_next(e);
}
if (WARN_ON((void *)e > p_end))
return ERR_PTR(-EINVAL);
/* Item was not found in the uncached list, search the cached list */
e = phdr_to_first_cached_entry(phdr, part->cacheline);
end = phdr_to_last_cached_entry(phdr);
if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end))
return ERR_PTR(-EINVAL);
while (e > end) {
if (e->canary != SMEM_PRIVATE_CANARY)
goto invalid_canary;
if (le16_to_cpu(e->item) == item) {
if (size != NULL) {
e_size = le32_to_cpu(e->size);
padding_data = le16_to_cpu(e->padding_data);
if (WARN_ON(e_size > part->size || padding_data > e_size))
return ERR_PTR(-EINVAL);
*size = e_size - padding_data;
}
item_ptr = cached_entry_to_item(e);
if (WARN_ON(item_ptr < (void *)phdr))
return ERR_PTR(-EINVAL);
return item_ptr;
}
e = cached_entry_next(e, part->cacheline);
}
if (WARN_ON((void *)e < (void *)phdr))
return ERR_PTR(-EINVAL);
return ERR_PTR(-ENOENT);
invalid_canary:
dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
return ERR_PTR(-EINVAL);
}
/**
* qcom_smem_get() - resolve ptr of size of a smem item
* @host: the remote processor, or -1
* @item: smem item handle
* @size: pointer to be filled out with size of the item
*
* Looks up smem item and returns pointer to it. Size of smem
* item is returned in @size.
*/
void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
{
struct smem_partition *part;
unsigned long flags;
int ret;
void *ptr = ERR_PTR(-EPROBE_DEFER);
if (!__smem)
return ptr;
if (WARN_ON(item >= __smem->item_count))
return ERR_PTR(-EINVAL);
ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
HWSPINLOCK_TIMEOUT,
&flags);
if (ret)
return ERR_PTR(ret);
if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
part = &__smem->partitions[host];
ptr = qcom_smem_get_private(__smem, part, item, size);
} else if (__smem->global_partition.virt_base) {
part = &__smem->global_partition;
ptr = qcom_smem_get_private(__smem, part, item, size);
} else {
ptr = qcom_smem_get_global(__smem, item, size);
}
hwspin_unlock_irqrestore(__smem->hwlock, &flags);
return ptr;
}
EXPORT_SYMBOL_GPL(qcom_smem_get);
/**
* qcom_smem_get_free_space() - retrieve amount of free space in a partition
* @host: the remote processor identifying a partition, or -1
*
* To be used by smem clients as a quick way to determine if any new
* allocations has been made.
*/
int qcom_smem_get_free_space(unsigned host)
{
struct smem_partition *part;
struct smem_partition_header *phdr;
struct smem_header *header;
unsigned ret;
if (!__smem)
return -EPROBE_DEFER;
if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) {
part = &__smem->partitions[host];
phdr = part->virt_base;
ret = le32_to_cpu(phdr->offset_free_cached) -
le32_to_cpu(phdr->offset_free_uncached);
if (ret > le32_to_cpu(part->size))
return -EINVAL;
} else if (__smem->global_partition.virt_base) {
part = &__smem->global_partition;
phdr = part->virt_base;
ret = le32_to_cpu(phdr->offset_free_cached) -
le32_to_cpu(phdr->offset_free_uncached);
if (ret > le32_to_cpu(part->size))
return -EINVAL;
} else {
header = __smem->regions[0].virt_base;
ret = le32_to_cpu(header->available);
if (ret > __smem->regions[0].size)
return -EINVAL;
}
return ret;
}
EXPORT_SYMBOL_GPL(qcom_smem_get_free_space);
static bool addr_in_range(void __iomem *base, size_t size, void *addr)
{
return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size);
}
/**
* qcom_smem_virt_to_phys() - return the physical address associated
* with an smem item pointer (previously returned by qcom_smem_get()
* @p: the virtual address to convert
*
* Returns 0 if the pointer provided is not within any smem region.
*/
phys_addr_t qcom_smem_virt_to_phys(void *p)
{
struct smem_partition *part;
struct smem_region *area;
u64 offset;
u32 i;
for (i = 0; i < SMEM_HOST_COUNT; i++) {
part = &__smem->partitions[i];
if (addr_in_range(part->virt_base, part->size, p)) {
offset = p - part->virt_base;
return (phys_addr_t)part->phys_base + offset;
}
}
part = &__smem->global_partition;
if (addr_in_range(part->virt_base, part->size, p)) {
offset = p - part->virt_base;
return (phys_addr_t)part->phys_base + offset;
}
for (i = 0; i < __smem->num_regions; i++) {
area = &__smem->regions[i];
if (addr_in_range(area->virt_base, area->size, p)) {
offset = p - area->virt_base;
return (phys_addr_t)area->aux_base + offset;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(qcom_smem_virt_to_phys);
/**
* qcom_smem_get_soc_id() - return the SoC ID
* @id: On success, we return the SoC ID here.
*
* Look up SoC ID from HW/SW build ID and return it.
*
* Return: 0 on success, negative errno on failure.
*/
int qcom_smem_get_soc_id(u32 *id)
{
struct socinfo *info;
info = qcom_smem_get(QCOM_SMEM_HOST_ANY, SMEM_HW_SW_BUILD_ID, NULL);
if (IS_ERR(info))
return PTR_ERR(info);
*id = __le32_to_cpu(info->id);
return 0;
}
EXPORT_SYMBOL_GPL(qcom_smem_get_soc_id);
static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
{
struct smem_header *header;
__le32 *versions;
header = smem->regions[0].virt_base;
versions = header->version;
return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
}
static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
{
struct smem_ptable *ptable;
u32 version;
ptable = smem->ptable;
if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
return ERR_PTR(-ENOENT);
version = le32_to_cpu(ptable->version);
if (version != 1) {
dev_err(smem->dev,
"Unsupported partition header version %d\n", version);
return ERR_PTR(-EINVAL);
}
return ptable;
}
static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
{
struct smem_ptable *ptable;
struct smem_info *info;
ptable = qcom_smem_get_ptable(smem);
if (IS_ERR_OR_NULL(ptable))
return SMEM_ITEM_COUNT;
info = (struct smem_info *)&ptable->entry[ptable->num_entries];
if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
return SMEM_ITEM_COUNT;
return le16_to_cpu(info->num_items);
}
/*
* Validate the partition header for a partition whose partition
* table entry is supplied. Returns a pointer to its header if
* valid, or a null pointer otherwise.
*/
static struct smem_partition_header *
qcom_smem_partition_header(struct qcom_smem *smem,
struct smem_ptable_entry *entry, u16 host0, u16 host1)
{
struct smem_partition_header *header;
u32 phys_addr;
u32 size;
phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset);
header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size));
if (!header)
return NULL;
if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
dev_err(smem->dev, "bad partition magic %4ph\n", header->magic);
return NULL;
}
if (host0 != le16_to_cpu(header->host0)) {
dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
host0, le16_to_cpu(header->host0));
return NULL;
}
if (host1 != le16_to_cpu(header->host1)) {
dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
host1, le16_to_cpu(header->host1));
return NULL;
}
size = le32_to_cpu(header->size);
if (size != le32_to_cpu(entry->size)) {
dev_err(smem->dev, "bad partition size (%u != %u)\n",
size, le32_to_cpu(entry->size));
return NULL;
}
if (le32_to_cpu(header->offset_free_uncached) > size) {
dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
le32_to_cpu(header->offset_free_uncached), size);
return NULL;
}
return header;
}
static int qcom_smem_set_global_partition(struct qcom_smem *smem)
{
struct smem_partition_header *header;
struct smem_ptable_entry *entry;
struct smem_ptable *ptable;
bool found = false;
int i;
if (smem->global_partition.virt_base) {
dev_err(smem->dev, "Already found the global partition\n");
return -EINVAL;
}
ptable = qcom_smem_get_ptable(smem);
if (IS_ERR(ptable))
return PTR_ERR(ptable);
for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
entry = &ptable->entry[i];
if (!le32_to_cpu(entry->offset))
continue;
if (!le32_to_cpu(entry->size))
continue;
if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
continue;
if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
found = true;
break;
}
}
if (!found) {
dev_err(smem->dev, "Missing entry for global partition\n");
return -EINVAL;
}
header = qcom_smem_partition_header(smem, entry,
SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
if (!header)
return -EINVAL;
smem->global_partition.virt_base = (void __iomem *)header;
smem->global_partition.phys_base = smem->regions[0].aux_base +
le32_to_cpu(entry->offset);
smem->global_partition.size = le32_to_cpu(entry->size);
smem->global_partition.cacheline = le32_to_cpu(entry->cacheline);
return 0;
}
static int
qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
{
struct smem_partition_header *header;
struct smem_ptable_entry *entry;
struct smem_ptable *ptable;
u16 remote_host;
u16 host0, host1;
int i;
ptable = qcom_smem_get_ptable(smem);
if (IS_ERR(ptable))
return PTR_ERR(ptable);
for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
entry = &ptable->entry[i];
if (!le32_to_cpu(entry->offset))
continue;
if (!le32_to_cpu(entry->size))
continue;
host0 = le16_to_cpu(entry->host0);
host1 = le16_to_cpu(entry->host1);
if (host0 == local_host)
remote_host = host1;
else if (host1 == local_host)
remote_host = host0;
else
continue;
if (remote_host >= SMEM_HOST_COUNT) {
dev_err(smem->dev, "bad host %u\n", remote_host);
return -EINVAL;
}
if (smem->partitions[remote_host].virt_base) {
dev_err(smem->dev, "duplicate host %u\n", remote_host);
return -EINVAL;
}
header = qcom_smem_partition_header(smem, entry, host0, host1);
if (!header)
return -EINVAL;
smem->partitions[remote_host].virt_base = (void __iomem *)header;
smem->partitions[remote_host].phys_base = smem->regions[0].aux_base +
le32_to_cpu(entry->offset);
smem->partitions[remote_host].size = le32_to_cpu(entry->size);
smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline);
}
return 0;
}
static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region)
{
u32 ptable_start;
/* map starting 4K for smem header */
region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K);
ptable_start = region->aux_base + region->size - SZ_4K;
/* map last 4k for toc */
smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K);
if (!region->virt_base || !smem->ptable)
return -ENOMEM;
return 0;
}
static int qcom_smem_map_global(struct qcom_smem *smem, u32 size)
{
u32 phys_addr;
phys_addr = smem->regions[0].aux_base;
smem->regions[0].size = size;
smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size);
if (!smem->regions[0].virt_base)
return -ENOMEM;
return 0;
}
static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name,
struct smem_region *region)
{
struct device *dev = smem->dev;
struct device_node *np;
struct resource r;
int ret;
np = of_parse_phandle(dev->of_node, name, 0);
if (!np) {
dev_err(dev, "No %s specified\n", name);
return -EINVAL;
}
ret = of_address_to_resource(np, 0, &r);
of_node_put(np);
if (ret)
return ret;
region->aux_base = r.start;
region->size = resource_size(&r);
return 0;
}
static int qcom_smem_probe(struct platform_device *pdev)
{
struct smem_header *header;
struct reserved_mem *rmem;
struct qcom_smem *smem;
unsigned long flags;
int num_regions;
int hwlock_id;
u32 version;
u32 size;
int ret;
int i;
num_regions = 1;
if (of_property_present(pdev->dev.of_node, "qcom,rpm-msg-ram"))
num_regions++;
smem = devm_kzalloc(&pdev->dev, struct_size(smem, regions, num_regions),
GFP_KERNEL);
if (!smem)
return -ENOMEM;
smem->dev = &pdev->dev;
smem->num_regions = num_regions;
rmem = of_reserved_mem_lookup(pdev->dev.of_node);
if (rmem) {
smem->regions[0].aux_base = rmem->base;
smem->regions[0].size = rmem->size;
} else {
/*
* Fall back to the memory-region reference, if we're not a
* reserved-memory node.
*/
ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]);
if (ret)
return ret;
}
if (num_regions > 1) {
ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]);
if (ret)
return ret;
}
ret = qcom_smem_map_toc(smem, &smem->regions[0]);
if (ret)
return ret;
for (i = 1; i < num_regions; i++) {
smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev,
smem->regions[i].aux_base,
smem->regions[i].size);
if (!smem->regions[i].virt_base) {
dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base);
return -ENOMEM;
}
}
header = smem->regions[0].virt_base;
if (le32_to_cpu(header->initialized) != 1 ||
le32_to_cpu(header->reserved)) {
dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
return -EINVAL;
}
hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
if (hwlock_id < 0) {
if (hwlock_id != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to retrieve hwlock\n");
return hwlock_id;
}
smem->hwlock = hwspin_lock_request_specific(hwlock_id);
if (!smem->hwlock)
return -ENXIO;
ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags);
if (ret)
return ret;
size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset);
hwspin_unlock_irqrestore(smem->hwlock, &flags);
version = qcom_smem_get_sbl_version(smem);
/*
* smem header mapping is required only in heap version scheme, so unmap
* it here. It will be remapped in qcom_smem_map_global() when whole
* partition is mapped again.
*/
devm_iounmap(smem->dev, smem->regions[0].virt_base);
switch (version >> 16) {
case SMEM_GLOBAL_PART_VERSION:
ret = qcom_smem_set_global_partition(smem);
if (ret < 0)
return ret;
smem->item_count = qcom_smem_get_item_count(smem);
break;
case SMEM_GLOBAL_HEAP_VERSION:
qcom_smem_map_global(smem, size);
smem->item_count = SMEM_ITEM_COUNT;
break;
default:
dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
return -EINVAL;
}
BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
if (ret < 0 && ret != -ENOENT)
return ret;
__smem = smem;
smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
PLATFORM_DEVID_NONE, NULL,
0);
if (IS_ERR(smem->socinfo))
dev_dbg(&pdev->dev, "failed to register socinfo device\n");
return 0;
}
static void qcom_smem_remove(struct platform_device *pdev)
{
platform_device_unregister(__smem->socinfo);
hwspin_lock_free(__smem->hwlock);
__smem = NULL;
}
static const struct of_device_id qcom_smem_of_match[] = {
{ .compatible = "qcom,smem" },
{}
};
MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
static struct platform_driver qcom_smem_driver = {
.probe = qcom_smem_probe,
.remove_new = qcom_smem_remove,
.driver = {
.name = "qcom-smem",
.of_match_table = qcom_smem_of_match,
.suppress_bind_attrs = true,
},
};
static int __init qcom_smem_init(void)
{
return platform_driver_register(&qcom_smem_driver);
}
arch_initcall(qcom_smem_init);
static void __exit qcom_smem_exit(void)
{
platform_driver_unregister(&qcom_smem_driver);
}
module_exit(qcom_smem_exit)
MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
MODULE_LICENSE("GPL v2");