linux-stable/drivers/gpu/drm/drm_rect.c
Ville Syrjälä 2020af2dbf drm/rect: Keep the clipped dst rectangle in place
Now that we've constrained the clipped source rectangle such
that it can't have negative dimensions doing the same for the
dst rectangle seems appropriate. Should at least result in
the clipped src and dst rectangles being a bit more consistent
with each other.

Cc: Benjamin Gaignard <benjamin.gaignard@st.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191122175623.13565-4-ville.syrjala@linux.intel.com
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Benjamin Gaignard <benjamin.gaignard@st.com>
2019-11-28 13:33:38 +02:00

373 lines
9.4 KiB
C

/*
* Copyright (C) 2011-2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <drm/drm_mode.h>
#include <drm/drm_print.h>
#include <drm/drm_rect.h>
/**
* drm_rect_intersect - intersect two rectangles
* @r1: first rectangle
* @r2: second rectangle
*
* Calculate the intersection of rectangles @r1 and @r2.
* @r1 will be overwritten with the intersection.
*
* RETURNS:
* %true if rectangle @r1 is still visible after the operation,
* %false otherwise.
*/
bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
{
r1->x1 = max(r1->x1, r2->x1);
r1->y1 = max(r1->y1, r2->y1);
r1->x2 = min(r1->x2, r2->x2);
r1->y2 = min(r1->y2, r2->y2);
return drm_rect_visible(r1);
}
EXPORT_SYMBOL(drm_rect_intersect);
static u32 clip_scaled(int src, int dst, int *clip)
{
u64 tmp;
if (dst == 0)
return 0;
/* Only clip what we have. Keeps the result bounded. */
*clip = min(*clip, dst);
tmp = mul_u32_u32(src, dst - *clip);
/*
* Round toward 1.0 when clipping so that we don't accidentally
* change upscaling to downscaling or vice versa.
*/
if (src < (dst << 16))
return DIV_ROUND_UP_ULL(tmp, dst);
else
return DIV_ROUND_DOWN_ULL(tmp, dst);
}
/**
* drm_rect_clip_scaled - perform a scaled clip operation
* @src: source window rectangle
* @dst: destination window rectangle
* @clip: clip rectangle
*
* Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
* same amounts multiplied by @hscale and @vscale.
*
* RETURNS:
* %true if rectangle @dst is still visible after being clipped,
* %false otherwise
*/
bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
const struct drm_rect *clip)
{
int diff;
diff = clip->x1 - dst->x1;
if (diff > 0) {
u32 new_src_w = clip_scaled(drm_rect_width(src),
drm_rect_width(dst), &diff);
src->x1 = src->x2 - new_src_w;
dst->x1 += diff;
}
diff = clip->y1 - dst->y1;
if (diff > 0) {
u32 new_src_h = clip_scaled(drm_rect_height(src),
drm_rect_height(dst), &diff);
src->y1 = src->y2 - new_src_h;
dst->y1 += diff;
}
diff = dst->x2 - clip->x2;
if (diff > 0) {
u32 new_src_w = clip_scaled(drm_rect_width(src),
drm_rect_width(dst), &diff);
src->x2 = src->x1 + new_src_w;
dst->x2 -= diff;
}
diff = dst->y2 - clip->y2;
if (diff > 0) {
u32 new_src_h = clip_scaled(drm_rect_height(src),
drm_rect_height(dst), &diff);
src->y2 = src->y1 + new_src_h;
dst->y2 -= diff;
}
return drm_rect_visible(dst);
}
EXPORT_SYMBOL(drm_rect_clip_scaled);
static int drm_calc_scale(int src, int dst)
{
int scale = 0;
if (WARN_ON(src < 0 || dst < 0))
return -EINVAL;
if (dst == 0)
return 0;
if (src > (dst << 16))
return DIV_ROUND_UP(src, dst);
else
scale = src / dst;
return scale;
}
/**
* drm_rect_calc_hscale - calculate the horizontal scaling factor
* @src: source window rectangle
* @dst: destination window rectangle
* @min_hscale: minimum allowed horizontal scaling factor
* @max_hscale: maximum allowed horizontal scaling factor
*
* Calculate the horizontal scaling factor as
* (@src width) / (@dst width).
*
* If the scale is below 1 << 16, round down. If the scale is above
* 1 << 16, round up. This will calculate the scale with the most
* pessimistic limit calculation.
*
* RETURNS:
* The horizontal scaling factor, or errno of out of limits.
*/
int drm_rect_calc_hscale(const struct drm_rect *src,
const struct drm_rect *dst,
int min_hscale, int max_hscale)
{
int src_w = drm_rect_width(src);
int dst_w = drm_rect_width(dst);
int hscale = drm_calc_scale(src_w, dst_w);
if (hscale < 0 || dst_w == 0)
return hscale;
if (hscale < min_hscale || hscale > max_hscale)
return -ERANGE;
return hscale;
}
EXPORT_SYMBOL(drm_rect_calc_hscale);
/**
* drm_rect_calc_vscale - calculate the vertical scaling factor
* @src: source window rectangle
* @dst: destination window rectangle
* @min_vscale: minimum allowed vertical scaling factor
* @max_vscale: maximum allowed vertical scaling factor
*
* Calculate the vertical scaling factor as
* (@src height) / (@dst height).
*
* If the scale is below 1 << 16, round down. If the scale is above
* 1 << 16, round up. This will calculate the scale with the most
* pessimistic limit calculation.
*
* RETURNS:
* The vertical scaling factor, or errno of out of limits.
*/
int drm_rect_calc_vscale(const struct drm_rect *src,
const struct drm_rect *dst,
int min_vscale, int max_vscale)
{
int src_h = drm_rect_height(src);
int dst_h = drm_rect_height(dst);
int vscale = drm_calc_scale(src_h, dst_h);
if (vscale < 0 || dst_h == 0)
return vscale;
if (vscale < min_vscale || vscale > max_vscale)
return -ERANGE;
return vscale;
}
EXPORT_SYMBOL(drm_rect_calc_vscale);
/**
* drm_rect_debug_print - print the rectangle information
* @prefix: prefix string
* @r: rectangle to print
* @fixed_point: rectangle is in 16.16 fixed point format
*/
void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
{
if (fixed_point)
DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r));
else
DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r));
}
EXPORT_SYMBOL(drm_rect_debug_print);
/**
* drm_rect_rotate - Rotate the rectangle
* @r: rectangle to be rotated
* @width: Width of the coordinate space
* @height: Height of the coordinate space
* @rotation: Transformation to be applied
*
* Apply @rotation to the coordinates of rectangle @r.
*
* @width and @height combined with @rotation define
* the location of the new origin.
*
* @width correcsponds to the horizontal and @height
* to the vertical axis of the untransformed coordinate
* space.
*/
void drm_rect_rotate(struct drm_rect *r,
int width, int height,
unsigned int rotation)
{
struct drm_rect tmp;
if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
tmp = *r;
if (rotation & DRM_MODE_REFLECT_X) {
r->x1 = width - tmp.x2;
r->x2 = width - tmp.x1;
}
if (rotation & DRM_MODE_REFLECT_Y) {
r->y1 = height - tmp.y2;
r->y2 = height - tmp.y1;
}
}
switch (rotation & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
break;
case DRM_MODE_ROTATE_90:
tmp = *r;
r->x1 = tmp.y1;
r->x2 = tmp.y2;
r->y1 = width - tmp.x2;
r->y2 = width - tmp.x1;
break;
case DRM_MODE_ROTATE_180:
tmp = *r;
r->x1 = width - tmp.x2;
r->x2 = width - tmp.x1;
r->y1 = height - tmp.y2;
r->y2 = height - tmp.y1;
break;
case DRM_MODE_ROTATE_270:
tmp = *r;
r->x1 = height - tmp.y2;
r->x2 = height - tmp.y1;
r->y1 = tmp.x1;
r->y2 = tmp.x2;
break;
default:
break;
}
}
EXPORT_SYMBOL(drm_rect_rotate);
/**
* drm_rect_rotate_inv - Inverse rotate the rectangle
* @r: rectangle to be rotated
* @width: Width of the coordinate space
* @height: Height of the coordinate space
* @rotation: Transformation whose inverse is to be applied
*
* Apply the inverse of @rotation to the coordinates
* of rectangle @r.
*
* @width and @height combined with @rotation define
* the location of the new origin.
*
* @width correcsponds to the horizontal and @height
* to the vertical axis of the original untransformed
* coordinate space, so that you never have to flip
* them when doing a rotatation and its inverse.
* That is, if you do ::
*
* drm_rect_rotate(&r, width, height, rotation);
* drm_rect_rotate_inv(&r, width, height, rotation);
*
* you will always get back the original rectangle.
*/
void drm_rect_rotate_inv(struct drm_rect *r,
int width, int height,
unsigned int rotation)
{
struct drm_rect tmp;
switch (rotation & DRM_MODE_ROTATE_MASK) {
case DRM_MODE_ROTATE_0:
break;
case DRM_MODE_ROTATE_90:
tmp = *r;
r->x1 = width - tmp.y2;
r->x2 = width - tmp.y1;
r->y1 = tmp.x1;
r->y2 = tmp.x2;
break;
case DRM_MODE_ROTATE_180:
tmp = *r;
r->x1 = width - tmp.x2;
r->x2 = width - tmp.x1;
r->y1 = height - tmp.y2;
r->y2 = height - tmp.y1;
break;
case DRM_MODE_ROTATE_270:
tmp = *r;
r->x1 = tmp.y1;
r->x2 = tmp.y2;
r->y1 = height - tmp.x2;
r->y2 = height - tmp.x1;
break;
default:
break;
}
if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
tmp = *r;
if (rotation & DRM_MODE_REFLECT_X) {
r->x1 = width - tmp.x2;
r->x2 = width - tmp.x1;
}
if (rotation & DRM_MODE_REFLECT_Y) {
r->y1 = height - tmp.y2;
r->y2 = height - tmp.y1;
}
}
}
EXPORT_SYMBOL(drm_rect_rotate_inv);