linux-stable/fs/xfs/xfs_extfree_item.c
Darrick J. Wong 3c919b0910 xfs: reserve less log space when recovering log intent items
Wengang Wang reports that a customer's system was running a number of
truncate operations on a filesystem with a very small log.  Contention
on the reserve heads lead to other threads stalling on smaller updates
(e.g.  mtime updates) long enough to result in the node being rebooted
on account of the lack of responsivenes.  The node failed to recover
because log recovery of an EFI became stuck waiting for a grant of
reserve space.  From Wengang's report:

"For the file deletion, log bytes are reserved basing on
xfs_mount->tr_itruncate which is:

    tr_logres = 175488,
    tr_logcount = 2,
    tr_logflags = XFS_TRANS_PERM_LOG_RES,

"You see it's a permanent log reservation with two log operations (two
transactions in rolling mode).  After calculation (xlog_calc_unit_res()
adds space for various log headers), the final log space needed per
transaction changes from  175488 to 180208 bytes.  So the total log
space needed is 360416 bytes (180208 * 2).  [That quantity] of log space
(360416 bytes) needs to be reserved for both run time inode removing
(xfs_inactive_truncate()) and EFI recover (xfs_efi_item_recover())."

In other words, runtime pre-reserves 360K of space in anticipation of
running a chain of two transactions in which each transaction gets a
180K reservation.

Now that we've allocated the transaction, we delete the bmap mapping,
log an EFI to free the space, and roll the transaction as part of
finishing the deferops chain.  Rolling creates a new xfs_trans which
shares its ticket with the old transaction.  Next, xfs_trans_roll calls
__xfs_trans_commit with regrant == true, which calls xlog_cil_commit
with the same regrant parameter.

xlog_cil_commit calls xfs_log_ticket_regrant, which decrements t_cnt and
subtracts t_curr_res from the reservation and write heads.

If the filesystem is fresh and the first transaction only used (say)
20K, then t_curr_res will be 160K, and we give that much reservation
back to the reservation head.  Or if the file is really fragmented and
the first transaction actually uses 170K, then t_curr_res will be 10K,
and that's what we give back to the reservation.

Having done that, we're now headed into the second transaction with an
EFI and 180K of reservation.  Other threads apparently consumed all the
reservation for smaller transactions, such as timestamp updates.

Now let's say the first transaction gets written to disk and we crash
without ever completing the second transaction.  Now we remount the fs,
log recovery finds the unfinished EFI, and calls xfs_efi_recover to
finish the EFI.  However, xfs_efi_recover starts a new tr_itruncate
tranasction, which asks for 360K log reservation.  This is a lot more
than the 180K that we had reserved at the time of the crash.  If the
first EFI to be recovered is also pinning the tail of the log, we will
be unable to free any space in the log, and recovery livelocks.

Wengang confirmed this:

"Now we have the second transaction which has 180208 log bytes reserved
too. The second transaction is supposed to process intents including
extent freeing.  With my hacking patch, I blocked the extent freeing 5
hours. So in that 5 hours, 180208 (NOT 360416) log bytes are reserved.

"With my test case, other transactions (update timestamps) then happen.
As my hacking patch pins the journal tail, those timestamp-updating
transactions finally use up (almost) all the left available log space
(in memory in on disk).  And finally the on disk (and in memory)
available log space goes down near to 180208 bytes.  Those 180208 bytes
are reserved by [the] second (extent-free) transaction [in the chain]."

Wengang and I noticed that EFI recovery starts a transaction, completes
one step of the chain, and commits the transaction without completing
any other steps of the chain.  Those subsequent steps are completed by
xlog_finish_defer_ops, which allocates yet another transaction to
finish the rest of the chain.  That transaction gets the same tr_logres
as the head transaction, but with tr_logcount = 1 to force regranting
with every roll to avoid livelocks.

In other words, we already figured this out in commit 929b92f640
("xfs: xfs_defer_capture should absorb remaining transaction
reservation"), but should have applied that logic to each intent item's
recovery function.  For Wengang's case, the xfs_trans_alloc call in the
EFI recovery function should only be asking for a single transaction's
worth of log reservation -- 180K, not 360K.

Quoting Wengang again:

"With log recovery, during EFI recovery, we use tr_itruncate again to
reserve two transactions that needs 360416 log bytes.  Reserving 360416
bytes fails [stalls] because we now only have about 180208 available.

"Actually during the EFI recover, we only need one transaction to free
the extents just like the 2nd transaction at RUNTIME.  So it only needs
to reserve 180208 rather than 360416 bytes.  We have (a bit) more than
180208 available log bytes on disk, so [if we decrease the reservation
to 180K] the reservation goes and the recovery [finishes].  That is to
say: we can fix the log recover part to fix the issue. We can introduce
a new xfs_trans_res xfs_mount->tr_ext_free

{
  tr_logres = 175488,
  tr_logcount = 0,
  tr_logflags = 0,
}

"and use tr_ext_free instead of tr_itruncate in EFI recover."

However, I don't think it quite makes sense to create an entirely new
transaction reservation type to handle single-stepping during log
recovery.  Instead, we should copy the transaction reservation
information in the xfs_mount, change tr_logcount to 1, and pass that
into xfs_trans_alloc.  We know this won't risk changing the min log size
computation since we always ask for a fraction of the reservation for
all known transaction types.

This looks like it's been lurking in the codebase since commit
3d3c8b5222, which changed the xfs_trans_reserve call in
xlog_recover_process_efi to use the tr_logcount in tr_itruncate.
That changed the EFI recovery transaction from making a
non-XFS_TRANS_PERM_LOG_RES request for one transaction's worth of log
space to a XFS_TRANS_PERM_LOG_RES request for two transactions worth.

Fixes: 3d3c8b5222 ("xfs: refactor xfs_trans_reserve() interface")
Complements: 929b92f640 ("xfs: xfs_defer_capture should absorb remaining transaction reservation")
Suggested-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Srikanth C S <srikanth.c.s@oracle.com>
[djwong: apply the same transformation to all log intent recovery]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-09-12 10:31:07 -07:00

878 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_ag.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_extfree_item.h"
#include "xfs_log.h"
#include "xfs_btree.h"
#include "xfs_rmap.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_trace.h"
#include "xfs_error.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
struct kmem_cache *xfs_efi_cache;
struct kmem_cache *xfs_efd_cache;
static const struct xfs_item_ops xfs_efi_item_ops;
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_efi_log_item, efi_item);
}
STATIC void
xfs_efi_item_free(
struct xfs_efi_log_item *efip)
{
kmem_free(efip->efi_item.li_lv_shadow);
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
kmem_free(efip);
else
kmem_cache_free(xfs_efi_cache, efip);
}
/*
* Freeing the efi requires that we remove it from the AIL if it has already
* been placed there. However, the EFI may not yet have been placed in the AIL
* when called by xfs_efi_release() from EFD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the EFI.
*/
STATIC void
xfs_efi_release(
struct xfs_efi_log_item *efip)
{
ASSERT(atomic_read(&efip->efi_refcount) > 0);
if (!atomic_dec_and_test(&efip->efi_refcount))
return;
xfs_trans_ail_delete(&efip->efi_item, 0);
xfs_efi_item_free(efip);
}
STATIC void
xfs_efi_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given efi log item. We use only 1 iovec, and we point that
* at the efi_log_format structure embedded in the efi item.
* It is at this point that we assert that all of the extent
* slots in the efi item have been filled.
*/
STATIC void
xfs_efi_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&efip->efi_next_extent) ==
efip->efi_format.efi_nextents);
efip->efi_format.efi_type = XFS_LI_EFI;
efip->efi_format.efi_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
&efip->efi_format,
xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
}
/*
* The unpin operation is the last place an EFI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the EFI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the EFI to either construct
* and commit the EFD or drop the EFD's reference in the event of error. Simply
* drop the log's EFI reference now that the log is done with it.
*/
STATIC void
xfs_efi_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
xfs_efi_release(efip);
}
/*
* The EFI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an EFD isn't going to be
* constructed and thus we free the EFI here directly.
*/
STATIC void
xfs_efi_item_release(
struct xfs_log_item *lip)
{
xfs_efi_release(EFI_ITEM(lip));
}
/*
* Allocate and initialize an efi item with the given number of extents.
*/
STATIC struct xfs_efi_log_item *
xfs_efi_init(
struct xfs_mount *mp,
uint nextents)
{
struct xfs_efi_log_item *efip;
ASSERT(nextents > 0);
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
GFP_KERNEL | __GFP_NOFAIL);
} else {
efip = kmem_cache_zalloc(xfs_efi_cache,
GFP_KERNEL | __GFP_NOFAIL);
}
xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
efip->efi_format.efi_nextents = nextents;
efip->efi_format.efi_id = (uintptr_t)(void *)efip;
atomic_set(&efip->efi_next_extent, 0);
atomic_set(&efip->efi_refcount, 2);
return efip;
}
/*
* Copy an EFI format buffer from the given buf, and into the destination
* EFI format structure.
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
* one of which will be the native format for this kernel.
* It will handle the conversion of formats if necessary.
*/
STATIC int
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
{
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
uint i;
uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
if (buf->i_len == len) {
memcpy(dst_efi_fmt, src_efi_fmt,
offsetof(struct xfs_efi_log_format, efi_extents));
for (i = 0; i < src_efi_fmt->efi_nextents; i++)
memcpy(&dst_efi_fmt->efi_extents[i],
&src_efi_fmt->efi_extents[i],
sizeof(struct xfs_extent));
return 0;
} else if (buf->i_len == len32) {
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_32->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_32->efi_extents[i].ext_len;
}
return 0;
} else if (buf->i_len == len64) {
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_64->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_64->efi_extents[i].ext_len;
}
return 0;
}
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
buf->i_len);
return -EFSCORRUPTED;
}
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_efd_log_item, efd_item);
}
STATIC void
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
{
kmem_free(efdp->efd_item.li_lv_shadow);
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
kmem_free(efdp);
else
kmem_cache_free(xfs_efd_cache, efdp);
}
STATIC void
xfs_efd_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given efd log item. We use only 1 iovec, and we point that
* at the efd_log_format structure embedded in the efd item.
* It is at this point that we assert that all of the extent
* slots in the efd item have been filled.
*/
STATIC void
xfs_efd_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
efdp->efd_format.efd_type = XFS_LI_EFD;
efdp->efd_format.efd_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
&efdp->efd_format,
xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
}
/*
* The EFD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the EFI and free the EFD.
*/
STATIC void
xfs_efd_item_release(
struct xfs_log_item *lip)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
xfs_efi_release(efdp->efd_efip);
xfs_efd_item_free(efdp);
}
static struct xfs_log_item *
xfs_efd_item_intent(
struct xfs_log_item *lip)
{
return &EFD_ITEM(lip)->efd_efip->efi_item;
}
static const struct xfs_item_ops xfs_efd_item_ops = {
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
XFS_ITEM_INTENT_DONE,
.iop_size = xfs_efd_item_size,
.iop_format = xfs_efd_item_format,
.iop_release = xfs_efd_item_release,
.iop_intent = xfs_efd_item_intent,
};
/*
* Allocate an "extent free done" log item that will hold nextents worth of
* extents. The caller must use all nextents extents, because we are not
* flexible about this at all.
*/
static struct xfs_efd_log_item *
xfs_trans_get_efd(
struct xfs_trans *tp,
struct xfs_efi_log_item *efip,
unsigned int nextents)
{
struct xfs_efd_log_item *efdp;
ASSERT(nextents > 0);
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
GFP_KERNEL | __GFP_NOFAIL);
} else {
efdp = kmem_cache_zalloc(xfs_efd_cache,
GFP_KERNEL | __GFP_NOFAIL);
}
xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
&xfs_efd_item_ops);
efdp->efd_efip = efip;
efdp->efd_format.efd_nextents = nextents;
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
xfs_trans_add_item(tp, &efdp->efd_item);
return efdp;
}
/*
* Fill the EFD with all extents from the EFI when we need to roll the
* transaction and continue with a new EFI.
*
* This simply copies all the extents in the EFI to the EFD rather than make
* assumptions about which extents in the EFI have already been processed. We
* currently keep the xefi list in the same order as the EFI extent list, but
* that may not always be the case. Copying everything avoids leaving a landmine
* were we fail to cancel all the extents in an EFI if the xefi list is
* processed in a different order to the extents in the EFI.
*/
static void
xfs_efd_from_efi(
struct xfs_efd_log_item *efdp)
{
struct xfs_efi_log_item *efip = efdp->efd_efip;
uint i;
ASSERT(efip->efi_format.efi_nextents > 0);
ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
efdp->efd_format.efd_extents[i] =
efip->efi_format.efi_extents[i];
}
efdp->efd_next_extent = efip->efi_format.efi_nextents;
}
/*
* Free an extent and log it to the EFD. Note that the transaction is marked
* dirty regardless of whether the extent free succeeds or fails to support the
* EFI/EFD lifecycle rules.
*/
static int
xfs_trans_free_extent(
struct xfs_trans *tp,
struct xfs_efd_log_item *efdp,
struct xfs_extent_free_item *xefi)
{
struct xfs_owner_info oinfo = { };
struct xfs_mount *mp = tp->t_mountp;
struct xfs_extent *extp;
uint next_extent;
xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
xefi->xefi_startblock);
int error;
oinfo.oi_owner = xefi->xefi_owner;
if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
agbno, xefi->xefi_blockcount);
error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
/*
* Mark the transaction dirty, even on error. This ensures the
* transaction is aborted, which:
*
* 1.) releases the EFI and frees the EFD
* 2.) shuts down the filesystem
*/
tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
/*
* If we need a new transaction to make progress, the caller will log a
* new EFI with the current contents. It will also log an EFD to cancel
* the existing EFI, and so we need to copy all the unprocessed extents
* in this EFI to the EFD so this works correctly.
*/
if (error == -EAGAIN) {
xfs_efd_from_efi(efdp);
return error;
}
next_extent = efdp->efd_next_extent;
ASSERT(next_extent < efdp->efd_format.efd_nextents);
extp = &(efdp->efd_format.efd_extents[next_extent]);
extp->ext_start = xefi->xefi_startblock;
extp->ext_len = xefi->xefi_blockcount;
efdp->efd_next_extent++;
return error;
}
/* Sort bmap items by AG. */
static int
xfs_extent_free_diff_items(
void *priv,
const struct list_head *a,
const struct list_head *b)
{
struct xfs_extent_free_item *ra;
struct xfs_extent_free_item *rb;
ra = container_of(a, struct xfs_extent_free_item, xefi_list);
rb = container_of(b, struct xfs_extent_free_item, xefi_list);
return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
}
/* Log a free extent to the intent item. */
STATIC void
xfs_extent_free_log_item(
struct xfs_trans *tp,
struct xfs_efi_log_item *efip,
struct xfs_extent_free_item *xefi)
{
uint next_extent;
struct xfs_extent *extp;
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
/*
* atomic_inc_return gives us the value after the increment;
* we want to use it as an array index so we need to subtract 1 from
* it.
*/
next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
ASSERT(next_extent < efip->efi_format.efi_nextents);
extp = &efip->efi_format.efi_extents[next_extent];
extp->ext_start = xefi->xefi_startblock;
extp->ext_len = xefi->xefi_blockcount;
}
static struct xfs_log_item *
xfs_extent_free_create_intent(
struct xfs_trans *tp,
struct list_head *items,
unsigned int count,
bool sort)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
struct xfs_extent_free_item *xefi;
ASSERT(count > 0);
xfs_trans_add_item(tp, &efip->efi_item);
if (sort)
list_sort(mp, items, xfs_extent_free_diff_items);
list_for_each_entry(xefi, items, xefi_list)
xfs_extent_free_log_item(tp, efip, xefi);
return &efip->efi_item;
}
/* Get an EFD so we can process all the free extents. */
static struct xfs_log_item *
xfs_extent_free_create_done(
struct xfs_trans *tp,
struct xfs_log_item *intent,
unsigned int count)
{
return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
}
/* Take a passive ref to the AG containing the space we're freeing. */
void
xfs_extent_free_get_group(
struct xfs_mount *mp,
struct xfs_extent_free_item *xefi)
{
xfs_agnumber_t agno;
agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
}
/* Release a passive AG ref after some freeing work. */
static inline void
xfs_extent_free_put_group(
struct xfs_extent_free_item *xefi)
{
xfs_perag_intent_put(xefi->xefi_pag);
}
/* Process a free extent. */
STATIC int
xfs_extent_free_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_extent_free_item *xefi;
int error;
xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi);
/*
* Don't free the XEFI if we need a new transaction to complete
* processing of it.
*/
if (error == -EAGAIN)
return error;
xfs_extent_free_put_group(xefi);
kmem_cache_free(xfs_extfree_item_cache, xefi);
return error;
}
/* Abort all pending EFIs. */
STATIC void
xfs_extent_free_abort_intent(
struct xfs_log_item *intent)
{
xfs_efi_release(EFI_ITEM(intent));
}
/* Cancel a free extent. */
STATIC void
xfs_extent_free_cancel_item(
struct list_head *item)
{
struct xfs_extent_free_item *xefi;
xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
xfs_extent_free_put_group(xefi);
kmem_cache_free(xfs_extfree_item_cache, xefi);
}
const struct xfs_defer_op_type xfs_extent_free_defer_type = {
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.create_intent = xfs_extent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_extent_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
};
/*
* AGFL blocks are accounted differently in the reserve pools and are not
* inserted into the busy extent list.
*/
STATIC int
xfs_agfl_free_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_owner_info oinfo = { };
struct xfs_mount *mp = tp->t_mountp;
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
struct xfs_extent_free_item *xefi;
struct xfs_extent *extp;
struct xfs_buf *agbp;
int error;
xfs_agblock_t agbno;
uint next_extent;
xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
ASSERT(xefi->xefi_blockcount == 1);
agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
oinfo.oi_owner = xefi->xefi_owner;
trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
xefi->xefi_blockcount);
error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
if (!error)
error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
agbno, agbp, &oinfo);
/*
* Mark the transaction dirty, even on error. This ensures the
* transaction is aborted, which:
*
* 1.) releases the EFI and frees the EFD
* 2.) shuts down the filesystem
*/
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
next_extent = efdp->efd_next_extent;
ASSERT(next_extent < efdp->efd_format.efd_nextents);
extp = &(efdp->efd_format.efd_extents[next_extent]);
extp->ext_start = xefi->xefi_startblock;
extp->ext_len = xefi->xefi_blockcount;
efdp->efd_next_extent++;
xfs_extent_free_put_group(xefi);
kmem_cache_free(xfs_extfree_item_cache, xefi);
return error;
}
/* sub-type with special handling for AGFL deferred frees */
const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.create_intent = xfs_extent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_agfl_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
};
/* Is this recovered EFI ok? */
static inline bool
xfs_efi_validate_ext(
struct xfs_mount *mp,
struct xfs_extent *extp)
{
return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
}
/*
* Process an extent free intent item that was recovered from
* the log. We need to free the extents that it describes.
*/
STATIC int
xfs_efi_item_recover(
struct xfs_log_item *lip,
struct list_head *capture_list)
{
struct xfs_trans_res resv;
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
struct xfs_mount *mp = lip->li_log->l_mp;
struct xfs_efd_log_item *efdp;
struct xfs_trans *tp;
int i;
int error = 0;
bool requeue_only = false;
/*
* First check the validity of the extents described by the
* EFI. If any are bad, then assume that all are bad and
* just toss the EFI.
*/
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
if (!xfs_efi_validate_ext(mp,
&efip->efi_format.efi_extents[i])) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&efip->efi_format,
sizeof(efip->efi_format));
return -EFSCORRUPTED;
}
}
resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
if (error)
return error;
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
struct xfs_extent_free_item fake = {
.xefi_owner = XFS_RMAP_OWN_UNKNOWN,
.xefi_agresv = XFS_AG_RESV_NONE,
};
struct xfs_extent *extp;
extp = &efip->efi_format.efi_extents[i];
fake.xefi_startblock = extp->ext_start;
fake.xefi_blockcount = extp->ext_len;
if (!requeue_only) {
xfs_extent_free_get_group(mp, &fake);
error = xfs_trans_free_extent(tp, efdp, &fake);
xfs_extent_free_put_group(&fake);
}
/*
* If we can't free the extent without potentially deadlocking,
* requeue the rest of the extents to a new so that they get
* run again later with a new transaction context.
*/
if (error == -EAGAIN || requeue_only) {
error = xfs_free_extent_later(tp, fake.xefi_startblock,
fake.xefi_blockcount,
&XFS_RMAP_OINFO_ANY_OWNER,
fake.xefi_agresv);
if (!error) {
requeue_only = true;
continue;
}
}
if (error == -EFSCORRUPTED)
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
extp, sizeof(*extp));
if (error)
goto abort_error;
}
return xfs_defer_ops_capture_and_commit(tp, capture_list);
abort_error:
xfs_trans_cancel(tp);
return error;
}
STATIC bool
xfs_efi_item_match(
struct xfs_log_item *lip,
uint64_t intent_id)
{
return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
}
/* Relog an intent item to push the log tail forward. */
static struct xfs_log_item *
xfs_efi_item_relog(
struct xfs_log_item *intent,
struct xfs_trans *tp)
{
struct xfs_efd_log_item *efdp;
struct xfs_efi_log_item *efip;
struct xfs_extent *extp;
unsigned int count;
count = EFI_ITEM(intent)->efi_format.efi_nextents;
extp = EFI_ITEM(intent)->efi_format.efi_extents;
tp->t_flags |= XFS_TRANS_DIRTY;
efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
efdp->efd_next_extent = count;
memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
efip = xfs_efi_init(tp->t_mountp, count);
memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
atomic_set(&efip->efi_next_extent, count);
xfs_trans_add_item(tp, &efip->efi_item);
set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
return &efip->efi_item;
}
static const struct xfs_item_ops xfs_efi_item_ops = {
.flags = XFS_ITEM_INTENT,
.iop_size = xfs_efi_item_size,
.iop_format = xfs_efi_item_format,
.iop_unpin = xfs_efi_item_unpin,
.iop_release = xfs_efi_item_release,
.iop_recover = xfs_efi_item_recover,
.iop_match = xfs_efi_item_match,
.iop_relog = xfs_efi_item_relog,
};
/*
* This routine is called to create an in-core extent free intent
* item from the efi format structure which was logged on disk.
* It allocates an in-core efi, copies the extents from the format
* structure into it, and adds the efi to the AIL with the given
* LSN.
*/
STATIC int
xlog_recover_efi_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_mount *mp = log->l_mp;
struct xfs_efi_log_item *efip;
struct xfs_efi_log_format *efi_formatp;
int error;
efi_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
if (error) {
xfs_efi_item_free(efip);
return error;
}
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
/*
* Insert the intent into the AIL directly and drop one reference so
* that finishing or canceling the work will drop the other.
*/
xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
xfs_efi_release(efip);
return 0;
}
const struct xlog_recover_item_ops xlog_efi_item_ops = {
.item_type = XFS_LI_EFI,
.commit_pass2 = xlog_recover_efi_commit_pass2,
};
/*
* This routine is called when an EFD format structure is found in a committed
* transaction in the log. Its purpose is to cancel the corresponding EFI if it
* was still in the log. To do this it searches the AIL for the EFI with an id
* equal to that in the EFD format structure. If we find it we drop the EFD
* reference, which removes the EFI from the AIL and frees it.
*/
STATIC int
xlog_recover_efd_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_efd_log_format *efd_formatp;
int buflen = item->ri_buf[0].i_len;
efd_formatp = item->ri_buf[0].i_addr;
if (buflen < sizeof(struct xfs_efd_log_format)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
efd_formatp, buflen);
return -EFSCORRUPTED;
}
if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
efd_formatp->efd_nextents) &&
item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
efd_formatp->efd_nextents)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
efd_formatp, buflen);
return -EFSCORRUPTED;
}
xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
return 0;
}
const struct xlog_recover_item_ops xlog_efd_item_ops = {
.item_type = XFS_LI_EFD,
.commit_pass2 = xlog_recover_efd_commit_pass2,
};