linux-stable/drivers/soc/samsung/exynos-pmu.c

405 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (c) 2011-2014 Samsung Electronics Co., Ltd.
// http://www.samsung.com/
//
// Exynos - CPU PMU(Power Management Unit) support
#include <linux/arm-smccc.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/mfd/core.h>
#include <linux/mfd/syscon.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <linux/soc/samsung/exynos-regs-pmu.h>
#include <linux/soc/samsung/exynos-pmu.h>
#include "exynos-pmu.h"
#define PMUALIVE_MASK GENMASK(13, 0)
#define TENSOR_SET_BITS (BIT(15) | BIT(14))
#define TENSOR_CLR_BITS BIT(15)
#define TENSOR_SMC_PMU_SEC_REG 0x82000504
#define TENSOR_PMUREG_READ 0
#define TENSOR_PMUREG_WRITE 1
#define TENSOR_PMUREG_RMW 2
struct exynos_pmu_context {
struct device *dev;
const struct exynos_pmu_data *pmu_data;
struct regmap *pmureg;
};
void __iomem *pmu_base_addr;
static struct exynos_pmu_context *pmu_context;
/* forward declaration */
static struct platform_driver exynos_pmu_driver;
/*
* Tensor SoCs are configured so that PMU_ALIVE registers can only be written
* from EL3, but are still read accessible. As Linux needs to write some of
* these registers, the following functions are provided and exposed via
* regmap.
*
* Note: This SMC interface is known to be implemented on gs101 and derivative
* SoCs.
*/
/* Write to a protected PMU register. */
static int tensor_sec_reg_write(void *context, unsigned int reg,
unsigned int val)
{
struct arm_smccc_res res;
unsigned long pmu_base = (unsigned long)context;
arm_smccc_smc(TENSOR_SMC_PMU_SEC_REG, pmu_base + reg,
TENSOR_PMUREG_WRITE, val, 0, 0, 0, 0, &res);
/* returns -EINVAL if access isn't allowed or 0 */
if (res.a0)
pr_warn("%s(): SMC failed: %d\n", __func__, (int)res.a0);
return (int)res.a0;
}
/* Read/Modify/Write a protected PMU register. */
static int tensor_sec_reg_rmw(void *context, unsigned int reg,
unsigned int mask, unsigned int val)
{
struct arm_smccc_res res;
unsigned long pmu_base = (unsigned long)context;
arm_smccc_smc(TENSOR_SMC_PMU_SEC_REG, pmu_base + reg,
TENSOR_PMUREG_RMW, mask, val, 0, 0, 0, &res);
/* returns -EINVAL if access isn't allowed or 0 */
if (res.a0)
pr_warn("%s(): SMC failed: %d\n", __func__, (int)res.a0);
return (int)res.a0;
}
/*
* Read a protected PMU register. All PMU registers can be read by Linux.
* Note: The SMC read register is not used, as only registers that can be
* written are readable via SMC.
*/
static int tensor_sec_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
*val = pmu_raw_readl(reg);
return 0;
}
/*
* For SoCs that have set/clear bit hardware this function can be used when
* the PMU register will be accessed by multiple masters.
*
* For example, to set bits 13:8 in PMU reg offset 0x3e80
* tensor_set_bits_atomic(ctx, 0x3e80, 0x3f00, 0x3f00);
*
* Set bit 8, and clear bits 13:9 PMU reg offset 0x3e80
* tensor_set_bits_atomic(0x3e80, 0x100, 0x3f00);
*/
static int tensor_set_bits_atomic(void *ctx, unsigned int offset, u32 val,
u32 mask)
{
int ret;
unsigned int i;
for (i = 0; i < 32; i++) {
if (!(mask & BIT(i)))
continue;
offset &= ~TENSOR_SET_BITS;
if (val & BIT(i))
offset |= TENSOR_SET_BITS;
else
offset |= TENSOR_CLR_BITS;
ret = tensor_sec_reg_write(ctx, offset, i);
if (ret)
return ret;
}
return ret;
}
static int tensor_sec_update_bits(void *ctx, unsigned int reg,
unsigned int mask, unsigned int val)
{
/*
* Use atomic operations for PMU_ALIVE registers (offset 0~0x3FFF)
* as the target registers can be accessed by multiple masters.
*/
if (reg > PMUALIVE_MASK)
return tensor_sec_reg_rmw(ctx, reg, mask, val);
return tensor_set_bits_atomic(ctx, reg, val, mask);
}
void pmu_raw_writel(u32 val, u32 offset)
{
writel_relaxed(val, pmu_base_addr + offset);
}
u32 pmu_raw_readl(u32 offset)
{
return readl_relaxed(pmu_base_addr + offset);
}
void exynos_sys_powerdown_conf(enum sys_powerdown mode)
{
unsigned int i;
const struct exynos_pmu_data *pmu_data;
if (!pmu_context || !pmu_context->pmu_data)
return;
pmu_data = pmu_context->pmu_data;
if (pmu_data->powerdown_conf)
pmu_data->powerdown_conf(mode);
if (pmu_data->pmu_config) {
for (i = 0; (pmu_data->pmu_config[i].offset != PMU_TABLE_END); i++)
pmu_raw_writel(pmu_data->pmu_config[i].val[mode],
pmu_data->pmu_config[i].offset);
}
if (pmu_data->powerdown_conf_extra)
pmu_data->powerdown_conf_extra(mode);
if (pmu_data->pmu_config_extra) {
for (i = 0; pmu_data->pmu_config_extra[i].offset != PMU_TABLE_END; i++)
pmu_raw_writel(pmu_data->pmu_config_extra[i].val[mode],
pmu_data->pmu_config_extra[i].offset);
}
}
/*
* Split the data between ARM architectures because it is relatively big
* and useless on other arch.
*/
#ifdef CONFIG_EXYNOS_PMU_ARM_DRIVERS
#define exynos_pmu_data_arm_ptr(data) (&data)
#else
#define exynos_pmu_data_arm_ptr(data) NULL
#endif
static const struct regmap_config regmap_smccfg = {
.name = "pmu_regs",
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
.use_single_read = true,
.use_single_write = true,
.reg_read = tensor_sec_reg_read,
.reg_write = tensor_sec_reg_write,
.reg_update_bits = tensor_sec_update_bits,
};
static const struct regmap_config regmap_mmiocfg = {
.name = "pmu_regs",
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
.use_single_read = true,
.use_single_write = true,
};
static const struct exynos_pmu_data gs101_pmu_data = {
.pmu_secure = true
};
/*
* PMU platform driver and devicetree bindings.
*/
static const struct of_device_id exynos_pmu_of_device_ids[] = {
{
.compatible = "google,gs101-pmu",
.data = &gs101_pmu_data,
}, {
.compatible = "samsung,exynos3250-pmu",
.data = exynos_pmu_data_arm_ptr(exynos3250_pmu_data),
}, {
.compatible = "samsung,exynos4210-pmu",
.data = exynos_pmu_data_arm_ptr(exynos4210_pmu_data),
}, {
.compatible = "samsung,exynos4212-pmu",
.data = exynos_pmu_data_arm_ptr(exynos4212_pmu_data),
}, {
.compatible = "samsung,exynos4412-pmu",
.data = exynos_pmu_data_arm_ptr(exynos4412_pmu_data),
}, {
.compatible = "samsung,exynos5250-pmu",
.data = exynos_pmu_data_arm_ptr(exynos5250_pmu_data),
}, {
.compatible = "samsung,exynos5410-pmu",
}, {
.compatible = "samsung,exynos5420-pmu",
.data = exynos_pmu_data_arm_ptr(exynos5420_pmu_data),
}, {
.compatible = "samsung,exynos5433-pmu",
}, {
.compatible = "samsung,exynos7-pmu",
}, {
.compatible = "samsung,exynos850-pmu",
},
{ /*sentinel*/ },
};
static const struct mfd_cell exynos_pmu_devs[] = {
{ .name = "exynos-clkout", },
};
/**
* exynos_get_pmu_regmap() - Obtain pmureg regmap
*
* Find the pmureg regmap previously configured in probe() and return regmap
* pointer.
*
* Return: A pointer to regmap if found or ERR_PTR error value.
*/
struct regmap *exynos_get_pmu_regmap(void)
{
struct device_node *np = of_find_matching_node(NULL,
exynos_pmu_of_device_ids);
if (np)
return exynos_get_pmu_regmap_by_phandle(np, NULL);
return ERR_PTR(-ENODEV);
}
EXPORT_SYMBOL_GPL(exynos_get_pmu_regmap);
/**
* exynos_get_pmu_regmap_by_phandle() - Obtain pmureg regmap via phandle
* @np: Device node holding PMU phandle property
* @propname: Name of property holding phandle value
*
* Find the pmureg regmap previously configured in probe() and return regmap
* pointer.
*
* Return: A pointer to regmap if found or ERR_PTR error value.
*/
struct regmap *exynos_get_pmu_regmap_by_phandle(struct device_node *np,
const char *propname)
{
struct exynos_pmu_context *ctx;
struct device_node *pmu_np;
struct device *dev;
if (propname)
pmu_np = of_parse_phandle(np, propname, 0);
else
pmu_np = np;
if (!pmu_np)
return ERR_PTR(-ENODEV);
/*
* Determine if exynos-pmu device has probed and therefore regmap
* has been created and can be returned to the caller. Otherwise we
* return -EPROBE_DEFER.
*/
dev = driver_find_device_by_of_node(&exynos_pmu_driver.driver,
(void *)pmu_np);
if (propname)
of_node_put(pmu_np);
if (!dev)
return ERR_PTR(-EPROBE_DEFER);
ctx = dev_get_drvdata(dev);
return ctx->pmureg;
}
EXPORT_SYMBOL_GPL(exynos_get_pmu_regmap_by_phandle);
static int exynos_pmu_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct regmap_config pmu_regmcfg;
struct regmap *regmap;
struct resource *res;
int ret;
pmu_base_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pmu_base_addr))
return PTR_ERR(pmu_base_addr);
pmu_context = devm_kzalloc(&pdev->dev,
sizeof(struct exynos_pmu_context),
GFP_KERNEL);
if (!pmu_context)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
pmu_context->pmu_data = of_device_get_match_data(dev);
/* For SoCs that secure PMU register writes use custom regmap */
if (pmu_context->pmu_data && pmu_context->pmu_data->pmu_secure) {
pmu_regmcfg = regmap_smccfg;
pmu_regmcfg.max_register = resource_size(res) -
pmu_regmcfg.reg_stride;
/* Need physical address for SMC call */
regmap = devm_regmap_init(dev, NULL,
(void *)(uintptr_t)res->start,
&pmu_regmcfg);
} else {
/* All other SoCs use a MMIO regmap */
pmu_regmcfg = regmap_mmiocfg;
pmu_regmcfg.max_register = resource_size(res) -
pmu_regmcfg.reg_stride;
regmap = devm_regmap_init_mmio(dev, pmu_base_addr,
&pmu_regmcfg);
}
if (IS_ERR(regmap))
return dev_err_probe(&pdev->dev, PTR_ERR(regmap),
"regmap init failed\n");
pmu_context->pmureg = regmap;
pmu_context->dev = dev;
if (pmu_context->pmu_data && pmu_context->pmu_data->pmu_init)
pmu_context->pmu_data->pmu_init();
platform_set_drvdata(pdev, pmu_context);
ret = devm_mfd_add_devices(dev, PLATFORM_DEVID_NONE, exynos_pmu_devs,
ARRAY_SIZE(exynos_pmu_devs), NULL, 0, NULL);
if (ret)
return ret;
if (devm_of_platform_populate(dev))
dev_err(dev, "Error populating children, reboot and poweroff might not work properly\n");
dev_dbg(dev, "Exynos PMU Driver probe done\n");
return 0;
}
static struct platform_driver exynos_pmu_driver = {
.driver = {
.name = "exynos-pmu",
.of_match_table = exynos_pmu_of_device_ids,
},
.probe = exynos_pmu_probe,
};
static int __init exynos_pmu_init(void)
{
return platform_driver_register(&exynos_pmu_driver);
}
postcore_initcall(exynos_pmu_init);