mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
04bf7539c0
Increase TEST_SUSPEND_SECONDS to 10 so the warning in suspend_test_finish() doesn't annoy the users of slower systems so much. Also, make the warning print the suspend-resume cycle time, so that we know why the warning actually triggered. Patch prepared during the hacking session at the Kernel Summit in Tokyo. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
188 lines
5 KiB
C
188 lines
5 KiB
C
/*
|
|
* kernel/power/suspend_test.c - Suspend to RAM and standby test facility.
|
|
*
|
|
* Copyright (c) 2009 Pavel Machek <pavel@ucw.cz>
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/rtc.h>
|
|
|
|
#include "power.h"
|
|
|
|
/*
|
|
* We test the system suspend code by setting an RTC wakealarm a short
|
|
* time in the future, then suspending. Suspending the devices won't
|
|
* normally take long ... some systems only need a few milliseconds.
|
|
*
|
|
* The time it takes is system-specific though, so when we test this
|
|
* during system bootup we allow a LOT of time.
|
|
*/
|
|
#define TEST_SUSPEND_SECONDS 10
|
|
|
|
static unsigned long suspend_test_start_time;
|
|
|
|
void suspend_test_start(void)
|
|
{
|
|
/* FIXME Use better timebase than "jiffies", ideally a clocksource.
|
|
* What we want is a hardware counter that will work correctly even
|
|
* during the irqs-are-off stages of the suspend/resume cycle...
|
|
*/
|
|
suspend_test_start_time = jiffies;
|
|
}
|
|
|
|
void suspend_test_finish(const char *label)
|
|
{
|
|
long nj = jiffies - suspend_test_start_time;
|
|
unsigned msec;
|
|
|
|
msec = jiffies_to_msecs(abs(nj));
|
|
pr_info("PM: %s took %d.%03d seconds\n", label,
|
|
msec / 1000, msec % 1000);
|
|
|
|
/* Warning on suspend means the RTC alarm period needs to be
|
|
* larger -- the system was sooo slooowwww to suspend that the
|
|
* alarm (should have) fired before the system went to sleep!
|
|
*
|
|
* Warning on either suspend or resume also means the system
|
|
* has some performance issues. The stack dump of a WARN_ON
|
|
* is more likely to get the right attention than a printk...
|
|
*/
|
|
WARN(msec > (TEST_SUSPEND_SECONDS * 1000),
|
|
"Component: %s, time: %u\n", label, msec);
|
|
}
|
|
|
|
/*
|
|
* To test system suspend, we need a hands-off mechanism to resume the
|
|
* system. RTCs wake alarms are a common self-contained mechanism.
|
|
*/
|
|
|
|
static void __init test_wakealarm(struct rtc_device *rtc, suspend_state_t state)
|
|
{
|
|
static char err_readtime[] __initdata =
|
|
KERN_ERR "PM: can't read %s time, err %d\n";
|
|
static char err_wakealarm [] __initdata =
|
|
KERN_ERR "PM: can't set %s wakealarm, err %d\n";
|
|
static char err_suspend[] __initdata =
|
|
KERN_ERR "PM: suspend test failed, error %d\n";
|
|
static char info_test[] __initdata =
|
|
KERN_INFO "PM: test RTC wakeup from '%s' suspend\n";
|
|
|
|
unsigned long now;
|
|
struct rtc_wkalrm alm;
|
|
int status;
|
|
|
|
/* this may fail if the RTC hasn't been initialized */
|
|
status = rtc_read_time(rtc, &alm.time);
|
|
if (status < 0) {
|
|
printk(err_readtime, dev_name(&rtc->dev), status);
|
|
return;
|
|
}
|
|
rtc_tm_to_time(&alm.time, &now);
|
|
|
|
memset(&alm, 0, sizeof alm);
|
|
rtc_time_to_tm(now + TEST_SUSPEND_SECONDS, &alm.time);
|
|
alm.enabled = true;
|
|
|
|
status = rtc_set_alarm(rtc, &alm);
|
|
if (status < 0) {
|
|
printk(err_wakealarm, dev_name(&rtc->dev), status);
|
|
return;
|
|
}
|
|
|
|
if (state == PM_SUSPEND_MEM) {
|
|
printk(info_test, pm_states[state]);
|
|
status = pm_suspend(state);
|
|
if (status == -ENODEV)
|
|
state = PM_SUSPEND_STANDBY;
|
|
}
|
|
if (state == PM_SUSPEND_STANDBY) {
|
|
printk(info_test, pm_states[state]);
|
|
status = pm_suspend(state);
|
|
}
|
|
if (status < 0)
|
|
printk(err_suspend, status);
|
|
|
|
/* Some platforms can't detect that the alarm triggered the
|
|
* wakeup, or (accordingly) disable it after it afterwards.
|
|
* It's supposed to give oneshot behavior; cope.
|
|
*/
|
|
alm.enabled = false;
|
|
rtc_set_alarm(rtc, &alm);
|
|
}
|
|
|
|
static int __init has_wakealarm(struct device *dev, void *name_ptr)
|
|
{
|
|
struct rtc_device *candidate = to_rtc_device(dev);
|
|
|
|
if (!candidate->ops->set_alarm)
|
|
return 0;
|
|
if (!device_may_wakeup(candidate->dev.parent))
|
|
return 0;
|
|
|
|
*(const char **)name_ptr = dev_name(dev);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Kernel options like "test_suspend=mem" force suspend/resume sanity tests
|
|
* at startup time. They're normally disabled, for faster boot and because
|
|
* we can't know which states really work on this particular system.
|
|
*/
|
|
static suspend_state_t test_state __initdata = PM_SUSPEND_ON;
|
|
|
|
static char warn_bad_state[] __initdata =
|
|
KERN_WARNING "PM: can't test '%s' suspend state\n";
|
|
|
|
static int __init setup_test_suspend(char *value)
|
|
{
|
|
unsigned i;
|
|
|
|
/* "=mem" ==> "mem" */
|
|
value++;
|
|
for (i = 0; i < PM_SUSPEND_MAX; i++) {
|
|
if (!pm_states[i])
|
|
continue;
|
|
if (strcmp(pm_states[i], value) != 0)
|
|
continue;
|
|
test_state = (__force suspend_state_t) i;
|
|
return 0;
|
|
}
|
|
printk(warn_bad_state, value);
|
|
return 0;
|
|
}
|
|
__setup("test_suspend", setup_test_suspend);
|
|
|
|
static int __init test_suspend(void)
|
|
{
|
|
static char warn_no_rtc[] __initdata =
|
|
KERN_WARNING "PM: no wakealarm-capable RTC driver is ready\n";
|
|
|
|
char *pony = NULL;
|
|
struct rtc_device *rtc = NULL;
|
|
|
|
/* PM is initialized by now; is that state testable? */
|
|
if (test_state == PM_SUSPEND_ON)
|
|
goto done;
|
|
if (!valid_state(test_state)) {
|
|
printk(warn_bad_state, pm_states[test_state]);
|
|
goto done;
|
|
}
|
|
|
|
/* RTCs have initialized by now too ... can we use one? */
|
|
class_find_device(rtc_class, NULL, &pony, has_wakealarm);
|
|
if (pony)
|
|
rtc = rtc_class_open(pony);
|
|
if (!rtc) {
|
|
printk(warn_no_rtc);
|
|
goto done;
|
|
}
|
|
|
|
/* go for it */
|
|
test_wakealarm(rtc, test_state);
|
|
rtc_class_close(rtc);
|
|
done:
|
|
return 0;
|
|
}
|
|
late_initcall(test_suspend);
|