mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
2889773131
Turn on the DART already at 1GB. This is needed because of crippled devices in some systems, i.e. Airport Extreme cards, only supporting 30-bit DMA addresses. Otherwise, users with between 1 and 2GB of memory will need to manually enable it with iommu=force, and that's no good. Some simple performance tests show that there's a slight impact of enabling DART, but it's in the 1-3% range (kernel build with disk I/O as well as over NFS). iommu=off can still be used for those who don't want to deal with the overhead (and don't need it for any devices). Signed-off-by: Olof Johansson <olof@lixom.net> Signed-off-by: Paul Mackerras <paulus@samba.org>
2011 lines
48 KiB
C
2011 lines
48 KiB
C
/*
|
|
* Procedures for creating, accessing and interpreting the device tree.
|
|
*
|
|
* Paul Mackerras August 1996.
|
|
* Copyright (C) 1996-2005 Paul Mackerras.
|
|
*
|
|
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
|
|
* {engebret|bergner}@us.ibm.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/lmb.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kdump.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/system.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pci.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/pSeries_reconfig.h>
|
|
#include <asm/pci-bridge.h>
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(fmt...) printk(KERN_ERR fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
|
|
static int __initdata dt_root_addr_cells;
|
|
static int __initdata dt_root_size_cells;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
int __initdata iommu_is_off;
|
|
int __initdata iommu_force_on;
|
|
unsigned long tce_alloc_start, tce_alloc_end;
|
|
#endif
|
|
|
|
typedef u32 cell_t;
|
|
|
|
#if 0
|
|
static struct boot_param_header *initial_boot_params __initdata;
|
|
#else
|
|
struct boot_param_header *initial_boot_params;
|
|
#endif
|
|
|
|
static struct device_node *allnodes = NULL;
|
|
|
|
/* use when traversing tree through the allnext, child, sibling,
|
|
* or parent members of struct device_node.
|
|
*/
|
|
static DEFINE_RWLOCK(devtree_lock);
|
|
|
|
/* export that to outside world */
|
|
struct device_node *of_chosen;
|
|
|
|
struct device_node *dflt_interrupt_controller;
|
|
int num_interrupt_controllers;
|
|
|
|
/*
|
|
* Wrapper for allocating memory for various data that needs to be
|
|
* attached to device nodes as they are processed at boot or when
|
|
* added to the device tree later (e.g. DLPAR). At boot there is
|
|
* already a region reserved so we just increment *mem_start by size;
|
|
* otherwise we call kmalloc.
|
|
*/
|
|
static void * prom_alloc(unsigned long size, unsigned long *mem_start)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
if (!mem_start)
|
|
return kmalloc(size, GFP_KERNEL);
|
|
|
|
tmp = *mem_start;
|
|
*mem_start += size;
|
|
return (void *)tmp;
|
|
}
|
|
|
|
/*
|
|
* Find the device_node with a given phandle.
|
|
*/
|
|
static struct device_node * find_phandle(phandle ph)
|
|
{
|
|
struct device_node *np;
|
|
|
|
for (np = allnodes; np != 0; np = np->allnext)
|
|
if (np->linux_phandle == ph)
|
|
return np;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find the interrupt parent of a node.
|
|
*/
|
|
static struct device_node * __devinit intr_parent(struct device_node *p)
|
|
{
|
|
phandle *parp;
|
|
|
|
parp = (phandle *) get_property(p, "interrupt-parent", NULL);
|
|
if (parp == NULL)
|
|
return p->parent;
|
|
p = find_phandle(*parp);
|
|
if (p != NULL)
|
|
return p;
|
|
/*
|
|
* On a powermac booted with BootX, we don't get to know the
|
|
* phandles for any nodes, so find_phandle will return NULL.
|
|
* Fortunately these machines only have one interrupt controller
|
|
* so there isn't in fact any ambiguity. -- paulus
|
|
*/
|
|
if (num_interrupt_controllers == 1)
|
|
p = dflt_interrupt_controller;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Find out the size of each entry of the interrupts property
|
|
* for a node.
|
|
*/
|
|
int __devinit prom_n_intr_cells(struct device_node *np)
|
|
{
|
|
struct device_node *p;
|
|
unsigned int *icp;
|
|
|
|
for (p = np; (p = intr_parent(p)) != NULL; ) {
|
|
icp = (unsigned int *)
|
|
get_property(p, "#interrupt-cells", NULL);
|
|
if (icp != NULL)
|
|
return *icp;
|
|
if (get_property(p, "interrupt-controller", NULL) != NULL
|
|
|| get_property(p, "interrupt-map", NULL) != NULL) {
|
|
printk("oops, node %s doesn't have #interrupt-cells\n",
|
|
p->full_name);
|
|
return 1;
|
|
}
|
|
}
|
|
#ifdef DEBUG_IRQ
|
|
printk("prom_n_intr_cells failed for %s\n", np->full_name);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Map an interrupt from a device up to the platform interrupt
|
|
* descriptor.
|
|
*/
|
|
static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
|
|
struct device_node *np, unsigned int *ints,
|
|
int nintrc)
|
|
{
|
|
struct device_node *p, *ipar;
|
|
unsigned int *imap, *imask, *ip;
|
|
int i, imaplen, match;
|
|
int newintrc = 0, newaddrc = 0;
|
|
unsigned int *reg;
|
|
int naddrc;
|
|
|
|
reg = (unsigned int *) get_property(np, "reg", NULL);
|
|
naddrc = prom_n_addr_cells(np);
|
|
p = intr_parent(np);
|
|
while (p != NULL) {
|
|
if (get_property(p, "interrupt-controller", NULL) != NULL)
|
|
/* this node is an interrupt controller, stop here */
|
|
break;
|
|
imap = (unsigned int *)
|
|
get_property(p, "interrupt-map", &imaplen);
|
|
if (imap == NULL) {
|
|
p = intr_parent(p);
|
|
continue;
|
|
}
|
|
imask = (unsigned int *)
|
|
get_property(p, "interrupt-map-mask", NULL);
|
|
if (imask == NULL) {
|
|
printk("oops, %s has interrupt-map but no mask\n",
|
|
p->full_name);
|
|
return 0;
|
|
}
|
|
imaplen /= sizeof(unsigned int);
|
|
match = 0;
|
|
ipar = NULL;
|
|
while (imaplen > 0 && !match) {
|
|
/* check the child-interrupt field */
|
|
match = 1;
|
|
for (i = 0; i < naddrc && match; ++i)
|
|
match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
|
|
for (; i < naddrc + nintrc && match; ++i)
|
|
match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
|
|
imap += naddrc + nintrc;
|
|
imaplen -= naddrc + nintrc;
|
|
/* grab the interrupt parent */
|
|
ipar = find_phandle((phandle) *imap++);
|
|
--imaplen;
|
|
if (ipar == NULL && num_interrupt_controllers == 1)
|
|
/* cope with BootX not giving us phandles */
|
|
ipar = dflt_interrupt_controller;
|
|
if (ipar == NULL) {
|
|
printk("oops, no int parent %x in map of %s\n",
|
|
imap[-1], p->full_name);
|
|
return 0;
|
|
}
|
|
/* find the parent's # addr and intr cells */
|
|
ip = (unsigned int *)
|
|
get_property(ipar, "#interrupt-cells", NULL);
|
|
if (ip == NULL) {
|
|
printk("oops, no #interrupt-cells on %s\n",
|
|
ipar->full_name);
|
|
return 0;
|
|
}
|
|
newintrc = *ip;
|
|
ip = (unsigned int *)
|
|
get_property(ipar, "#address-cells", NULL);
|
|
newaddrc = (ip == NULL)? 0: *ip;
|
|
imap += newaddrc + newintrc;
|
|
imaplen -= newaddrc + newintrc;
|
|
}
|
|
if (imaplen < 0) {
|
|
printk("oops, error decoding int-map on %s, len=%d\n",
|
|
p->full_name, imaplen);
|
|
return 0;
|
|
}
|
|
if (!match) {
|
|
#ifdef DEBUG_IRQ
|
|
printk("oops, no match in %s int-map for %s\n",
|
|
p->full_name, np->full_name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
p = ipar;
|
|
naddrc = newaddrc;
|
|
nintrc = newintrc;
|
|
ints = imap - nintrc;
|
|
reg = ints - naddrc;
|
|
}
|
|
if (p == NULL) {
|
|
#ifdef DEBUG_IRQ
|
|
printk("hmmm, int tree for %s doesn't have ctrler\n",
|
|
np->full_name);
|
|
#endif
|
|
return 0;
|
|
}
|
|
*irq = ints;
|
|
*ictrler = p;
|
|
return nintrc;
|
|
}
|
|
|
|
static unsigned char map_isa_senses[4] = {
|
|
IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
|
|
IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
|
|
IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
|
|
IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
|
|
};
|
|
|
|
static unsigned char map_mpic_senses[4] = {
|
|
IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
|
|
IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
|
|
/* 2 seems to be used for the 8259 cascade... */
|
|
IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
|
|
IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
|
|
};
|
|
|
|
static int __devinit finish_node_interrupts(struct device_node *np,
|
|
unsigned long *mem_start,
|
|
int measure_only)
|
|
{
|
|
unsigned int *ints;
|
|
int intlen, intrcells, intrcount;
|
|
int i, j, n, sense;
|
|
unsigned int *irq, virq;
|
|
struct device_node *ic;
|
|
int trace = 0;
|
|
|
|
//#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
|
|
#define TRACE(fmt...)
|
|
|
|
if (!strcmp(np->name, "smu-doorbell"))
|
|
trace = 1;
|
|
|
|
TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
|
|
num_interrupt_controllers);
|
|
|
|
if (num_interrupt_controllers == 0) {
|
|
/*
|
|
* Old machines just have a list of interrupt numbers
|
|
* and no interrupt-controller nodes.
|
|
*/
|
|
ints = (unsigned int *) get_property(np, "AAPL,interrupts",
|
|
&intlen);
|
|
/* XXX old interpret_pci_props looked in parent too */
|
|
/* XXX old interpret_macio_props looked for interrupts
|
|
before AAPL,interrupts */
|
|
if (ints == NULL)
|
|
ints = (unsigned int *) get_property(np, "interrupts",
|
|
&intlen);
|
|
if (ints == NULL)
|
|
return 0;
|
|
|
|
np->n_intrs = intlen / sizeof(unsigned int);
|
|
np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
|
|
mem_start);
|
|
if (!np->intrs)
|
|
return -ENOMEM;
|
|
if (measure_only)
|
|
return 0;
|
|
|
|
for (i = 0; i < np->n_intrs; ++i) {
|
|
np->intrs[i].line = *ints++;
|
|
np->intrs[i].sense = IRQ_SENSE_LEVEL
|
|
| IRQ_POLARITY_NEGATIVE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ints = (unsigned int *) get_property(np, "interrupts", &intlen);
|
|
TRACE("ints=%p, intlen=%d\n", ints, intlen);
|
|
if (ints == NULL)
|
|
return 0;
|
|
intrcells = prom_n_intr_cells(np);
|
|
intlen /= intrcells * sizeof(unsigned int);
|
|
TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
|
|
np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
|
|
if (!np->intrs)
|
|
return -ENOMEM;
|
|
|
|
if (measure_only)
|
|
return 0;
|
|
|
|
intrcount = 0;
|
|
for (i = 0; i < intlen; ++i, ints += intrcells) {
|
|
n = map_interrupt(&irq, &ic, np, ints, intrcells);
|
|
TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
|
|
if (n <= 0)
|
|
continue;
|
|
|
|
/* don't map IRQ numbers under a cascaded 8259 controller */
|
|
if (ic && device_is_compatible(ic, "chrp,iic")) {
|
|
np->intrs[intrcount].line = irq[0];
|
|
sense = (n > 1)? (irq[1] & 3): 3;
|
|
np->intrs[intrcount].sense = map_isa_senses[sense];
|
|
} else {
|
|
virq = virt_irq_create_mapping(irq[0]);
|
|
TRACE("virq=%d\n", virq);
|
|
#ifdef CONFIG_PPC64
|
|
if (virq == NO_IRQ) {
|
|
printk(KERN_CRIT "Could not allocate interrupt"
|
|
" number for %s\n", np->full_name);
|
|
continue;
|
|
}
|
|
#endif
|
|
np->intrs[intrcount].line = irq_offset_up(virq);
|
|
sense = (n > 1)? (irq[1] & 3): 1;
|
|
|
|
/* Apple uses bits in there in a different way, let's
|
|
* only keep the real sense bit on macs
|
|
*/
|
|
if (machine_is(powermac))
|
|
sense &= 0x1;
|
|
np->intrs[intrcount].sense = map_mpic_senses[sense];
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
|
|
if (machine_is(powermac) && ic && ic->parent) {
|
|
char *name = get_property(ic->parent, "name", NULL);
|
|
if (name && !strcmp(name, "u3"))
|
|
np->intrs[intrcount].line += 128;
|
|
else if (!(name && (!strcmp(name, "mac-io") ||
|
|
!strcmp(name, "u4"))))
|
|
/* ignore other cascaded controllers, such as
|
|
the k2-sata-root */
|
|
break;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
if (n > 2) {
|
|
printk("hmmm, got %d intr cells for %s:", n,
|
|
np->full_name);
|
|
for (j = 0; j < n; ++j)
|
|
printk(" %d", irq[j]);
|
|
printk("\n");
|
|
}
|
|
++intrcount;
|
|
}
|
|
np->n_intrs = intrcount;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit finish_node(struct device_node *np,
|
|
unsigned long *mem_start,
|
|
int measure_only)
|
|
{
|
|
struct device_node *child;
|
|
int rc = 0;
|
|
|
|
rc = finish_node_interrupts(np, mem_start, measure_only);
|
|
if (rc)
|
|
goto out;
|
|
|
|
for (child = np->child; child != NULL; child = child->sibling) {
|
|
rc = finish_node(child, mem_start, measure_only);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void __init scan_interrupt_controllers(void)
|
|
{
|
|
struct device_node *np;
|
|
int n = 0;
|
|
char *name, *ic;
|
|
int iclen;
|
|
|
|
for (np = allnodes; np != NULL; np = np->allnext) {
|
|
ic = get_property(np, "interrupt-controller", &iclen);
|
|
name = get_property(np, "name", NULL);
|
|
/* checking iclen makes sure we don't get a false
|
|
match on /chosen.interrupt_controller */
|
|
if ((name != NULL
|
|
&& strcmp(name, "interrupt-controller") == 0)
|
|
|| (ic != NULL && iclen == 0
|
|
&& strcmp(name, "AppleKiwi"))) {
|
|
if (n == 0)
|
|
dflt_interrupt_controller = np;
|
|
++n;
|
|
}
|
|
}
|
|
num_interrupt_controllers = n;
|
|
}
|
|
|
|
/**
|
|
* finish_device_tree is called once things are running normally
|
|
* (i.e. with text and data mapped to the address they were linked at).
|
|
* It traverses the device tree and fills in some of the additional,
|
|
* fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
|
|
* mapping is also initialized at this point.
|
|
*/
|
|
void __init finish_device_tree(void)
|
|
{
|
|
unsigned long start, end, size = 0;
|
|
|
|
DBG(" -> finish_device_tree\n");
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Initialize virtual IRQ map */
|
|
virt_irq_init();
|
|
#endif
|
|
scan_interrupt_controllers();
|
|
|
|
/*
|
|
* Finish device-tree (pre-parsing some properties etc...)
|
|
* We do this in 2 passes. One with "measure_only" set, which
|
|
* will only measure the amount of memory needed, then we can
|
|
* allocate that memory, and call finish_node again. However,
|
|
* we must be careful as most routines will fail nowadays when
|
|
* prom_alloc() returns 0, so we must make sure our first pass
|
|
* doesn't start at 0. We pre-initialize size to 16 for that
|
|
* reason and then remove those additional 16 bytes
|
|
*/
|
|
size = 16;
|
|
finish_node(allnodes, &size, 1);
|
|
size -= 16;
|
|
|
|
if (0 == size)
|
|
end = start = 0;
|
|
else
|
|
end = start = (unsigned long)__va(lmb_alloc(size, 128));
|
|
|
|
finish_node(allnodes, &end, 0);
|
|
BUG_ON(end != start + size);
|
|
|
|
DBG(" <- finish_device_tree\n");
|
|
}
|
|
|
|
static inline char *find_flat_dt_string(u32 offset)
|
|
{
|
|
return ((char *)initial_boot_params) +
|
|
initial_boot_params->off_dt_strings + offset;
|
|
}
|
|
|
|
/**
|
|
* This function is used to scan the flattened device-tree, it is
|
|
* used to extract the memory informations at boot before we can
|
|
* unflatten the tree
|
|
*/
|
|
int __init of_scan_flat_dt(int (*it)(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
unsigned long p = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
int rc = 0;
|
|
int depth = -1;
|
|
|
|
do {
|
|
u32 tag = *((u32 *)p);
|
|
char *pathp;
|
|
|
|
p += 4;
|
|
if (tag == OF_DT_END_NODE) {
|
|
depth --;
|
|
continue;
|
|
}
|
|
if (tag == OF_DT_NOP)
|
|
continue;
|
|
if (tag == OF_DT_END)
|
|
break;
|
|
if (tag == OF_DT_PROP) {
|
|
u32 sz = *((u32 *)p);
|
|
p += 8;
|
|
if (initial_boot_params->version < 0x10)
|
|
p = _ALIGN(p, sz >= 8 ? 8 : 4);
|
|
p += sz;
|
|
p = _ALIGN(p, 4);
|
|
continue;
|
|
}
|
|
if (tag != OF_DT_BEGIN_NODE) {
|
|
printk(KERN_WARNING "Invalid tag %x scanning flattened"
|
|
" device tree !\n", tag);
|
|
return -EINVAL;
|
|
}
|
|
depth++;
|
|
pathp = (char *)p;
|
|
p = _ALIGN(p + strlen(pathp) + 1, 4);
|
|
if ((*pathp) == '/') {
|
|
char *lp, *np;
|
|
for (lp = NULL, np = pathp; *np; np++)
|
|
if ((*np) == '/')
|
|
lp = np+1;
|
|
if (lp != NULL)
|
|
pathp = lp;
|
|
}
|
|
rc = it(p, pathp, depth, data);
|
|
if (rc != 0)
|
|
break;
|
|
} while(1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
unsigned long __init of_get_flat_dt_root(void)
|
|
{
|
|
unsigned long p = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
|
|
while(*((u32 *)p) == OF_DT_NOP)
|
|
p += 4;
|
|
BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
|
|
p += 4;
|
|
return _ALIGN(p + strlen((char *)p) + 1, 4);
|
|
}
|
|
|
|
/**
|
|
* This function can be used within scan_flattened_dt callback to get
|
|
* access to properties
|
|
*/
|
|
void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
|
|
unsigned long *size)
|
|
{
|
|
unsigned long p = node;
|
|
|
|
do {
|
|
u32 tag = *((u32 *)p);
|
|
u32 sz, noff;
|
|
const char *nstr;
|
|
|
|
p += 4;
|
|
if (tag == OF_DT_NOP)
|
|
continue;
|
|
if (tag != OF_DT_PROP)
|
|
return NULL;
|
|
|
|
sz = *((u32 *)p);
|
|
noff = *((u32 *)(p + 4));
|
|
p += 8;
|
|
if (initial_boot_params->version < 0x10)
|
|
p = _ALIGN(p, sz >= 8 ? 8 : 4);
|
|
|
|
nstr = find_flat_dt_string(noff);
|
|
if (nstr == NULL) {
|
|
printk(KERN_WARNING "Can't find property index"
|
|
" name !\n");
|
|
return NULL;
|
|
}
|
|
if (strcmp(name, nstr) == 0) {
|
|
if (size)
|
|
*size = sz;
|
|
return (void *)p;
|
|
}
|
|
p += sz;
|
|
p = _ALIGN(p, 4);
|
|
} while(1);
|
|
}
|
|
|
|
int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
|
|
{
|
|
const char* cp;
|
|
unsigned long cplen, l;
|
|
|
|
cp = of_get_flat_dt_prop(node, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
if (strncasecmp(cp, compat, strlen(compat)) == 0)
|
|
return 1;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
void *res;
|
|
|
|
*mem = _ALIGN(*mem, align);
|
|
res = (void *)*mem;
|
|
*mem += size;
|
|
|
|
return res;
|
|
}
|
|
|
|
static unsigned long __init unflatten_dt_node(unsigned long mem,
|
|
unsigned long *p,
|
|
struct device_node *dad,
|
|
struct device_node ***allnextpp,
|
|
unsigned long fpsize)
|
|
{
|
|
struct device_node *np;
|
|
struct property *pp, **prev_pp = NULL;
|
|
char *pathp;
|
|
u32 tag;
|
|
unsigned int l, allocl;
|
|
int has_name = 0;
|
|
int new_format = 0;
|
|
|
|
tag = *((u32 *)(*p));
|
|
if (tag != OF_DT_BEGIN_NODE) {
|
|
printk("Weird tag at start of node: %x\n", tag);
|
|
return mem;
|
|
}
|
|
*p += 4;
|
|
pathp = (char *)*p;
|
|
l = allocl = strlen(pathp) + 1;
|
|
*p = _ALIGN(*p + l, 4);
|
|
|
|
/* version 0x10 has a more compact unit name here instead of the full
|
|
* path. we accumulate the full path size using "fpsize", we'll rebuild
|
|
* it later. We detect this because the first character of the name is
|
|
* not '/'.
|
|
*/
|
|
if ((*pathp) != '/') {
|
|
new_format = 1;
|
|
if (fpsize == 0) {
|
|
/* root node: special case. fpsize accounts for path
|
|
* plus terminating zero. root node only has '/', so
|
|
* fpsize should be 2, but we want to avoid the first
|
|
* level nodes to have two '/' so we use fpsize 1 here
|
|
*/
|
|
fpsize = 1;
|
|
allocl = 2;
|
|
} else {
|
|
/* account for '/' and path size minus terminal 0
|
|
* already in 'l'
|
|
*/
|
|
fpsize += l;
|
|
allocl = fpsize;
|
|
}
|
|
}
|
|
|
|
|
|
np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
|
|
__alignof__(struct device_node));
|
|
if (allnextpp) {
|
|
memset(np, 0, sizeof(*np));
|
|
np->full_name = ((char*)np) + sizeof(struct device_node);
|
|
if (new_format) {
|
|
char *p = np->full_name;
|
|
/* rebuild full path for new format */
|
|
if (dad && dad->parent) {
|
|
strcpy(p, dad->full_name);
|
|
#ifdef DEBUG
|
|
if ((strlen(p) + l + 1) != allocl) {
|
|
DBG("%s: p: %d, l: %d, a: %d\n",
|
|
pathp, (int)strlen(p), l, allocl);
|
|
}
|
|
#endif
|
|
p += strlen(p);
|
|
}
|
|
*(p++) = '/';
|
|
memcpy(p, pathp, l);
|
|
} else
|
|
memcpy(np->full_name, pathp, l);
|
|
prev_pp = &np->properties;
|
|
**allnextpp = np;
|
|
*allnextpp = &np->allnext;
|
|
if (dad != NULL) {
|
|
np->parent = dad;
|
|
/* we temporarily use the next field as `last_child'*/
|
|
if (dad->next == 0)
|
|
dad->child = np;
|
|
else
|
|
dad->next->sibling = np;
|
|
dad->next = np;
|
|
}
|
|
kref_init(&np->kref);
|
|
}
|
|
while(1) {
|
|
u32 sz, noff;
|
|
char *pname;
|
|
|
|
tag = *((u32 *)(*p));
|
|
if (tag == OF_DT_NOP) {
|
|
*p += 4;
|
|
continue;
|
|
}
|
|
if (tag != OF_DT_PROP)
|
|
break;
|
|
*p += 4;
|
|
sz = *((u32 *)(*p));
|
|
noff = *((u32 *)((*p) + 4));
|
|
*p += 8;
|
|
if (initial_boot_params->version < 0x10)
|
|
*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
|
|
|
|
pname = find_flat_dt_string(noff);
|
|
if (pname == NULL) {
|
|
printk("Can't find property name in list !\n");
|
|
break;
|
|
}
|
|
if (strcmp(pname, "name") == 0)
|
|
has_name = 1;
|
|
l = strlen(pname) + 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property),
|
|
__alignof__(struct property));
|
|
if (allnextpp) {
|
|
if (strcmp(pname, "linux,phandle") == 0) {
|
|
np->node = *((u32 *)*p);
|
|
if (np->linux_phandle == 0)
|
|
np->linux_phandle = np->node;
|
|
}
|
|
if (strcmp(pname, "ibm,phandle") == 0)
|
|
np->linux_phandle = *((u32 *)*p);
|
|
pp->name = pname;
|
|
pp->length = sz;
|
|
pp->value = (void *)*p;
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
}
|
|
*p = _ALIGN((*p) + sz, 4);
|
|
}
|
|
/* with version 0x10 we may not have the name property, recreate
|
|
* it here from the unit name if absent
|
|
*/
|
|
if (!has_name) {
|
|
char *p = pathp, *ps = pathp, *pa = NULL;
|
|
int sz;
|
|
|
|
while (*p) {
|
|
if ((*p) == '@')
|
|
pa = p;
|
|
if ((*p) == '/')
|
|
ps = p + 1;
|
|
p++;
|
|
}
|
|
if (pa < ps)
|
|
pa = p;
|
|
sz = (pa - ps) + 1;
|
|
pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
|
|
__alignof__(struct property));
|
|
if (allnextpp) {
|
|
pp->name = "name";
|
|
pp->length = sz;
|
|
pp->value = (unsigned char *)(pp + 1);
|
|
*prev_pp = pp;
|
|
prev_pp = &pp->next;
|
|
memcpy(pp->value, ps, sz - 1);
|
|
((char *)pp->value)[sz - 1] = 0;
|
|
DBG("fixed up name for %s -> %s\n", pathp, pp->value);
|
|
}
|
|
}
|
|
if (allnextpp) {
|
|
*prev_pp = NULL;
|
|
np->name = get_property(np, "name", NULL);
|
|
np->type = get_property(np, "device_type", NULL);
|
|
|
|
if (!np->name)
|
|
np->name = "<NULL>";
|
|
if (!np->type)
|
|
np->type = "<NULL>";
|
|
}
|
|
while (tag == OF_DT_BEGIN_NODE) {
|
|
mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
|
|
tag = *((u32 *)(*p));
|
|
}
|
|
if (tag != OF_DT_END_NODE) {
|
|
printk("Weird tag at end of node: %x\n", tag);
|
|
return mem;
|
|
}
|
|
*p += 4;
|
|
return mem;
|
|
}
|
|
|
|
|
|
/**
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used (this used to be done by finish_device_tree)
|
|
*/
|
|
void __init unflatten_device_tree(void)
|
|
{
|
|
unsigned long start, mem, size;
|
|
struct device_node **allnextp = &allnodes;
|
|
|
|
DBG(" -> unflatten_device_tree()\n");
|
|
|
|
/* First pass, scan for size */
|
|
start = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
size = unflatten_dt_node(0, &start, NULL, NULL, 0);
|
|
size = (size | 3) + 1;
|
|
|
|
DBG(" size is %lx, allocating...\n", size);
|
|
|
|
/* Allocate memory for the expanded device tree */
|
|
mem = lmb_alloc(size + 4, __alignof__(struct device_node));
|
|
mem = (unsigned long) __va(mem);
|
|
|
|
((u32 *)mem)[size / 4] = 0xdeadbeef;
|
|
|
|
DBG(" unflattening %lx...\n", mem);
|
|
|
|
/* Second pass, do actual unflattening */
|
|
start = ((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_dt_struct;
|
|
unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
|
|
if (*((u32 *)start) != OF_DT_END)
|
|
printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
|
|
if (((u32 *)mem)[size / 4] != 0xdeadbeef)
|
|
printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
|
|
((u32 *)mem)[size / 4] );
|
|
*allnextp = NULL;
|
|
|
|
/* Get pointer to OF "/chosen" node for use everywhere */
|
|
of_chosen = of_find_node_by_path("/chosen");
|
|
if (of_chosen == NULL)
|
|
of_chosen = of_find_node_by_path("/chosen@0");
|
|
|
|
DBG(" <- unflatten_device_tree()\n");
|
|
}
|
|
|
|
static int __init early_init_dt_scan_cpus(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
static int logical_cpuid = 0;
|
|
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
#ifdef CONFIG_ALTIVEC
|
|
u32 *prop;
|
|
#endif
|
|
u32 *intserv;
|
|
int i, nthreads;
|
|
unsigned long len;
|
|
int found = 0;
|
|
|
|
/* We are scanning "cpu" nodes only */
|
|
if (type == NULL || strcmp(type, "cpu") != 0)
|
|
return 0;
|
|
|
|
/* Get physical cpuid */
|
|
intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
|
|
if (intserv) {
|
|
nthreads = len / sizeof(int);
|
|
} else {
|
|
intserv = of_get_flat_dt_prop(node, "reg", NULL);
|
|
nthreads = 1;
|
|
}
|
|
|
|
/*
|
|
* Now see if any of these threads match our boot cpu.
|
|
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
|
|
*/
|
|
for (i = 0; i < nthreads; i++) {
|
|
/*
|
|
* version 2 of the kexec param format adds the phys cpuid of
|
|
* booted proc.
|
|
*/
|
|
if (initial_boot_params && initial_boot_params->version >= 2) {
|
|
if (intserv[i] ==
|
|
initial_boot_params->boot_cpuid_phys) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* Check if it's the boot-cpu, set it's hw index now,
|
|
* unfortunately this format did not support booting
|
|
* off secondary threads.
|
|
*/
|
|
if (of_get_flat_dt_prop(node,
|
|
"linux,boot-cpu", NULL) != NULL) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* logical cpu id is always 0 on UP kernels */
|
|
logical_cpuid++;
|
|
#endif
|
|
}
|
|
|
|
if (found) {
|
|
DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
|
|
intserv[i]);
|
|
boot_cpuid = logical_cpuid;
|
|
set_hard_smp_processor_id(boot_cpuid, intserv[i]);
|
|
}
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Check if we have a VMX and eventually update CPU features */
|
|
prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
|
|
if (prop && (*prop) > 0) {
|
|
cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
|
|
cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
|
|
}
|
|
|
|
/* Same goes for Apple's "altivec" property */
|
|
prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
|
|
if (prop) {
|
|
cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
|
|
cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
if (nthreads > 1)
|
|
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
|
|
else
|
|
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init early_init_dt_scan_chosen(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
unsigned long *lprop;
|
|
unsigned long l;
|
|
char *p;
|
|
|
|
DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
|
|
|
|
if (depth != 1 ||
|
|
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
|
|
return 0;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* check if iommu is forced on or off */
|
|
if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
|
|
iommu_is_off = 1;
|
|
if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
|
|
iommu_force_on = 1;
|
|
#endif
|
|
|
|
lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
|
|
if (lprop)
|
|
memory_limit = *lprop;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
|
|
if (lprop)
|
|
tce_alloc_start = *lprop;
|
|
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
|
|
if (lprop)
|
|
tce_alloc_end = *lprop;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_RTAS
|
|
/* To help early debugging via the front panel, we retrieve a minimal
|
|
* set of RTAS infos now if available
|
|
*/
|
|
{
|
|
u64 *basep, *entryp, *sizep;
|
|
|
|
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
|
|
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
|
|
sizep = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
|
|
if (basep && entryp && sizep) {
|
|
rtas.base = *basep;
|
|
rtas.entry = *entryp;
|
|
rtas.size = *sizep;
|
|
}
|
|
}
|
|
#endif /* CONFIG_PPC_RTAS */
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
|
|
if (lprop)
|
|
crashk_res.start = *lprop;
|
|
|
|
lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
|
|
if (lprop)
|
|
crashk_res.end = crashk_res.start + *lprop - 1;
|
|
#endif
|
|
|
|
/* Retreive command line */
|
|
p = of_get_flat_dt_prop(node, "bootargs", &l);
|
|
if (p != NULL && l > 0)
|
|
strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
|
|
|
|
#ifdef CONFIG_CMDLINE
|
|
if (l == 0 || (l == 1 && (*p) == 0))
|
|
strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#endif /* CONFIG_CMDLINE */
|
|
|
|
DBG("Command line is: %s\n", cmd_line);
|
|
|
|
if (strstr(cmd_line, "mem=")) {
|
|
char *p, *q;
|
|
|
|
for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
|
|
q = p + 4;
|
|
if (p > cmd_line && p[-1] != ' ')
|
|
continue;
|
|
memory_limit = memparse(q, &q);
|
|
}
|
|
}
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static int __init early_init_dt_scan_root(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
u32 *prop;
|
|
|
|
if (depth != 0)
|
|
return 0;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
dt_root_size_cells = (prop == NULL) ? 1 : *prop;
|
|
DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
|
|
DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
|
|
{
|
|
cell_t *p = *cellp;
|
|
unsigned long r;
|
|
|
|
/* Ignore more than 2 cells */
|
|
while (s > sizeof(unsigned long) / 4) {
|
|
p++;
|
|
s--;
|
|
}
|
|
r = *p++;
|
|
#ifdef CONFIG_PPC64
|
|
if (s > 1) {
|
|
r <<= 32;
|
|
r |= *(p++);
|
|
s--;
|
|
}
|
|
#endif
|
|
|
|
*cellp = p;
|
|
return r;
|
|
}
|
|
|
|
|
|
static int __init early_init_dt_scan_memory(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
cell_t *reg, *endp;
|
|
unsigned long l;
|
|
|
|
/* We are scanning "memory" nodes only */
|
|
if (type == NULL) {
|
|
/*
|
|
* The longtrail doesn't have a device_type on the
|
|
* /memory node, so look for the node called /memory@0.
|
|
*/
|
|
if (depth != 1 || strcmp(uname, "memory@0") != 0)
|
|
return 0;
|
|
} else if (strcmp(type, "memory") != 0)
|
|
return 0;
|
|
|
|
reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
|
|
if (reg == NULL)
|
|
reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
|
|
if (reg == NULL)
|
|
return 0;
|
|
|
|
endp = reg + (l / sizeof(cell_t));
|
|
|
|
DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
|
|
uname, l, reg[0], reg[1], reg[2], reg[3]);
|
|
|
|
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
|
|
unsigned long base, size;
|
|
|
|
base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
if (size == 0)
|
|
continue;
|
|
DBG(" - %lx , %lx\n", base, size);
|
|
#ifdef CONFIG_PPC64
|
|
if (iommu_is_off) {
|
|
if (base >= 0x80000000ul)
|
|
continue;
|
|
if ((base + size) > 0x80000000ul)
|
|
size = 0x80000000ul - base;
|
|
}
|
|
#endif
|
|
lmb_add(base, size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __init early_reserve_mem(void)
|
|
{
|
|
u64 base, size;
|
|
u64 *reserve_map;
|
|
|
|
reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
|
|
initial_boot_params->off_mem_rsvmap);
|
|
#ifdef CONFIG_PPC32
|
|
/*
|
|
* Handle the case where we might be booting from an old kexec
|
|
* image that setup the mem_rsvmap as pairs of 32-bit values
|
|
*/
|
|
if (*reserve_map > 0xffffffffull) {
|
|
u32 base_32, size_32;
|
|
u32 *reserve_map_32 = (u32 *)reserve_map;
|
|
|
|
while (1) {
|
|
base_32 = *(reserve_map_32++);
|
|
size_32 = *(reserve_map_32++);
|
|
if (size_32 == 0)
|
|
break;
|
|
DBG("reserving: %x -> %x\n", base_32, size_32);
|
|
lmb_reserve(base_32, size_32);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
while (1) {
|
|
base = *(reserve_map++);
|
|
size = *(reserve_map++);
|
|
if (size == 0)
|
|
break;
|
|
DBG("reserving: %llx -> %llx\n", base, size);
|
|
lmb_reserve(base, size);
|
|
}
|
|
|
|
#if 0
|
|
DBG("memory reserved, lmbs :\n");
|
|
lmb_dump_all();
|
|
#endif
|
|
}
|
|
|
|
void __init early_init_devtree(void *params)
|
|
{
|
|
DBG(" -> early_init_devtree()\n");
|
|
|
|
/* Setup flat device-tree pointer */
|
|
initial_boot_params = params;
|
|
|
|
/* Retrieve various informations from the /chosen node of the
|
|
* device-tree, including the platform type, initrd location and
|
|
* size, TCE reserve, and more ...
|
|
*/
|
|
of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
|
|
|
|
/* Scan memory nodes and rebuild LMBs */
|
|
lmb_init();
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
|
|
lmb_enforce_memory_limit(memory_limit);
|
|
lmb_analyze();
|
|
|
|
DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
|
|
|
|
/* Reserve LMB regions used by kernel, initrd, dt, etc... */
|
|
lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
lmb_reserve(0, KDUMP_RESERVE_LIMIT);
|
|
#endif
|
|
early_reserve_mem();
|
|
|
|
DBG("Scanning CPUs ...\n");
|
|
|
|
/* Retreive CPU related informations from the flat tree
|
|
* (altivec support, boot CPU ID, ...)
|
|
*/
|
|
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
|
|
|
|
DBG(" <- early_init_devtree()\n");
|
|
}
|
|
|
|
#undef printk
|
|
|
|
int
|
|
prom_n_addr_cells(struct device_node* np)
|
|
{
|
|
int* ip;
|
|
do {
|
|
if (np->parent)
|
|
np = np->parent;
|
|
ip = (int *) get_property(np, "#address-cells", NULL);
|
|
if (ip != NULL)
|
|
return *ip;
|
|
} while (np->parent);
|
|
/* No #address-cells property for the root node, default to 1 */
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(prom_n_addr_cells);
|
|
|
|
int
|
|
prom_n_size_cells(struct device_node* np)
|
|
{
|
|
int* ip;
|
|
do {
|
|
if (np->parent)
|
|
np = np->parent;
|
|
ip = (int *) get_property(np, "#size-cells", NULL);
|
|
if (ip != NULL)
|
|
return *ip;
|
|
} while (np->parent);
|
|
/* No #size-cells property for the root node, default to 1 */
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(prom_n_size_cells);
|
|
|
|
/**
|
|
* Work out the sense (active-low level / active-high edge)
|
|
* of each interrupt from the device tree.
|
|
*/
|
|
void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
|
|
{
|
|
struct device_node *np;
|
|
int i, j;
|
|
|
|
/* default to level-triggered */
|
|
memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
|
|
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
for (j = 0; j < np->n_intrs; j++) {
|
|
i = np->intrs[j].line;
|
|
if (i >= off && i < max)
|
|
senses[i-off] = np->intrs[j].sense;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Construct and return a list of the device_nodes with a given name.
|
|
*/
|
|
struct device_node *find_devices(const char *name)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
if (np->name != 0 && strcasecmp(np->name, name) == 0) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_devices);
|
|
|
|
/**
|
|
* Construct and return a list of the device_nodes with a given type.
|
|
*/
|
|
struct device_node *find_type_devices(const char *type)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
if (np->type != 0 && strcasecmp(np->type, type) == 0) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_type_devices);
|
|
|
|
/**
|
|
* Returns all nodes linked together
|
|
*/
|
|
struct device_node *find_all_nodes(void)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_all_nodes);
|
|
|
|
/** Checks if the given "compat" string matches one of the strings in
|
|
* the device's "compatible" property
|
|
*/
|
|
int device_is_compatible(struct device_node *device, const char *compat)
|
|
{
|
|
const char* cp;
|
|
int cplen, l;
|
|
|
|
cp = (char *) get_property(device, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
if (strncasecmp(cp, compat, strlen(compat)) == 0)
|
|
return 1;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(device_is_compatible);
|
|
|
|
|
|
/**
|
|
* Indicates whether the root node has a given value in its
|
|
* compatible property.
|
|
*/
|
|
int machine_is_compatible(const char *compat)
|
|
{
|
|
struct device_node *root;
|
|
int rc = 0;
|
|
|
|
root = of_find_node_by_path("/");
|
|
if (root) {
|
|
rc = device_is_compatible(root, compat);
|
|
of_node_put(root);
|
|
}
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(machine_is_compatible);
|
|
|
|
/**
|
|
* Construct and return a list of the device_nodes with a given type
|
|
* and compatible property.
|
|
*/
|
|
struct device_node *find_compatible_devices(const char *type,
|
|
const char *compat)
|
|
{
|
|
struct device_node *head, **prevp, *np;
|
|
|
|
prevp = &head;
|
|
for (np = allnodes; np != 0; np = np->allnext) {
|
|
if (type != NULL
|
|
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
|
|
continue;
|
|
if (device_is_compatible(np, compat)) {
|
|
*prevp = np;
|
|
prevp = &np->next;
|
|
}
|
|
}
|
|
*prevp = NULL;
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(find_compatible_devices);
|
|
|
|
/**
|
|
* Find the device_node with a given full_name.
|
|
*/
|
|
struct device_node *find_path_device(const char *path)
|
|
{
|
|
struct device_node *np;
|
|
|
|
for (np = allnodes; np != 0; np = np->allnext)
|
|
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
|
|
return np;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(find_path_device);
|
|
|
|
/*******
|
|
*
|
|
* New implementation of the OF "find" APIs, return a refcounted
|
|
* object, call of_node_put() when done. The device tree and list
|
|
* are protected by a rw_lock.
|
|
*
|
|
* Note that property management will need some locking as well,
|
|
* this isn't dealt with yet.
|
|
*
|
|
*******/
|
|
|
|
/**
|
|
* of_find_node_by_name - Find a node by its "name" property
|
|
* @from: The node to start searching from or NULL, the node
|
|
* you pass will not be searched, only the next one
|
|
* will; typically, you pass what the previous call
|
|
* returned. of_node_put() will be called on it
|
|
* @name: The name string to match against
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_name(struct device_node *from,
|
|
const char *name)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = from ? from->allnext : allnodes;
|
|
for (; np != NULL; np = np->allnext)
|
|
if (np->name != NULL && strcasecmp(np->name, name) == 0
|
|
&& of_node_get(np))
|
|
break;
|
|
if (from)
|
|
of_node_put(from);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_name);
|
|
|
|
/**
|
|
* of_find_node_by_type - Find a node by its "device_type" property
|
|
* @from: The node to start searching from or NULL, the node
|
|
* you pass will not be searched, only the next one
|
|
* will; typically, you pass what the previous call
|
|
* returned. of_node_put() will be called on it
|
|
* @name: The type string to match against
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_type(struct device_node *from,
|
|
const char *type)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = from ? from->allnext : allnodes;
|
|
for (; np != 0; np = np->allnext)
|
|
if (np->type != 0 && strcasecmp(np->type, type) == 0
|
|
&& of_node_get(np))
|
|
break;
|
|
if (from)
|
|
of_node_put(from);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_type);
|
|
|
|
/**
|
|
* of_find_compatible_node - Find a node based on type and one of the
|
|
* tokens in its "compatible" property
|
|
* @from: The node to start searching from or NULL, the node
|
|
* you pass will not be searched, only the next one
|
|
* will; typically, you pass what the previous call
|
|
* returned. of_node_put() will be called on it
|
|
* @type: The type string to match "device_type" or NULL to ignore
|
|
* @compatible: The string to match to one of the tokens in the device
|
|
* "compatible" list.
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_compatible_node(struct device_node *from,
|
|
const char *type, const char *compatible)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = from ? from->allnext : allnodes;
|
|
for (; np != 0; np = np->allnext) {
|
|
if (type != NULL
|
|
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
|
|
continue;
|
|
if (device_is_compatible(np, compatible) && of_node_get(np))
|
|
break;
|
|
}
|
|
if (from)
|
|
of_node_put(from);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_compatible_node);
|
|
|
|
/**
|
|
* of_find_node_by_path - Find a node matching a full OF path
|
|
* @path: The full path to match
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_path(const char *path)
|
|
{
|
|
struct device_node *np = allnodes;
|
|
|
|
read_lock(&devtree_lock);
|
|
for (; np != 0; np = np->allnext) {
|
|
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
|
|
&& of_node_get(np))
|
|
break;
|
|
}
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_path);
|
|
|
|
/**
|
|
* of_find_node_by_phandle - Find a node given a phandle
|
|
* @handle: phandle of the node to find
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_node_by_phandle(phandle handle)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
for (np = allnodes; np != 0; np = np->allnext)
|
|
if (np->linux_phandle == handle)
|
|
break;
|
|
if (np)
|
|
of_node_get(np);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_node_by_phandle);
|
|
|
|
/**
|
|
* of_find_all_nodes - Get next node in global list
|
|
* @prev: Previous node or NULL to start iteration
|
|
* of_node_put() will be called on it
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_find_all_nodes(struct device_node *prev)
|
|
{
|
|
struct device_node *np;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = prev ? prev->allnext : allnodes;
|
|
for (; np != 0; np = np->allnext)
|
|
if (of_node_get(np))
|
|
break;
|
|
if (prev)
|
|
of_node_put(prev);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_find_all_nodes);
|
|
|
|
/**
|
|
* of_get_parent - Get a node's parent if any
|
|
* @node: Node to get parent
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_get_parent(const struct device_node *node)
|
|
{
|
|
struct device_node *np;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
read_lock(&devtree_lock);
|
|
np = of_node_get(node->parent);
|
|
read_unlock(&devtree_lock);
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(of_get_parent);
|
|
|
|
/**
|
|
* of_get_next_child - Iterate a node childs
|
|
* @node: parent node
|
|
* @prev: previous child of the parent node, or NULL to get first
|
|
*
|
|
* Returns a node pointer with refcount incremented, use
|
|
* of_node_put() on it when done.
|
|
*/
|
|
struct device_node *of_get_next_child(const struct device_node *node,
|
|
struct device_node *prev)
|
|
{
|
|
struct device_node *next;
|
|
|
|
read_lock(&devtree_lock);
|
|
next = prev ? prev->sibling : node->child;
|
|
for (; next != 0; next = next->sibling)
|
|
if (of_node_get(next))
|
|
break;
|
|
if (prev)
|
|
of_node_put(prev);
|
|
read_unlock(&devtree_lock);
|
|
return next;
|
|
}
|
|
EXPORT_SYMBOL(of_get_next_child);
|
|
|
|
/**
|
|
* of_node_get - Increment refcount of a node
|
|
* @node: Node to inc refcount, NULL is supported to
|
|
* simplify writing of callers
|
|
*
|
|
* Returns node.
|
|
*/
|
|
struct device_node *of_node_get(struct device_node *node)
|
|
{
|
|
if (node)
|
|
kref_get(&node->kref);
|
|
return node;
|
|
}
|
|
EXPORT_SYMBOL(of_node_get);
|
|
|
|
static inline struct device_node * kref_to_device_node(struct kref *kref)
|
|
{
|
|
return container_of(kref, struct device_node, kref);
|
|
}
|
|
|
|
/**
|
|
* of_node_release - release a dynamically allocated node
|
|
* @kref: kref element of the node to be released
|
|
*
|
|
* In of_node_put() this function is passed to kref_put()
|
|
* as the destructor.
|
|
*/
|
|
static void of_node_release(struct kref *kref)
|
|
{
|
|
struct device_node *node = kref_to_device_node(kref);
|
|
struct property *prop = node->properties;
|
|
|
|
if (!OF_IS_DYNAMIC(node))
|
|
return;
|
|
while (prop) {
|
|
struct property *next = prop->next;
|
|
kfree(prop->name);
|
|
kfree(prop->value);
|
|
kfree(prop);
|
|
prop = next;
|
|
|
|
if (!prop) {
|
|
prop = node->deadprops;
|
|
node->deadprops = NULL;
|
|
}
|
|
}
|
|
kfree(node->intrs);
|
|
kfree(node->full_name);
|
|
kfree(node->data);
|
|
kfree(node);
|
|
}
|
|
|
|
/**
|
|
* of_node_put - Decrement refcount of a node
|
|
* @node: Node to dec refcount, NULL is supported to
|
|
* simplify writing of callers
|
|
*
|
|
*/
|
|
void of_node_put(struct device_node *node)
|
|
{
|
|
if (node)
|
|
kref_put(&node->kref, of_node_release);
|
|
}
|
|
EXPORT_SYMBOL(of_node_put);
|
|
|
|
/*
|
|
* Plug a device node into the tree and global list.
|
|
*/
|
|
void of_attach_node(struct device_node *np)
|
|
{
|
|
write_lock(&devtree_lock);
|
|
np->sibling = np->parent->child;
|
|
np->allnext = allnodes;
|
|
np->parent->child = np;
|
|
allnodes = np;
|
|
write_unlock(&devtree_lock);
|
|
}
|
|
|
|
/*
|
|
* "Unplug" a node from the device tree. The caller must hold
|
|
* a reference to the node. The memory associated with the node
|
|
* is not freed until its refcount goes to zero.
|
|
*/
|
|
void of_detach_node(const struct device_node *np)
|
|
{
|
|
struct device_node *parent;
|
|
|
|
write_lock(&devtree_lock);
|
|
|
|
parent = np->parent;
|
|
|
|
if (allnodes == np)
|
|
allnodes = np->allnext;
|
|
else {
|
|
struct device_node *prev;
|
|
for (prev = allnodes;
|
|
prev->allnext != np;
|
|
prev = prev->allnext)
|
|
;
|
|
prev->allnext = np->allnext;
|
|
}
|
|
|
|
if (parent->child == np)
|
|
parent->child = np->sibling;
|
|
else {
|
|
struct device_node *prevsib;
|
|
for (prevsib = np->parent->child;
|
|
prevsib->sibling != np;
|
|
prevsib = prevsib->sibling)
|
|
;
|
|
prevsib->sibling = np->sibling;
|
|
}
|
|
|
|
write_unlock(&devtree_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
/*
|
|
* Fix up the uninitialized fields in a new device node:
|
|
* name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
|
|
*
|
|
* A lot of boot-time code is duplicated here, because functions such
|
|
* as finish_node_interrupts, interpret_pci_props, etc. cannot use the
|
|
* slab allocator.
|
|
*
|
|
* This should probably be split up into smaller chunks.
|
|
*/
|
|
|
|
static int of_finish_dynamic_node(struct device_node *node)
|
|
{
|
|
struct device_node *parent = of_get_parent(node);
|
|
int err = 0;
|
|
phandle *ibm_phandle;
|
|
|
|
node->name = get_property(node, "name", NULL);
|
|
node->type = get_property(node, "device_type", NULL);
|
|
|
|
if (!parent) {
|
|
err = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* We don't support that function on PowerMac, at least
|
|
* not yet
|
|
*/
|
|
if (machine_is(powermac))
|
|
return -ENODEV;
|
|
|
|
/* fix up new node's linux_phandle field */
|
|
if ((ibm_phandle = (unsigned int *)get_property(node,
|
|
"ibm,phandle", NULL)))
|
|
node->linux_phandle = *ibm_phandle;
|
|
|
|
out:
|
|
of_node_put(parent);
|
|
return err;
|
|
}
|
|
|
|
static int prom_reconfig_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *node)
|
|
{
|
|
int err;
|
|
|
|
switch (action) {
|
|
case PSERIES_RECONFIG_ADD:
|
|
err = of_finish_dynamic_node(node);
|
|
if (!err)
|
|
finish_node(node, NULL, 0);
|
|
if (err < 0) {
|
|
printk(KERN_ERR "finish_node returned %d\n", err);
|
|
err = NOTIFY_BAD;
|
|
}
|
|
break;
|
|
default:
|
|
err = NOTIFY_DONE;
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct notifier_block prom_reconfig_nb = {
|
|
.notifier_call = prom_reconfig_notifier,
|
|
.priority = 10, /* This one needs to run first */
|
|
};
|
|
|
|
static int __init prom_reconfig_setup(void)
|
|
{
|
|
return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
|
|
}
|
|
__initcall(prom_reconfig_setup);
|
|
#endif
|
|
|
|
struct property *of_find_property(struct device_node *np, const char *name,
|
|
int *lenp)
|
|
{
|
|
struct property *pp;
|
|
|
|
read_lock(&devtree_lock);
|
|
for (pp = np->properties; pp != 0; pp = pp->next)
|
|
if (strcmp(pp->name, name) == 0) {
|
|
if (lenp != 0)
|
|
*lenp = pp->length;
|
|
break;
|
|
}
|
|
read_unlock(&devtree_lock);
|
|
|
|
return pp;
|
|
}
|
|
|
|
/*
|
|
* Find a property with a given name for a given node
|
|
* and return the value.
|
|
*/
|
|
unsigned char *get_property(struct device_node *np, const char *name,
|
|
int *lenp)
|
|
{
|
|
struct property *pp = of_find_property(np,name,lenp);
|
|
return pp ? pp->value : NULL;
|
|
}
|
|
EXPORT_SYMBOL(get_property);
|
|
|
|
/*
|
|
* Add a property to a node
|
|
*/
|
|
int prom_add_property(struct device_node* np, struct property* prop)
|
|
{
|
|
struct property **next;
|
|
|
|
prop->next = NULL;
|
|
write_lock(&devtree_lock);
|
|
next = &np->properties;
|
|
while (*next) {
|
|
if (strcmp(prop->name, (*next)->name) == 0) {
|
|
/* duplicate ! don't insert it */
|
|
write_unlock(&devtree_lock);
|
|
return -1;
|
|
}
|
|
next = &(*next)->next;
|
|
}
|
|
*next = prop;
|
|
write_unlock(&devtree_lock);
|
|
|
|
#ifdef CONFIG_PROC_DEVICETREE
|
|
/* try to add to proc as well if it was initialized */
|
|
if (np->pde)
|
|
proc_device_tree_add_prop(np->pde, prop);
|
|
#endif /* CONFIG_PROC_DEVICETREE */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove a property from a node. Note that we don't actually
|
|
* remove it, since we have given out who-knows-how-many pointers
|
|
* to the data using get-property. Instead we just move the property
|
|
* to the "dead properties" list, so it won't be found any more.
|
|
*/
|
|
int prom_remove_property(struct device_node *np, struct property *prop)
|
|
{
|
|
struct property **next;
|
|
int found = 0;
|
|
|
|
write_lock(&devtree_lock);
|
|
next = &np->properties;
|
|
while (*next) {
|
|
if (*next == prop) {
|
|
/* found the node */
|
|
*next = prop->next;
|
|
prop->next = np->deadprops;
|
|
np->deadprops = prop;
|
|
found = 1;
|
|
break;
|
|
}
|
|
next = &(*next)->next;
|
|
}
|
|
write_unlock(&devtree_lock);
|
|
|
|
if (!found)
|
|
return -ENODEV;
|
|
|
|
#ifdef CONFIG_PROC_DEVICETREE
|
|
/* try to remove the proc node as well */
|
|
if (np->pde)
|
|
proc_device_tree_remove_prop(np->pde, prop);
|
|
#endif /* CONFIG_PROC_DEVICETREE */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update a property in a node. Note that we don't actually
|
|
* remove it, since we have given out who-knows-how-many pointers
|
|
* to the data using get-property. Instead we just move the property
|
|
* to the "dead properties" list, and add the new property to the
|
|
* property list
|
|
*/
|
|
int prom_update_property(struct device_node *np,
|
|
struct property *newprop,
|
|
struct property *oldprop)
|
|
{
|
|
struct property **next;
|
|
int found = 0;
|
|
|
|
write_lock(&devtree_lock);
|
|
next = &np->properties;
|
|
while (*next) {
|
|
if (*next == oldprop) {
|
|
/* found the node */
|
|
newprop->next = oldprop->next;
|
|
*next = newprop;
|
|
oldprop->next = np->deadprops;
|
|
np->deadprops = oldprop;
|
|
found = 1;
|
|
break;
|
|
}
|
|
next = &(*next)->next;
|
|
}
|
|
write_unlock(&devtree_lock);
|
|
|
|
if (!found)
|
|
return -ENODEV;
|
|
|
|
#ifdef CONFIG_PROC_DEVICETREE
|
|
/* try to add to proc as well if it was initialized */
|
|
if (np->pde)
|
|
proc_device_tree_update_prop(np->pde, newprop, oldprop);
|
|
#endif /* CONFIG_PROC_DEVICETREE */
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
/* We may have allocated the flat device tree inside the crash kernel region
|
|
* in prom_init. If so we need to move it out into regular memory. */
|
|
void kdump_move_device_tree(void)
|
|
{
|
|
unsigned long start, end;
|
|
struct boot_param_header *new;
|
|
|
|
start = __pa((unsigned long)initial_boot_params);
|
|
end = start + initial_boot_params->totalsize;
|
|
|
|
if (end < crashk_res.start || start > crashk_res.end)
|
|
return;
|
|
|
|
new = (struct boot_param_header*)
|
|
__va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
|
|
|
|
memcpy(new, initial_boot_params, initial_boot_params->totalsize);
|
|
|
|
initial_boot_params = new;
|
|
|
|
DBG("Flat device tree blob moved to %p\n", initial_boot_params);
|
|
|
|
/* XXX should we unreserve the old DT? */
|
|
}
|
|
#endif /* CONFIG_KEXEC */
|