linux-stable/fs/ufs/inode.c
Linus Torvalds ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00

1247 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ufs/inode.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*
* from
*
* linux/fs/ext2/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/uaccess.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/iversion.h>
#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"
static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
{
struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
int ptrs = uspi->s_apb;
int ptrs_bits = uspi->s_apbshift;
const long direct_blocks = UFS_NDADDR,
indirect_blocks = ptrs,
double_blocks = (1 << (ptrs_bits * 2));
int n = 0;
UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
if (i_block < direct_blocks) {
offsets[n++] = i_block;
} else if ((i_block -= direct_blocks) < indirect_blocks) {
offsets[n++] = UFS_IND_BLOCK;
offsets[n++] = i_block;
} else if ((i_block -= indirect_blocks) < double_blocks) {
offsets[n++] = UFS_DIND_BLOCK;
offsets[n++] = i_block >> ptrs_bits;
offsets[n++] = i_block & (ptrs - 1);
} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
offsets[n++] = UFS_TIND_BLOCK;
offsets[n++] = i_block >> (ptrs_bits * 2);
offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
offsets[n++] = i_block & (ptrs - 1);
} else {
ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
}
return n;
}
typedef struct {
void *p;
union {
__fs32 key32;
__fs64 key64;
};
struct buffer_head *bh;
} Indirect;
static inline int grow_chain32(struct ufs_inode_info *ufsi,
struct buffer_head *bh, __fs32 *v,
Indirect *from, Indirect *to)
{
Indirect *p;
unsigned seq;
to->bh = bh;
do {
seq = read_seqbegin(&ufsi->meta_lock);
to->key32 = *(__fs32 *)(to->p = v);
for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
;
} while (read_seqretry(&ufsi->meta_lock, seq));
return (p > to);
}
static inline int grow_chain64(struct ufs_inode_info *ufsi,
struct buffer_head *bh, __fs64 *v,
Indirect *from, Indirect *to)
{
Indirect *p;
unsigned seq;
to->bh = bh;
do {
seq = read_seqbegin(&ufsi->meta_lock);
to->key64 = *(__fs64 *)(to->p = v);
for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
;
} while (read_seqretry(&ufsi->meta_lock, seq));
return (p > to);
}
/*
* Returns the location of the fragment from
* the beginning of the filesystem.
*/
static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
int shift = uspi->s_apbshift-uspi->s_fpbshift;
Indirect chain[4], *q = chain;
unsigned *p;
unsigned flags = UFS_SB(sb)->s_flags;
u64 res = 0;
UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
uspi->s_fpbshift, uspi->s_apbmask,
(unsigned long long)mask);
if (depth == 0)
goto no_block;
again:
p = offsets;
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
goto changed;
if (!q->key32)
goto no_block;
while (--depth) {
__fs32 *ptr;
struct buffer_head *bh;
unsigned n = *p++;
bh = sb_bread(sb, uspi->s_sbbase +
fs32_to_cpu(sb, q->key32) + (n>>shift));
if (!bh)
goto no_block;
ptr = (__fs32 *)bh->b_data + (n & mask);
if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
goto changed;
if (!q->key32)
goto no_block;
}
res = fs32_to_cpu(sb, q->key32);
goto found;
ufs2:
if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
goto changed;
if (!q->key64)
goto no_block;
while (--depth) {
__fs64 *ptr;
struct buffer_head *bh;
unsigned n = *p++;
bh = sb_bread(sb, uspi->s_sbbase +
fs64_to_cpu(sb, q->key64) + (n>>shift));
if (!bh)
goto no_block;
ptr = (__fs64 *)bh->b_data + (n & mask);
if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
goto changed;
if (!q->key64)
goto no_block;
}
res = fs64_to_cpu(sb, q->key64);
found:
res += uspi->s_sbbase;
no_block:
while (q > chain) {
brelse(q->bh);
q--;
}
return res;
changed:
while (q > chain) {
brelse(q->bh);
q--;
}
goto again;
}
/*
* Unpacking tails: we have a file with partial final block and
* we had been asked to extend it. If the fragment being written
* is within the same block, we need to extend the tail just to cover
* that fragment. Otherwise the tail is extended to full block.
*
* Note that we might need to create a _new_ tail, but that will
* be handled elsewhere; this is strictly for resizing old
* ones.
*/
static bool
ufs_extend_tail(struct inode *inode, u64 writes_to,
int *err, struct page *locked_page)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */
unsigned block = ufs_fragstoblks(lastfrag);
unsigned new_size;
void *p;
u64 tmp;
if (writes_to < (lastfrag | uspi->s_fpbmask))
new_size = (writes_to & uspi->s_fpbmask) + 1;
else
new_size = uspi->s_fpb;
p = ufs_get_direct_data_ptr(uspi, ufsi, block);
tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p),
new_size - (lastfrag & uspi->s_fpbmask), err,
locked_page);
return tmp != 0;
}
/**
* ufs_inode_getfrag() - allocate new fragment(s)
* @inode: pointer to inode
* @index: number of block pointer within the inode's array.
* @new_fragment: number of new allocated fragment(s)
* @err: we set it if something wrong
* @new: we set it if we allocate new block
* @locked_page: for ufs_new_fragments()
*/
static u64
ufs_inode_getfrag(struct inode *inode, unsigned index,
sector_t new_fragment, int *err,
int *new, struct page *locked_page)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
u64 tmp, goal, lastfrag;
unsigned nfrags = uspi->s_fpb;
void *p;
/* TODO : to be done for write support
if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
*/
p = ufs_get_direct_data_ptr(uspi, ufsi, index);
tmp = ufs_data_ptr_to_cpu(sb, p);
if (tmp)
goto out;
lastfrag = ufsi->i_lastfrag;
/* will that be a new tail? */
if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag)
nfrags = (new_fragment & uspi->s_fpbmask) + 1;
goal = 0;
if (index) {
goal = ufs_data_ptr_to_cpu(sb,
ufs_get_direct_data_ptr(uspi, ufsi, index - 1));
if (goal)
goal += uspi->s_fpb;
}
tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment),
goal, nfrags, err, locked_page);
if (!tmp) {
*err = -ENOSPC;
return 0;
}
if (new)
*new = 1;
inode_set_ctime_current(inode);
if (IS_SYNC(inode))
ufs_sync_inode (inode);
mark_inode_dirty(inode);
out:
return tmp + uspi->s_sbbase;
/* This part : To be implemented ....
Required only for writing, not required for READ-ONLY.
ufs2:
u2_block = ufs_fragstoblks(fragment);
u2_blockoff = ufs_fragnum(fragment);
p = ufsi->i_u1.u2_i_data + block;
goal = 0;
repeat2:
tmp = fs32_to_cpu(sb, *p);
lastfrag = ufsi->i_lastfrag;
*/
}
/**
* ufs_inode_getblock() - allocate new block
* @inode: pointer to inode
* @ind_block: block number of the indirect block
* @index: number of pointer within the indirect block
* @new_fragment: number of new allocated fragment
* (block will hold this fragment and also uspi->s_fpb-1)
* @err: see ufs_inode_getfrag()
* @new: see ufs_inode_getfrag()
* @locked_page: see ufs_inode_getfrag()
*/
static u64
ufs_inode_getblock(struct inode *inode, u64 ind_block,
unsigned index, sector_t new_fragment, int *err,
int *new, struct page *locked_page)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
int shift = uspi->s_apbshift - uspi->s_fpbshift;
u64 tmp = 0, goal;
struct buffer_head *bh;
void *p;
if (!ind_block)
return 0;
bh = sb_bread(sb, ind_block + (index >> shift));
if (unlikely(!bh)) {
*err = -EIO;
return 0;
}
index &= uspi->s_apbmask >> uspi->s_fpbshift;
if (uspi->fs_magic == UFS2_MAGIC)
p = (__fs64 *)bh->b_data + index;
else
p = (__fs32 *)bh->b_data + index;
tmp = ufs_data_ptr_to_cpu(sb, p);
if (tmp)
goto out;
if (index && (uspi->fs_magic == UFS2_MAGIC ?
(tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) :
(tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1]))))
goal = tmp + uspi->s_fpb;
else
goal = bh->b_blocknr + uspi->s_fpb;
tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
uspi->s_fpb, err, locked_page);
if (!tmp)
goto out;
if (new)
*new = 1;
mark_buffer_dirty(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
inode_set_ctime_current(inode);
mark_inode_dirty(inode);
out:
brelse (bh);
UFSD("EXIT\n");
if (tmp)
tmp += uspi->s_sbbase;
return tmp;
}
/**
* ufs_getfrag_block() - `get_block_t' function, interface between UFS and
* read_folio, writepage and so on
*/
static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
int err = 0, new = 0;
unsigned offsets[4];
int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets);
u64 phys64 = 0;
unsigned frag = fragment & uspi->s_fpbmask;
phys64 = ufs_frag_map(inode, offsets, depth);
if (!create)
goto done;
if (phys64) {
if (fragment >= UFS_NDIR_FRAGMENT)
goto done;
read_seqlock_excl(&UFS_I(inode)->meta_lock);
if (fragment < UFS_I(inode)->i_lastfrag) {
read_sequnlock_excl(&UFS_I(inode)->meta_lock);
goto done;
}
read_sequnlock_excl(&UFS_I(inode)->meta_lock);
}
/* This code entered only while writing ....? */
mutex_lock(&UFS_I(inode)->truncate_mutex);
UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
if (unlikely(!depth)) {
ufs_warning(sb, "ufs_get_block", "block > big");
err = -EIO;
goto out;
}
if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) {
unsigned lastfrag = UFS_I(inode)->i_lastfrag;
unsigned tailfrags = lastfrag & uspi->s_fpbmask;
if (tailfrags && fragment >= lastfrag) {
if (!ufs_extend_tail(inode, fragment,
&err, bh_result->b_page))
goto out;
}
}
if (depth == 1) {
phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
&err, &new, bh_result->b_page);
} else {
int i;
phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
&err, NULL, NULL);
for (i = 1; i < depth - 1; i++)
phys64 = ufs_inode_getblock(inode, phys64, offsets[i],
fragment, &err, NULL, NULL);
phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1],
fragment, &err, &new, bh_result->b_page);
}
out:
if (phys64) {
phys64 += frag;
map_bh(bh_result, sb, phys64);
if (new)
set_buffer_new(bh_result);
}
mutex_unlock(&UFS_I(inode)->truncate_mutex);
return err;
done:
if (phys64)
map_bh(bh_result, sb, phys64 + frag);
return 0;
}
static int ufs_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page,ufs_getfrag_block,wbc);
}
static int ufs_read_folio(struct file *file, struct folio *folio)
{
return block_read_full_folio(folio, ufs_getfrag_block);
}
int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
{
return __block_write_begin(page, pos, len, ufs_getfrag_block);
}
static void ufs_truncate_blocks(struct inode *);
static void ufs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > inode->i_size) {
truncate_pagecache(inode, inode->i_size);
ufs_truncate_blocks(inode);
}
}
static int ufs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len,
struct page **pagep, void **fsdata)
{
int ret;
ret = block_write_begin(mapping, pos, len, pagep, ufs_getfrag_block);
if (unlikely(ret))
ufs_write_failed(mapping, pos + len);
return ret;
}
static int ufs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
int ret;
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
if (ret < len)
ufs_write_failed(mapping, pos + len);
return ret;
}
static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
{
return generic_block_bmap(mapping,block,ufs_getfrag_block);
}
const struct address_space_operations ufs_aops = {
.dirty_folio = block_dirty_folio,
.invalidate_folio = block_invalidate_folio,
.read_folio = ufs_read_folio,
.writepage = ufs_writepage,
.write_begin = ufs_write_begin,
.write_end = ufs_write_end,
.bmap = ufs_bmap
};
static void ufs_set_inode_ops(struct inode *inode)
{
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ufs_file_inode_operations;
inode->i_fop = &ufs_file_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ufs_dir_inode_operations;
inode->i_fop = &ufs_dir_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISLNK(inode->i_mode)) {
if (!inode->i_blocks) {
inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
inode->i_op = &simple_symlink_inode_operations;
} else {
inode->i_mapping->a_ops = &ufs_aops;
inode->i_op = &page_symlink_inode_operations;
inode_nohighmem(inode);
}
} else
init_special_inode(inode, inode->i_mode,
ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
}
static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
umode_t mode;
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
if (inode->i_nlink == 0)
return -ESTALE;
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
inode_set_atime(inode,
(signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec),
0);
inode_set_ctime(inode,
(signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec),
0);
inode_set_mtime(inode,
(signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec),
0);
inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
sizeof(ufs_inode->ui_u2.ui_addr));
} else {
memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
}
return 0;
}
static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
umode_t mode;
UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
if (inode->i_nlink == 0)
return -ESTALE;
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
inode_set_atime(inode, fs64_to_cpu(sb, ufs2_inode->ui_atime),
fs32_to_cpu(sb, ufs2_inode->ui_atimensec));
inode_set_ctime(inode, fs64_to_cpu(sb, ufs2_inode->ui_ctime),
fs32_to_cpu(sb, ufs2_inode->ui_ctimensec));
inode_set_mtime(inode, fs64_to_cpu(sb, ufs2_inode->ui_mtime),
fs32_to_cpu(sb, ufs2_inode->ui_mtimensec));
inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
/*
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
*/
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
sizeof(ufs2_inode->ui_u2.ui_addr));
} else {
memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
}
return 0;
}
struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
{
struct ufs_inode_info *ufsi;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * bh;
struct inode *inode;
int err = -EIO;
UFSD("ENTER, ino %lu\n", ino);
if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
ino);
return ERR_PTR(-EIO);
}
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
ufsi = UFS_I(inode);
bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
inode->i_ino);
goto bad_inode;
}
if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
err = ufs2_read_inode(inode,
ufs2_inode + ufs_inotofsbo(inode->i_ino));
} else {
struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
err = ufs1_read_inode(inode,
ufs_inode + ufs_inotofsbo(inode->i_ino));
}
brelse(bh);
if (err)
goto bad_inode;
inode_inc_iversion(inode);
ufsi->i_lastfrag =
(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
ufsi->i_dir_start_lookup = 0;
ufsi->i_osync = 0;
ufs_set_inode_ops(inode);
UFSD("EXIT\n");
unlock_new_inode(inode);
return inode;
bad_inode:
iget_failed(inode);
return ERR_PTR(err);
}
static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
struct super_block *sb = inode->i_sb;
struct ufs_inode_info *ufsi = UFS_I(inode);
ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb,
inode_get_atime_sec(inode));
ufs_inode->ui_atime.tv_usec = 0;
ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb,
inode_get_ctime_sec(inode));
ufs_inode->ui_ctime.tv_usec = 0;
ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb,
inode_get_mtime_sec(inode));
ufs_inode->ui_mtime.tv_usec = 0;
ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
} else if (inode->i_blocks) {
memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
sizeof(ufs_inode->ui_u2.ui_addr));
}
else {
memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
sizeof(ufs_inode->ui_u2.ui_symlink));
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs_inode));
}
static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
{
struct super_block *sb = inode->i_sb;
struct ufs_inode_info *ufsi = UFS_I(inode);
UFSD("ENTER\n");
ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
ufs_inode->ui_atime = cpu_to_fs64(sb, inode_get_atime_sec(inode));
ufs_inode->ui_atimensec = cpu_to_fs32(sb,
inode_get_atime_nsec(inode));
ufs_inode->ui_ctime = cpu_to_fs64(sb, inode_get_ctime_sec(inode));
ufs_inode->ui_ctimensec = cpu_to_fs32(sb,
inode_get_ctime_nsec(inode));
ufs_inode->ui_mtime = cpu_to_fs64(sb, inode_get_mtime_sec(inode));
ufs_inode->ui_mtimensec = cpu_to_fs32(sb,
inode_get_mtime_nsec(inode));
ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
} else if (inode->i_blocks) {
memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
sizeof(ufs_inode->ui_u2.ui_addr));
} else {
memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
sizeof(ufs_inode->ui_u2.ui_symlink));
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs2_inode));
UFSD("EXIT\n");
}
static int ufs_update_inode(struct inode * inode, int do_sync)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * bh;
UFSD("ENTER, ino %lu\n", inode->i_ino);
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
return -1;
}
bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
return -1;
}
if (uspi->fs_magic == UFS2_MAGIC) {
struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
ufs2_update_inode(inode,
ufs2_inode + ufs_inotofsbo(inode->i_ino));
} else {
struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
}
mark_buffer_dirty(bh);
if (do_sync)
sync_dirty_buffer(bh);
brelse (bh);
UFSD("EXIT\n");
return 0;
}
int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
}
int ufs_sync_inode (struct inode *inode)
{
return ufs_update_inode (inode, 1);
}
void ufs_evict_inode(struct inode * inode)
{
int want_delete = 0;
if (!inode->i_nlink && !is_bad_inode(inode))
want_delete = 1;
truncate_inode_pages_final(&inode->i_data);
if (want_delete) {
inode->i_size = 0;
if (inode->i_blocks &&
(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
ufs_truncate_blocks(inode);
ufs_update_inode(inode, inode_needs_sync(inode));
}
invalidate_inode_buffers(inode);
clear_inode(inode);
if (want_delete)
ufs_free_inode(inode);
}
struct to_free {
struct inode *inode;
u64 to;
unsigned count;
};
static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
{
if (ctx->count && ctx->to != from) {
ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
ctx->count = 0;
}
ctx->count += count;
ctx->to = from + count;
}
#define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
static void ufs_trunc_direct(struct inode *inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block * sb;
struct ufs_sb_private_info * uspi;
void *p;
u64 frag1, frag2, frag3, frag4, block1, block2;
struct to_free ctx = {.inode = inode};
unsigned i, tmp;
UFSD("ENTER: ino %lu\n", inode->i_ino);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
frag1 = DIRECT_FRAGMENT;
frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
frag3 = frag4 & ~uspi->s_fpbmask;
block1 = block2 = 0;
if (frag2 > frag3) {
frag2 = frag4;
frag3 = frag4 = 0;
} else if (frag2 < frag3) {
block1 = ufs_fragstoblks (frag2);
block2 = ufs_fragstoblks (frag3);
}
UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
" frag3 %llu, frag4 %llu\n", inode->i_ino,
(unsigned long long)frag1, (unsigned long long)frag2,
(unsigned long long)block1, (unsigned long long)block2,
(unsigned long long)frag3, (unsigned long long)frag4);
if (frag1 >= frag2)
goto next1;
/*
* Free first free fragments
*/
p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
tmp = ufs_data_ptr_to_cpu(sb, p);
if (!tmp )
ufs_panic (sb, "ufs_trunc_direct", "internal error");
frag2 -= frag1;
frag1 = ufs_fragnum (frag1);
ufs_free_fragments(inode, tmp + frag1, frag2);
next1:
/*
* Free whole blocks
*/
for (i = block1 ; i < block2; i++) {
p = ufs_get_direct_data_ptr(uspi, ufsi, i);
tmp = ufs_data_ptr_to_cpu(sb, p);
if (!tmp)
continue;
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
free_data(&ctx, tmp, uspi->s_fpb);
}
free_data(&ctx, 0, 0);
if (frag3 >= frag4)
goto next3;
/*
* Free last free fragments
*/
p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
tmp = ufs_data_ptr_to_cpu(sb, p);
if (!tmp )
ufs_panic(sb, "ufs_truncate_direct", "internal error");
frag4 = ufs_fragnum (frag4);
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
ufs_free_fragments (inode, tmp, frag4);
next3:
UFSD("EXIT: ino %lu\n", inode->i_ino);
}
static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
unsigned i;
if (!ubh)
return;
if (--depth) {
for (i = 0; i < uspi->s_apb; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block)
free_full_branch(inode, block, depth);
}
} else {
struct to_free ctx = {.inode = inode};
for (i = 0; i < uspi->s_apb; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block)
free_data(&ctx, block, uspi->s_fpb);
}
free_data(&ctx, 0, 0);
}
ubh_bforget(ubh);
ufs_free_blocks(inode, ind_block, uspi->s_fpb);
}
static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned i;
if (--depth) {
for (i = from; i < uspi->s_apb ; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block) {
write_seqlock(&UFS_I(inode)->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&UFS_I(inode)->meta_lock);
ubh_mark_buffer_dirty(ubh);
free_full_branch(inode, block, depth);
}
}
} else {
struct to_free ctx = {.inode = inode};
for (i = from; i < uspi->s_apb; i++) {
void *p = ubh_get_data_ptr(uspi, ubh, i);
u64 block = ufs_data_ptr_to_cpu(sb, p);
if (block) {
write_seqlock(&UFS_I(inode)->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&UFS_I(inode)->meta_lock);
ubh_mark_buffer_dirty(ubh);
free_data(&ctx, block, uspi->s_fpb);
}
}
free_data(&ctx, 0, 0);
}
if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
ubh_sync_block(ubh);
ubh_brelse(ubh);
}
static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
{
int err = 0;
struct super_block *sb = inode->i_sb;
struct address_space *mapping = inode->i_mapping;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned i, end;
sector_t lastfrag;
struct folio *folio;
struct buffer_head *bh;
u64 phys64;
lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
if (!lastfrag)
goto out;
lastfrag--;
folio = ufs_get_locked_folio(mapping, lastfrag >>
(PAGE_SHIFT - inode->i_blkbits));
if (IS_ERR(folio)) {
err = -EIO;
goto out;
}
end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1);
bh = folio_buffers(folio);
for (i = 0; i < end; ++i)
bh = bh->b_this_page;
err = ufs_getfrag_block(inode, lastfrag, bh, 1);
if (unlikely(err))
goto out_unlock;
if (buffer_new(bh)) {
clear_buffer_new(bh);
clean_bdev_bh_alias(bh);
/*
* we do not zeroize fragment, because of
* if it maped to hole, it already contains zeroes
*/
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
folio_mark_dirty(folio);
}
if (lastfrag >= UFS_IND_FRAGMENT) {
end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
phys64 = bh->b_blocknr + 1;
for (i = 0; i < end; ++i) {
bh = sb_getblk(sb, i + phys64);
lock_buffer(bh);
memset(bh->b_data, 0, sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
sync_dirty_buffer(bh);
brelse(bh);
}
}
out_unlock:
ufs_put_locked_folio(folio);
out:
return err;
}
static void ufs_truncate_blocks(struct inode *inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
unsigned offsets[4];
int depth;
int depth2;
unsigned i;
struct ufs_buffer_head *ubh[3];
void *p;
u64 block;
if (inode->i_size) {
sector_t last = (inode->i_size - 1) >> uspi->s_bshift;
depth = ufs_block_to_path(inode, last, offsets);
if (!depth)
return;
} else {
depth = 1;
}
for (depth2 = depth - 1; depth2; depth2--)
if (offsets[depth2] != uspi->s_apb - 1)
break;
mutex_lock(&ufsi->truncate_mutex);
if (depth == 1) {
ufs_trunc_direct(inode);
offsets[0] = UFS_IND_BLOCK;
} else {
/* get the blocks that should be partially emptied */
p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++);
for (i = 0; i < depth2; i++) {
block = ufs_data_ptr_to_cpu(sb, p);
if (!block)
break;
ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
if (!ubh[i]) {
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
break;
}
p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++);
}
while (i--)
free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
}
for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
p = ufs_get_direct_data_ptr(uspi, ufsi, i);
block = ufs_data_ptr_to_cpu(sb, p);
if (block) {
write_seqlock(&ufsi->meta_lock);
ufs_data_ptr_clear(uspi, p);
write_sequnlock(&ufsi->meta_lock);
free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
}
}
read_seqlock_excl(&ufsi->meta_lock);
ufsi->i_lastfrag = DIRECT_FRAGMENT;
read_sequnlock_excl(&ufsi->meta_lock);
mark_inode_dirty(inode);
mutex_unlock(&ufsi->truncate_mutex);
}
static int ufs_truncate(struct inode *inode, loff_t size)
{
int err = 0;
UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
inode->i_ino, (unsigned long long)size,
(unsigned long long)i_size_read(inode));
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return -EINVAL;
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return -EPERM;
err = ufs_alloc_lastblock(inode, size);
if (err)
goto out;
block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
truncate_setsize(inode, size);
ufs_truncate_blocks(inode);
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
mark_inode_dirty(inode);
out:
UFSD("EXIT: err %d\n", err);
return err;
}
int ufs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
unsigned int ia_valid = attr->ia_valid;
int error;
error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
if (error)
return error;
if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
error = ufs_truncate(inode, attr->ia_size);
if (error)
return error;
}
setattr_copy(&nop_mnt_idmap, inode, attr);
mark_inode_dirty(inode);
return 0;
}
const struct inode_operations ufs_file_inode_operations = {
.setattr = ufs_setattr,
};