mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 17:08:10 +00:00
fa8584566c
Make the sym53c8xx_2 driver slave_alloc/destroy less unsafe. References to the destroyed LCB are cleared from the target structure (instead of leaving a dangling pointer), and when the last LCB for the target is destroyed the reference to the upper layer target data is cleared. The host lock is used to prevent a race with the interrupt handler. Also user commands are prevented for targets with all LCBs destroyed. Signed-off-by: Aaro Koskinen <Aaro.Koskinen@nokia.com> Tested-by: Tony Battersby <tonyb@cybernetics.com> Signed-off-by: Mike Christie <michaelc@cs.wisc.edu> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
1226 lines
34 KiB
C
1226 lines
34 KiB
C
/*
|
|
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
|
|
* of PCI-SCSI IO processors.
|
|
*
|
|
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
|
|
*
|
|
* This driver is derived from the Linux sym53c8xx driver.
|
|
* Copyright (C) 1998-2000 Gerard Roudier
|
|
*
|
|
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
|
|
* a port of the FreeBSD ncr driver to Linux-1.2.13.
|
|
*
|
|
* The original ncr driver has been written for 386bsd and FreeBSD by
|
|
* Wolfgang Stanglmeier <wolf@cologne.de>
|
|
* Stefan Esser <se@mi.Uni-Koeln.de>
|
|
* Copyright (C) 1994 Wolfgang Stanglmeier
|
|
*
|
|
* Other major contributions:
|
|
*
|
|
* NVRAM detection and reading.
|
|
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
|
|
*
|
|
*-----------------------------------------------------------------------------
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#ifndef SYM_HIPD_H
|
|
#define SYM_HIPD_H
|
|
|
|
/*
|
|
* Generic driver options.
|
|
*
|
|
* They may be defined in platform specific headers, if they
|
|
* are useful.
|
|
*
|
|
* SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
* When this option is set, the driver will use a queue per
|
|
* device and handle QUEUE FULL status requeuing internally.
|
|
*
|
|
* SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
* When this option is set, the driver tries to limit tagged
|
|
* command reordering to some reasonnable value.
|
|
* (set for Linux)
|
|
*/
|
|
#if 0
|
|
#define SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
#define SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
#endif
|
|
|
|
/*
|
|
* Active debugging tags and verbosity.
|
|
* Both DEBUG_FLAGS and sym_verbose can be redefined
|
|
* by the platform specific code to something else.
|
|
*/
|
|
#define DEBUG_ALLOC (0x0001)
|
|
#define DEBUG_PHASE (0x0002)
|
|
#define DEBUG_POLL (0x0004)
|
|
#define DEBUG_QUEUE (0x0008)
|
|
#define DEBUG_RESULT (0x0010)
|
|
#define DEBUG_SCATTER (0x0020)
|
|
#define DEBUG_SCRIPT (0x0040)
|
|
#define DEBUG_TINY (0x0080)
|
|
#define DEBUG_TIMING (0x0100)
|
|
#define DEBUG_NEGO (0x0200)
|
|
#define DEBUG_TAGS (0x0400)
|
|
#define DEBUG_POINTER (0x0800)
|
|
|
|
#ifndef DEBUG_FLAGS
|
|
#define DEBUG_FLAGS (0x0000)
|
|
#endif
|
|
|
|
#ifndef sym_verbose
|
|
#define sym_verbose (np->verbose)
|
|
#endif
|
|
|
|
/*
|
|
* These ones should have been already defined.
|
|
*/
|
|
#ifndef assert
|
|
#define assert(expression) { \
|
|
if (!(expression)) { \
|
|
(void)panic( \
|
|
"assertion \"%s\" failed: file \"%s\", line %d\n", \
|
|
#expression, \
|
|
__FILE__, __LINE__); \
|
|
} \
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Number of tasks per device we want to handle.
|
|
*/
|
|
#if SYM_CONF_MAX_TAG_ORDER > 8
|
|
#error "more than 256 tags per logical unit not allowed."
|
|
#endif
|
|
#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
|
|
|
|
/*
|
|
* Donnot use more tasks that we can handle.
|
|
*/
|
|
#ifndef SYM_CONF_MAX_TAG
|
|
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
|
|
#endif
|
|
#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
|
|
#undef SYM_CONF_MAX_TAG
|
|
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
|
|
#endif
|
|
|
|
/*
|
|
* This one means 'NO TAG for this job'
|
|
*/
|
|
#define NO_TAG (256)
|
|
|
|
/*
|
|
* Number of SCSI targets.
|
|
*/
|
|
#if SYM_CONF_MAX_TARGET > 16
|
|
#error "more than 16 targets not allowed."
|
|
#endif
|
|
|
|
/*
|
|
* Number of logical units per target.
|
|
*/
|
|
#if SYM_CONF_MAX_LUN > 64
|
|
#error "more than 64 logical units per target not allowed."
|
|
#endif
|
|
|
|
/*
|
|
* Asynchronous pre-scaler (ns). Shall be 40 for
|
|
* the SCSI timings to be compliant.
|
|
*/
|
|
#define SYM_CONF_MIN_ASYNC (40)
|
|
|
|
|
|
/*
|
|
* MEMORY ALLOCATOR.
|
|
*/
|
|
|
|
#define SYM_MEM_WARN 1 /* Warn on failed operations */
|
|
|
|
#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
|
|
#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
|
|
#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
|
|
/*
|
|
* Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
|
|
* Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
|
|
* (1 PAGE at a time is just fine).
|
|
*/
|
|
#define SYM_MEM_SHIFT 4
|
|
#define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
|
|
#define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
|
|
|
|
/*
|
|
* Number of entries in the START and DONE queues.
|
|
*
|
|
* We limit to 1 PAGE in order to succeed allocation of
|
|
* these queues. Each entry is 8 bytes long (2 DWORDS).
|
|
*/
|
|
#ifdef SYM_CONF_MAX_START
|
|
#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
|
|
#else
|
|
#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
|
|
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
|
|
#endif
|
|
|
|
#if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
|
|
#undef SYM_CONF_MAX_QUEUE
|
|
#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
|
|
#undef SYM_CONF_MAX_START
|
|
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
|
|
#endif
|
|
|
|
/*
|
|
* For this one, we want a short name :-)
|
|
*/
|
|
#define MAX_QUEUE SYM_CONF_MAX_QUEUE
|
|
|
|
/*
|
|
* Common definitions for both bus space based and legacy IO methods.
|
|
*/
|
|
|
|
#define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
|
|
#define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
|
|
#define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
|
|
|
|
#define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
|
|
#define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
|
|
#define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
|
|
|
|
#define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
|
|
#define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
|
|
#define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
|
|
|
|
#define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
|
|
#define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
|
|
#define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
|
|
|
|
#define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
|
|
#define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
|
|
#define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
|
|
#define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
|
|
#define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
|
|
#define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
|
|
|
|
/*
|
|
* We normally want the chip to have a consistent view
|
|
* of driver internal data structures when we restart it.
|
|
* Thus these macros.
|
|
*/
|
|
#define OUTL_DSP(np, v) \
|
|
do { \
|
|
MEMORY_WRITE_BARRIER(); \
|
|
OUTL(np, nc_dsp, (v)); \
|
|
} while (0)
|
|
|
|
#define OUTONB_STD() \
|
|
do { \
|
|
MEMORY_WRITE_BARRIER(); \
|
|
OUTONB(np, nc_dcntl, (STD|NOCOM)); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Command control block states.
|
|
*/
|
|
#define HS_IDLE (0)
|
|
#define HS_BUSY (1)
|
|
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
|
|
#define HS_DISCONNECT (3) /* Disconnected by target */
|
|
#define HS_WAIT (4) /* waiting for resource */
|
|
|
|
#define HS_DONEMASK (0x80)
|
|
#define HS_COMPLETE (4|HS_DONEMASK)
|
|
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
|
|
#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
|
|
#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
|
|
|
|
/*
|
|
* Software Interrupt Codes
|
|
*/
|
|
#define SIR_BAD_SCSI_STATUS (1)
|
|
#define SIR_SEL_ATN_NO_MSG_OUT (2)
|
|
#define SIR_MSG_RECEIVED (3)
|
|
#define SIR_MSG_WEIRD (4)
|
|
#define SIR_NEGO_FAILED (5)
|
|
#define SIR_NEGO_PROTO (6)
|
|
#define SIR_SCRIPT_STOPPED (7)
|
|
#define SIR_REJECT_TO_SEND (8)
|
|
#define SIR_SWIDE_OVERRUN (9)
|
|
#define SIR_SODL_UNDERRUN (10)
|
|
#define SIR_RESEL_NO_MSG_IN (11)
|
|
#define SIR_RESEL_NO_IDENTIFY (12)
|
|
#define SIR_RESEL_BAD_LUN (13)
|
|
#define SIR_TARGET_SELECTED (14)
|
|
#define SIR_RESEL_BAD_I_T_L (15)
|
|
#define SIR_RESEL_BAD_I_T_L_Q (16)
|
|
#define SIR_ABORT_SENT (17)
|
|
#define SIR_RESEL_ABORTED (18)
|
|
#define SIR_MSG_OUT_DONE (19)
|
|
#define SIR_COMPLETE_ERROR (20)
|
|
#define SIR_DATA_OVERRUN (21)
|
|
#define SIR_BAD_PHASE (22)
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
#define SIR_DMAP_DIRTY (23)
|
|
#define SIR_MAX (23)
|
|
#else
|
|
#define SIR_MAX (22)
|
|
#endif
|
|
|
|
/*
|
|
* Extended error bit codes.
|
|
* xerr_status field of struct sym_ccb.
|
|
*/
|
|
#define XE_EXTRA_DATA (1) /* unexpected data phase */
|
|
#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
|
|
#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
|
|
#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
|
|
#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
|
|
|
|
/*
|
|
* Negotiation status.
|
|
* nego_status field of struct sym_ccb.
|
|
*/
|
|
#define NS_SYNC (1)
|
|
#define NS_WIDE (2)
|
|
#define NS_PPR (3)
|
|
|
|
/*
|
|
* A CCB hashed table is used to retrieve CCB address
|
|
* from DSA value.
|
|
*/
|
|
#define CCB_HASH_SHIFT 8
|
|
#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
|
|
#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
|
|
#if 1
|
|
#define CCB_HASH_CODE(dsa) \
|
|
(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
|
|
#else
|
|
#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
|
|
#endif
|
|
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
/*
|
|
* We may want to use segment registers for 64 bit DMA.
|
|
* 16 segments registers -> up to 64 GB addressable.
|
|
*/
|
|
#define SYM_DMAP_SHIFT (4)
|
|
#define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
|
|
#define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
|
|
#endif
|
|
|
|
/*
|
|
* Device flags.
|
|
*/
|
|
#define SYM_DISC_ENABLED (1)
|
|
#define SYM_TAGS_ENABLED (1<<1)
|
|
#define SYM_SCAN_BOOT_DISABLED (1<<2)
|
|
#define SYM_SCAN_LUNS_DISABLED (1<<3)
|
|
|
|
/*
|
|
* Host adapter miscellaneous flags.
|
|
*/
|
|
#define SYM_AVOID_BUS_RESET (1)
|
|
|
|
/*
|
|
* Misc.
|
|
*/
|
|
#define SYM_SNOOP_TIMEOUT (10000000)
|
|
#define BUS_8_BIT 0
|
|
#define BUS_16_BIT 1
|
|
|
|
/*
|
|
* Gather negotiable parameters value
|
|
*/
|
|
struct sym_trans {
|
|
u8 period;
|
|
u8 offset;
|
|
unsigned int width:1;
|
|
unsigned int iu:1;
|
|
unsigned int dt:1;
|
|
unsigned int qas:1;
|
|
unsigned int check_nego:1;
|
|
unsigned int renego:2;
|
|
};
|
|
|
|
/*
|
|
* Global TCB HEADER.
|
|
*
|
|
* Due to lack of indirect addressing on earlier NCR chips,
|
|
* this substructure is copied from the TCB to a global
|
|
* address after selection.
|
|
* For SYMBIOS chips that support LOAD/STORE this copy is
|
|
* not needed and thus not performed.
|
|
*/
|
|
struct sym_tcbh {
|
|
/*
|
|
* Scripts bus addresses of LUN table accessed from scripts.
|
|
* LUN #0 is a special case, since multi-lun devices are rare,
|
|
* and we we want to speed-up the general case and not waste
|
|
* resources.
|
|
*/
|
|
u32 luntbl_sa; /* bus address of this table */
|
|
u32 lun0_sa; /* bus address of LCB #0 */
|
|
/*
|
|
* Actual SYNC/WIDE IO registers value for this target.
|
|
* 'sval', 'wval' and 'uval' are read from SCRIPTS and
|
|
* so have alignment constraints.
|
|
*/
|
|
/*0*/ u_char uval; /* -> SCNTL4 register */
|
|
/*1*/ u_char sval; /* -> SXFER io register */
|
|
/*2*/ u_char filler1;
|
|
/*3*/ u_char wval; /* -> SCNTL3 io register */
|
|
};
|
|
|
|
/*
|
|
* Target Control Block
|
|
*/
|
|
struct sym_tcb {
|
|
/*
|
|
* TCB header.
|
|
* Assumed at offset 0.
|
|
*/
|
|
/*0*/ struct sym_tcbh head;
|
|
|
|
/*
|
|
* LUN table used by the SCRIPTS processor.
|
|
* An array of bus addresses is used on reselection.
|
|
*/
|
|
u32 *luntbl; /* LCBs bus address table */
|
|
int nlcb; /* Number of valid LCBs (including LUN #0) */
|
|
|
|
/*
|
|
* LUN table used by the C code.
|
|
*/
|
|
struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
|
|
#if SYM_CONF_MAX_LUN > 1
|
|
struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
|
|
#endif
|
|
|
|
#ifdef SYM_HAVE_STCB
|
|
/*
|
|
* O/S specific data structure.
|
|
*/
|
|
struct sym_stcb s;
|
|
#endif
|
|
|
|
/* Transfer goal */
|
|
struct sym_trans tgoal;
|
|
|
|
/* Last printed transfer speed */
|
|
struct sym_trans tprint;
|
|
|
|
/*
|
|
* Keep track of the CCB used for the negotiation in order
|
|
* to ensure that only 1 negotiation is queued at a time.
|
|
*/
|
|
struct sym_ccb * nego_cp; /* CCB used for the nego */
|
|
|
|
/*
|
|
* Set when we want to reset the device.
|
|
*/
|
|
u_char to_reset;
|
|
|
|
/*
|
|
* Other user settable limits and options.
|
|
* These limits are read from the NVRAM if present.
|
|
*/
|
|
unsigned char usrflags;
|
|
unsigned char usr_period;
|
|
unsigned char usr_width;
|
|
unsigned short usrtags;
|
|
struct scsi_target *starget;
|
|
};
|
|
|
|
/*
|
|
* Global LCB HEADER.
|
|
*
|
|
* Due to lack of indirect addressing on earlier NCR chips,
|
|
* this substructure is copied from the LCB to a global
|
|
* address after selection.
|
|
* For SYMBIOS chips that support LOAD/STORE this copy is
|
|
* not needed and thus not performed.
|
|
*/
|
|
struct sym_lcbh {
|
|
/*
|
|
* SCRIPTS address jumped by SCRIPTS on reselection.
|
|
* For not probed logical units, this address points to
|
|
* SCRIPTS that deal with bad LU handling (must be at
|
|
* offset zero of the LCB for that reason).
|
|
*/
|
|
/*0*/ u32 resel_sa;
|
|
|
|
/*
|
|
* Task (bus address of a CCB) read from SCRIPTS that points
|
|
* to the unique ITL nexus allowed to be disconnected.
|
|
*/
|
|
u32 itl_task_sa;
|
|
|
|
/*
|
|
* Task table bus address (read from SCRIPTS).
|
|
*/
|
|
u32 itlq_tbl_sa;
|
|
};
|
|
|
|
/*
|
|
* Logical Unit Control Block
|
|
*/
|
|
struct sym_lcb {
|
|
/*
|
|
* TCB header.
|
|
* Assumed at offset 0.
|
|
*/
|
|
/*0*/ struct sym_lcbh head;
|
|
|
|
/*
|
|
* Task table read from SCRIPTS that contains pointers to
|
|
* ITLQ nexuses. The bus address read from SCRIPTS is
|
|
* inside the header.
|
|
*/
|
|
u32 *itlq_tbl; /* Kernel virtual address */
|
|
|
|
/*
|
|
* Busy CCBs management.
|
|
*/
|
|
u_short busy_itlq; /* Number of busy tagged CCBs */
|
|
u_short busy_itl; /* Number of busy untagged CCBs */
|
|
|
|
/*
|
|
* Circular tag allocation buffer.
|
|
*/
|
|
u_short ia_tag; /* Tag allocation index */
|
|
u_short if_tag; /* Tag release index */
|
|
u_char *cb_tags; /* Circular tags buffer */
|
|
|
|
/*
|
|
* O/S specific data structure.
|
|
*/
|
|
#ifdef SYM_HAVE_SLCB
|
|
struct sym_slcb s;
|
|
#endif
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
/*
|
|
* Optionnaly the driver can handle device queueing,
|
|
* and requeues internally command to redo.
|
|
*/
|
|
SYM_QUEHEAD waiting_ccbq;
|
|
SYM_QUEHEAD started_ccbq;
|
|
int num_sgood;
|
|
u_short started_tags;
|
|
u_short started_no_tag;
|
|
u_short started_max;
|
|
u_short started_limit;
|
|
#endif
|
|
|
|
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
/*
|
|
* Optionally the driver can try to prevent SCSI
|
|
* IOs from being reordered too much.
|
|
*/
|
|
u_char tags_si; /* Current index to tags sum */
|
|
u_short tags_sum[2]; /* Tags sum counters */
|
|
u_short tags_since; /* # of tags since last switch */
|
|
#endif
|
|
|
|
/*
|
|
* Set when we want to clear all tasks.
|
|
*/
|
|
u_char to_clear;
|
|
|
|
/*
|
|
* Capabilities.
|
|
*/
|
|
u_char user_flags;
|
|
u_char curr_flags;
|
|
};
|
|
|
|
/*
|
|
* Action from SCRIPTS on a task.
|
|
* Is part of the CCB, but is also used separately to plug
|
|
* error handling action to perform from SCRIPTS.
|
|
*/
|
|
struct sym_actscr {
|
|
u32 start; /* Jumped by SCRIPTS after selection */
|
|
u32 restart; /* Jumped by SCRIPTS on relection */
|
|
};
|
|
|
|
/*
|
|
* Phase mismatch context.
|
|
*
|
|
* It is part of the CCB and is used as parameters for the
|
|
* DATA pointer. We need two contexts to handle correctly the
|
|
* SAVED DATA POINTER.
|
|
*/
|
|
struct sym_pmc {
|
|
struct sym_tblmove sg; /* Updated interrupted SG block */
|
|
u32 ret; /* SCRIPT return address */
|
|
};
|
|
|
|
/*
|
|
* LUN control block lookup.
|
|
* We use a direct pointer for LUN #0, and a table of
|
|
* pointers which is only allocated for devices that support
|
|
* LUN(s) > 0.
|
|
*/
|
|
#if SYM_CONF_MAX_LUN <= 1
|
|
#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
|
|
#else
|
|
#define sym_lp(tp, lun) \
|
|
(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
|
|
#endif
|
|
|
|
/*
|
|
* Status are used by the host and the script processor.
|
|
*
|
|
* The last four bytes (status[4]) are copied to the
|
|
* scratchb register (declared as scr0..scr3) just after the
|
|
* select/reselect, and copied back just after disconnecting.
|
|
* Inside the script the XX_REG are used.
|
|
*/
|
|
|
|
/*
|
|
* Last four bytes (script)
|
|
*/
|
|
#define HX_REG scr0
|
|
#define HX_PRT nc_scr0
|
|
#define HS_REG scr1
|
|
#define HS_PRT nc_scr1
|
|
#define SS_REG scr2
|
|
#define SS_PRT nc_scr2
|
|
#define HF_REG scr3
|
|
#define HF_PRT nc_scr3
|
|
|
|
/*
|
|
* Last four bytes (host)
|
|
*/
|
|
#define host_xflags phys.head.status[0]
|
|
#define host_status phys.head.status[1]
|
|
#define ssss_status phys.head.status[2]
|
|
#define host_flags phys.head.status[3]
|
|
|
|
/*
|
|
* Host flags
|
|
*/
|
|
#define HF_IN_PM0 1u
|
|
#define HF_IN_PM1 (1u<<1)
|
|
#define HF_ACT_PM (1u<<2)
|
|
#define HF_DP_SAVED (1u<<3)
|
|
#define HF_SENSE (1u<<4)
|
|
#define HF_EXT_ERR (1u<<5)
|
|
#define HF_DATA_IN (1u<<6)
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
#define HF_HINT_IARB (1u<<7)
|
|
#endif
|
|
|
|
/*
|
|
* More host flags
|
|
*/
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
#define HX_DMAP_DIRTY (1u<<7)
|
|
#endif
|
|
|
|
/*
|
|
* Global CCB HEADER.
|
|
*
|
|
* Due to lack of indirect addressing on earlier NCR chips,
|
|
* this substructure is copied from the ccb to a global
|
|
* address after selection (or reselection) and copied back
|
|
* before disconnect.
|
|
* For SYMBIOS chips that support LOAD/STORE this copy is
|
|
* not needed and thus not performed.
|
|
*/
|
|
|
|
struct sym_ccbh {
|
|
/*
|
|
* Start and restart SCRIPTS addresses (must be at 0).
|
|
*/
|
|
/*0*/ struct sym_actscr go;
|
|
|
|
/*
|
|
* SCRIPTS jump address that deal with data pointers.
|
|
* 'savep' points to the position in the script responsible
|
|
* for the actual transfer of data.
|
|
* It's written on reception of a SAVE_DATA_POINTER message.
|
|
*/
|
|
u32 savep; /* Jump address to saved data pointer */
|
|
u32 lastp; /* SCRIPTS address at end of data */
|
|
|
|
/*
|
|
* Status fields.
|
|
*/
|
|
u8 status[4];
|
|
};
|
|
|
|
/*
|
|
* GET/SET the value of the data pointer used by SCRIPTS.
|
|
*
|
|
* We must distinguish between the LOAD/STORE-based SCRIPTS
|
|
* that use directly the header in the CCB, and the NCR-GENERIC
|
|
* SCRIPTS that use the copy of the header in the HCB.
|
|
*/
|
|
#if SYM_CONF_GENERIC_SUPPORT
|
|
#define sym_set_script_dp(np, cp, dp) \
|
|
do { \
|
|
if (np->features & FE_LDSTR) \
|
|
cp->phys.head.lastp = cpu_to_scr(dp); \
|
|
else \
|
|
np->ccb_head.lastp = cpu_to_scr(dp); \
|
|
} while (0)
|
|
#define sym_get_script_dp(np, cp) \
|
|
scr_to_cpu((np->features & FE_LDSTR) ? \
|
|
cp->phys.head.lastp : np->ccb_head.lastp)
|
|
#else
|
|
#define sym_set_script_dp(np, cp, dp) \
|
|
do { \
|
|
cp->phys.head.lastp = cpu_to_scr(dp); \
|
|
} while (0)
|
|
|
|
#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
|
|
#endif
|
|
|
|
/*
|
|
* Data Structure Block
|
|
*
|
|
* During execution of a ccb by the script processor, the
|
|
* DSA (data structure address) register points to this
|
|
* substructure of the ccb.
|
|
*/
|
|
struct sym_dsb {
|
|
/*
|
|
* CCB header.
|
|
* Also assumed at offset 0 of the sym_ccb structure.
|
|
*/
|
|
/*0*/ struct sym_ccbh head;
|
|
|
|
/*
|
|
* Phase mismatch contexts.
|
|
* We need two to handle correctly the SAVED DATA POINTER.
|
|
* MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
|
|
* for address calculation from SCRIPTS.
|
|
*/
|
|
struct sym_pmc pm0;
|
|
struct sym_pmc pm1;
|
|
|
|
/*
|
|
* Table data for Script
|
|
*/
|
|
struct sym_tblsel select;
|
|
struct sym_tblmove smsg;
|
|
struct sym_tblmove smsg_ext;
|
|
struct sym_tblmove cmd;
|
|
struct sym_tblmove sense;
|
|
struct sym_tblmove wresid;
|
|
struct sym_tblmove data [SYM_CONF_MAX_SG];
|
|
};
|
|
|
|
/*
|
|
* Our Command Control Block
|
|
*/
|
|
struct sym_ccb {
|
|
/*
|
|
* This is the data structure which is pointed by the DSA
|
|
* register when it is executed by the script processor.
|
|
* It must be the first entry.
|
|
*/
|
|
struct sym_dsb phys;
|
|
|
|
/*
|
|
* Pointer to CAM ccb and related stuff.
|
|
*/
|
|
struct scsi_cmnd *cmd; /* CAM scsiio ccb */
|
|
u8 cdb_buf[16]; /* Copy of CDB */
|
|
#define SYM_SNS_BBUF_LEN 32
|
|
u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
|
|
int data_len; /* Total data length */
|
|
int segments; /* Number of SG segments */
|
|
|
|
u8 order; /* Tag type (if tagged command) */
|
|
unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */
|
|
|
|
u_char nego_status; /* Negotiation status */
|
|
u_char xerr_status; /* Extended error flags */
|
|
u32 extra_bytes; /* Extraneous bytes transferred */
|
|
|
|
/*
|
|
* Message areas.
|
|
* We prepare a message to be sent after selection.
|
|
* We may use a second one if the command is rescheduled
|
|
* due to CHECK_CONDITION or COMMAND TERMINATED.
|
|
* Contents are IDENTIFY and SIMPLE_TAG.
|
|
* While negotiating sync or wide transfer,
|
|
* a SDTR or WDTR message is appended.
|
|
*/
|
|
u_char scsi_smsg [12];
|
|
u_char scsi_smsg2[12];
|
|
|
|
/*
|
|
* Auto request sense related fields.
|
|
*/
|
|
u_char sensecmd[6]; /* Request Sense command */
|
|
u_char sv_scsi_status; /* Saved SCSI status */
|
|
u_char sv_xerr_status; /* Saved extended status */
|
|
int sv_resid; /* Saved residual */
|
|
|
|
/*
|
|
* Other fields.
|
|
*/
|
|
u32 ccb_ba; /* BUS address of this CCB */
|
|
u_short tag; /* Tag for this transfer */
|
|
/* NO_TAG means no tag */
|
|
u_char target;
|
|
u_char lun;
|
|
struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
|
|
SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
|
|
u32 startp; /* Initial data pointer */
|
|
u32 goalp; /* Expected last data pointer */
|
|
int ext_sg; /* Extreme data pointer, used */
|
|
int ext_ofs; /* to calculate the residual. */
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
|
|
u_char started; /* CCB queued to the squeue */
|
|
#endif
|
|
u_char to_abort; /* Want this IO to be aborted */
|
|
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
u_char tags_si; /* Lun tags sum index (0,1) */
|
|
#endif
|
|
};
|
|
|
|
#define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
|
|
|
|
typedef struct device *m_pool_ident_t;
|
|
|
|
/*
|
|
* Host Control Block
|
|
*/
|
|
struct sym_hcb {
|
|
/*
|
|
* Global headers.
|
|
* Due to poorness of addressing capabilities, earlier
|
|
* chips (810, 815, 825) copy part of the data structures
|
|
* (CCB, TCB and LCB) in fixed areas.
|
|
*/
|
|
#if SYM_CONF_GENERIC_SUPPORT
|
|
struct sym_ccbh ccb_head;
|
|
struct sym_tcbh tcb_head;
|
|
struct sym_lcbh lcb_head;
|
|
#endif
|
|
/*
|
|
* Idle task and invalid task actions and
|
|
* their bus addresses.
|
|
*/
|
|
struct sym_actscr idletask, notask, bad_itl, bad_itlq;
|
|
u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
|
|
|
|
/*
|
|
* Dummy lun table to protect us against target
|
|
* returning bad lun number on reselection.
|
|
*/
|
|
u32 *badluntbl; /* Table physical address */
|
|
u32 badlun_sa; /* SCRIPT handler BUS address */
|
|
|
|
/*
|
|
* Bus address of this host control block.
|
|
*/
|
|
u32 hcb_ba;
|
|
|
|
/*
|
|
* Bit 32-63 of the on-chip RAM bus address in LE format.
|
|
* The START_RAM64 script loads the MMRS and MMWS from this
|
|
* field.
|
|
*/
|
|
u32 scr_ram_seg;
|
|
|
|
/*
|
|
* Initial value of some IO register bits.
|
|
* These values are assumed to have been set by BIOS, and may
|
|
* be used to probe adapter implementation differences.
|
|
*/
|
|
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
|
|
sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
|
|
sv_stest1;
|
|
|
|
/*
|
|
* Actual initial value of IO register bits used by the
|
|
* driver. They are loaded at initialisation according to
|
|
* features that are to be enabled/disabled.
|
|
*/
|
|
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
|
|
rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
|
|
|
|
/*
|
|
* Target data.
|
|
*/
|
|
struct sym_tcb target[SYM_CONF_MAX_TARGET];
|
|
|
|
/*
|
|
* Target control block bus address array used by the SCRIPT
|
|
* on reselection.
|
|
*/
|
|
u32 *targtbl;
|
|
u32 targtbl_ba;
|
|
|
|
/*
|
|
* DMA pool handle for this HBA.
|
|
*/
|
|
m_pool_ident_t bus_dmat;
|
|
|
|
/*
|
|
* O/S specific data structure
|
|
*/
|
|
struct sym_shcb s;
|
|
|
|
/*
|
|
* Physical bus addresses of the chip.
|
|
*/
|
|
u32 mmio_ba; /* MMIO 32 bit BUS address */
|
|
u32 ram_ba; /* RAM 32 bit BUS address */
|
|
|
|
/*
|
|
* SCRIPTS virtual and physical bus addresses.
|
|
* 'script' is loaded in the on-chip RAM if present.
|
|
* 'scripth' stays in main memory for all chips except the
|
|
* 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
|
|
*/
|
|
u_char *scripta0; /* Copy of scripts A, B, Z */
|
|
u_char *scriptb0;
|
|
u_char *scriptz0;
|
|
u32 scripta_ba; /* Actual scripts A, B, Z */
|
|
u32 scriptb_ba; /* 32 bit bus addresses. */
|
|
u32 scriptz_ba;
|
|
u_short scripta_sz; /* Actual size of script A, B, Z*/
|
|
u_short scriptb_sz;
|
|
u_short scriptz_sz;
|
|
|
|
/*
|
|
* Bus addresses, setup and patch methods for
|
|
* the selected firmware.
|
|
*/
|
|
struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
|
|
struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
|
|
struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
|
|
void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
|
|
void (*fw_patch)(struct Scsi_Host *);
|
|
char *fw_name;
|
|
|
|
/*
|
|
* General controller parameters and configuration.
|
|
*/
|
|
u_int features; /* Chip features map */
|
|
u_char myaddr; /* SCSI id of the adapter */
|
|
u_char maxburst; /* log base 2 of dwords burst */
|
|
u_char maxwide; /* Maximum transfer width */
|
|
u_char minsync; /* Min sync period factor (ST) */
|
|
u_char maxsync; /* Max sync period factor (ST) */
|
|
u_char maxoffs; /* Max scsi offset (ST) */
|
|
u_char minsync_dt; /* Min sync period factor (DT) */
|
|
u_char maxsync_dt; /* Max sync period factor (DT) */
|
|
u_char maxoffs_dt; /* Max scsi offset (DT) */
|
|
u_char multiplier; /* Clock multiplier (1,2,4) */
|
|
u_char clock_divn; /* Number of clock divisors */
|
|
u32 clock_khz; /* SCSI clock frequency in KHz */
|
|
u32 pciclk_khz; /* Estimated PCI clock in KHz */
|
|
/*
|
|
* Start queue management.
|
|
* It is filled up by the host processor and accessed by the
|
|
* SCRIPTS processor in order to start SCSI commands.
|
|
*/
|
|
volatile /* Prevent code optimizations */
|
|
u32 *squeue; /* Start queue virtual address */
|
|
u32 squeue_ba; /* Start queue BUS address */
|
|
u_short squeueput; /* Next free slot of the queue */
|
|
u_short actccbs; /* Number of allocated CCBs */
|
|
|
|
/*
|
|
* Command completion queue.
|
|
* It is the same size as the start queue to avoid overflow.
|
|
*/
|
|
u_short dqueueget; /* Next position to scan */
|
|
volatile /* Prevent code optimizations */
|
|
u32 *dqueue; /* Completion (done) queue */
|
|
u32 dqueue_ba; /* Done queue BUS address */
|
|
|
|
/*
|
|
* Miscellaneous buffers accessed by the scripts-processor.
|
|
* They shall be DWORD aligned, because they may be read or
|
|
* written with a script command.
|
|
*/
|
|
u_char msgout[8]; /* Buffer for MESSAGE OUT */
|
|
u_char msgin [8]; /* Buffer for MESSAGE IN */
|
|
u32 lastmsg; /* Last SCSI message sent */
|
|
u32 scratch; /* Scratch for SCSI receive */
|
|
/* Also used for cache test */
|
|
/*
|
|
* Miscellaneous configuration and status parameters.
|
|
*/
|
|
u_char usrflags; /* Miscellaneous user flags */
|
|
u_char scsi_mode; /* Current SCSI BUS mode */
|
|
u_char verbose; /* Verbosity for this controller*/
|
|
|
|
/*
|
|
* CCB lists and queue.
|
|
*/
|
|
struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
|
|
/* CCB_HASH_SIZE lists of CCBs */
|
|
SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
|
|
SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
|
|
|
|
/*
|
|
* During error handling and/or recovery,
|
|
* active CCBs that are to be completed with
|
|
* error or requeued are moved from the busy_ccbq
|
|
* to the comp_ccbq prior to completion.
|
|
*/
|
|
SYM_QUEHEAD comp_ccbq;
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
SYM_QUEHEAD dummy_ccbq;
|
|
#endif
|
|
|
|
/*
|
|
* IMMEDIATE ARBITRATION (IARB) control.
|
|
*
|
|
* We keep track in 'last_cp' of the last CCB that has been
|
|
* queued to the SCRIPTS processor and clear 'last_cp' when
|
|
* this CCB completes. If last_cp is not zero at the moment
|
|
* we queue a new CCB, we set a flag in 'last_cp' that is
|
|
* used by the SCRIPTS as a hint for setting IARB.
|
|
* We donnot set more than 'iarb_max' consecutive hints for
|
|
* IARB in order to leave devices a chance to reselect.
|
|
* By the way, any non zero value of 'iarb_max' is unfair. :)
|
|
*/
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u_short iarb_max; /* Max. # consecutive IARB hints*/
|
|
u_short iarb_count; /* Actual # of these hints */
|
|
struct sym_ccb * last_cp;
|
|
#endif
|
|
|
|
/*
|
|
* Command abort handling.
|
|
* We need to synchronize tightly with the SCRIPTS
|
|
* processor in order to handle things correctly.
|
|
*/
|
|
u_char abrt_msg[4]; /* Message to send buffer */
|
|
struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
|
|
struct sym_tblsel abrt_sel; /* Sync params for selection */
|
|
u_char istat_sem; /* Tells the chip to stop (SEM) */
|
|
|
|
/*
|
|
* 64 bit DMA handling.
|
|
*/
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE != 0
|
|
u_char use_dac; /* Use PCI DAC cycles */
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
u_char dmap_dirty; /* Dma segments registers dirty */
|
|
u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
|
|
#define use_dac(np) 0
|
|
#define set_dac(np) do { } while (0)
|
|
#else
|
|
#define use_dac(np) (np)->use_dac
|
|
#define set_dac(np) (np)->use_dac = 1
|
|
#endif
|
|
|
|
#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
|
|
|
|
|
|
/*
|
|
* FIRMWARES (sym_fw.c)
|
|
*/
|
|
struct sym_fw * sym_find_firmware(struct sym_chip *chip);
|
|
void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
|
|
|
|
/*
|
|
* Driver methods called from O/S specific code.
|
|
*/
|
|
char *sym_driver_name(void);
|
|
void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
|
|
int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
|
|
struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
|
|
#else
|
|
void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
|
|
#endif
|
|
void sym_start_up(struct Scsi_Host *, int reason);
|
|
irqreturn_t sym_interrupt(struct Scsi_Host *);
|
|
int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
|
|
struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
|
|
void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
|
|
struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
|
|
int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
|
|
int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
|
|
int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
|
|
int sym_reset_scsi_target(struct sym_hcb *np, int target);
|
|
void sym_hcb_free(struct sym_hcb *np);
|
|
int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
|
|
|
|
/*
|
|
* Build a scatter/gather entry.
|
|
*
|
|
* For 64 bit systems, we use the 8 upper bits of the size field
|
|
* to provide bus address bits 32-39 to the SCRIPTS processor.
|
|
* This allows the 895A, 896, 1010 to address up to 1 TB of memory.
|
|
*/
|
|
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
|
|
#define DMA_DAC_MASK DMA_BIT_MASK(32)
|
|
#define sym_build_sge(np, data, badd, len) \
|
|
do { \
|
|
(data)->addr = cpu_to_scr(badd); \
|
|
(data)->size = cpu_to_scr(len); \
|
|
} while (0)
|
|
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
|
|
#define DMA_DAC_MASK DMA_BIT_MASK(40)
|
|
#define sym_build_sge(np, data, badd, len) \
|
|
do { \
|
|
(data)->addr = cpu_to_scr(badd); \
|
|
(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
|
|
} while (0)
|
|
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
#define DMA_DAC_MASK DMA_BIT_MASK(64)
|
|
int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
|
|
static inline void
|
|
sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
|
|
{
|
|
u32 h = (badd>>32);
|
|
int s = (h&SYM_DMAP_MASK);
|
|
|
|
if (h != np->dmap_bah[s])
|
|
goto bad;
|
|
good:
|
|
(data)->addr = cpu_to_scr(badd);
|
|
(data)->size = cpu_to_scr((s<<24) + len);
|
|
return;
|
|
bad:
|
|
s = sym_lookup_dmap(np, h, s);
|
|
goto good;
|
|
}
|
|
#else
|
|
#error "Unsupported DMA addressing mode"
|
|
#endif
|
|
|
|
/*
|
|
* MEMORY ALLOCATOR.
|
|
*/
|
|
|
|
#define sym_get_mem_cluster() \
|
|
(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
|
|
#define sym_free_mem_cluster(p) \
|
|
free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
|
|
|
|
/*
|
|
* Link between free memory chunks of a given size.
|
|
*/
|
|
typedef struct sym_m_link {
|
|
struct sym_m_link *next;
|
|
} *m_link_p;
|
|
|
|
/*
|
|
* Virtual to bus physical translation for a given cluster.
|
|
* Such a structure is only useful with DMA abstraction.
|
|
*/
|
|
typedef struct sym_m_vtob { /* Virtual to Bus address translation */
|
|
struct sym_m_vtob *next;
|
|
void *vaddr; /* Virtual address */
|
|
dma_addr_t baddr; /* Bus physical address */
|
|
} *m_vtob_p;
|
|
|
|
/* Hash this stuff a bit to speed up translations */
|
|
#define VTOB_HASH_SHIFT 5
|
|
#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
|
|
#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
|
|
#define VTOB_HASH_CODE(m) \
|
|
((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
|
|
|
|
/*
|
|
* Memory pool of a given kind.
|
|
* Ideally, we want to use:
|
|
* 1) 1 pool for memory we donnot need to involve in DMA.
|
|
* 2) The same pool for controllers that require same DMA
|
|
* constraints and features.
|
|
* The OS specific m_pool_id_t thing and the sym_m_pool_match()
|
|
* method are expected to tell the driver about.
|
|
*/
|
|
typedef struct sym_m_pool {
|
|
m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
|
|
void * (*get_mem_cluster)(struct sym_m_pool *);
|
|
#ifdef SYM_MEM_FREE_UNUSED
|
|
void (*free_mem_cluster)(struct sym_m_pool *, void *);
|
|
#endif
|
|
#define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
|
|
#define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
|
|
int nump;
|
|
m_vtob_p vtob[VTOB_HASH_SIZE];
|
|
struct sym_m_pool *next;
|
|
struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
|
|
} *m_pool_p;
|
|
|
|
/*
|
|
* Alloc, free and translate addresses to bus physical
|
|
* for DMAable memory.
|
|
*/
|
|
void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
|
|
void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
|
|
dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
|
|
|
|
/*
|
|
* Verbs used by the driver code for DMAable memory handling.
|
|
* The _uvptv_ macro avoids a nasty warning about pointer to volatile
|
|
* being discarded.
|
|
*/
|
|
#define _uvptv_(p) ((void *)((u_long)(p)))
|
|
|
|
#define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
|
|
#define _sym_mfree_dma(np, p, l, n) \
|
|
__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
|
|
#define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
|
|
#define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
|
|
#define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
|
|
|
|
/*
|
|
* We have to provide the driver memory allocator with methods for
|
|
* it to maintain virtual to bus physical address translations.
|
|
*/
|
|
|
|
#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
|
|
|
|
static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
|
|
{
|
|
void *vaddr = NULL;
|
|
dma_addr_t baddr = 0;
|
|
|
|
vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
|
|
GFP_ATOMIC);
|
|
if (vaddr) {
|
|
vbp->vaddr = vaddr;
|
|
vbp->baddr = baddr;
|
|
}
|
|
return vaddr;
|
|
}
|
|
|
|
static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
|
|
{
|
|
dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
|
|
vbp->baddr);
|
|
}
|
|
|
|
#endif /* SYM_HIPD_H */
|