linux-stable/rust/helpers.c
Linus Torvalds a031fe8d1d Rust changes for v6.6
In terms of lines, most changes this time are on the pinned-init API
 and infrastructure. While we have a Rust version upgrade, and thus a
 bunch of changes from the vendored 'alloc' crate as usual, this time
 those do not account for many lines.
 
 Toolchain and infrastructure:
 
  - Upgrade to Rust 1.71.1. This is the second such upgrade, which is a
    smaller jump compared to the last time.
 
    This version allows us to remove the '__rust_*' allocator functions
    -- the compiler now generates them as expected, thus now our
    'KernelAllocator' is used.
 
    It also introduces the 'offset_of!' macro in the standard library
    (as an unstable feature) which we will need soon. So far, we were
    using a declarative macro as a prerequisite in some not-yet-landed
    patch series, which did not support sub-fields (i.e. nested structs):
 
        #[repr(C)]
        struct S {
            a: u16,
            b: (u8, u8),
        }
 
        assert_eq!(offset_of!(S, b.1), 3);
 
  - Upgrade to bindgen 0.65.1. This is the first time we upgrade its
    version.
 
    Given it is a fairly big jump, it comes with a fair number of
    improvements/changes that affect us, such as a fix needed to support
    LLVM 16 as well as proper support for '__noreturn' C functions, which
    are now mapped to return the '!' type in Rust:
 
        void __noreturn f(void); // C
        pub fn f() -> !;         // Rust
 
  - 'scripts/rust_is_available.sh' improvements and fixes.
 
    This series takes care of all the issues known so far and adds a few
    new checks to cover for even more cases, plus adds some more help
    texts. All this together will hopefully make problematic setups
    easier to identify and to be solved by users building the kernel.
 
    In addition, it adds a test suite which covers all branches of the
    shell script, as well as tests for the issues found so far.
 
  - Support rust-analyzer for out-of-tree modules too.
 
  - Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates.
 
  - Drop 'scripts/is_rust_module.sh' since it is not needed anymore.
 
 Macros crate:
 
  - New 'paste!' proc macro.
 
    This macro is a more flexible version of 'concat_idents!': it allows
    the resulting identifier to be used to declare new items and it
    allows to transform the identifiers before concatenating them, e.g.
 
        let x_1 = 42;
        paste!(let [<x _2>] = [<x _1>];);
        assert!(x_1 == x_2);
 
    The macro is then used for several of the pinned-init API changes in
    this pull.
 
 Pinned-init API:
 
  - Make '#[pin_data]' compatible with conditional compilation of fields,
    allowing to write code like:
 
        #[pin_data]
        pub struct Foo {
            #[cfg(CONFIG_BAR)]
            a: Bar,
            #[cfg(not(CONFIG_BAR))]
            a: Baz,
        }
 
  - New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait, which
    allows 'unsafe' implementations for structs where every field
    implements the 'Zeroable' trait, e.g.:
 
        #[derive(Zeroable)]
        pub struct DriverData {
            id: i64,
            buf_ptr: *mut u8,
            len: usize,
        }
 
  - Add '..Zeroable::zeroed()' syntax to the 'pin_init!'  macro for
    zeroing all other fields, e.g.:
 
        pin_init!(Buf {
            buf: [1; 64],
            ..Zeroable::zeroed()
        });
 
  - New '{,pin_}init_array_from_fn()' functions to create array
    initializers given a generator function, e.g.:
 
        let b: Box<[usize; 1_000]> = Box::init::<Error>(
            init_array_from_fn(|i| i)
        ).unwrap();
 
        assert_eq!(b.len(), 1_000);
        assert_eq!(b[123], 123);
 
  - New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to
    execute a closure on the value directly after initialization, e.g.:
 
        let foo = init!(Foo {
            buf <- init::zeroed()
        }).chain(|foo| {
            foo.setup();
            Ok(())
        });
 
  - Support arbitrary paths in init macros, instead of just identifiers
    and generic types.
 
  - Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and
    'Opaque<T>' types.
 
  - Make initializer values inaccessible after initialization.
 
  - Make guards in the init macros hygienic.
 
 'allocator' module:
 
  - Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing
    misaligned allocations when the Rust 1.71.1 upgrade is applied later
    in this pull.
 
    The equivalent fix for the previous compiler version (where
    'KernelAllocator' is not yet used) was merged into 6.5 already,
    which added the 'krealloc_aligned()' function used here.
 
  - Implement 'KernelAllocator::{realloc, alloc_zeroed}' for performance,
    using 'krealloc_aligned()' too, which forwards the call to the C API.
 
 'types' module:
 
  - Make 'Opaque' be '!Unpin', removing the need to add a 'PhantomPinned'
    field to Rust structs that contain C structs which must not be moved.
 
  - Make 'Opaque' use 'UnsafeCell' as the outer type, rather than inner.
 
 Documentation:
 
  - Suggest obtaining the source code of the Rust's 'core' library using
    the tarball instead of the repository.
 
 MAINTAINERS:
 
  - Andreas and Alice, from Samsung and Google respectively, are joining
    as reviewers of the "RUST" entry.
 
 As well as a few other minor changes and cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmTnzOAACgkQGXyLc2ht
 IW0RFg/9FKGAn+JNvLUpB7OIXQZFyDVDpXkL14Dy8At0z609ZhkD36pFAxGua4OC
 BLHpyEQK5bUAQZ4pZ1aexmpFt37z+OPZBMmKoC7eUH2fm8Q277Gm54pno2AzIg3g
 if9lFhIowQTB8pG1YZRF6YMIdIp5JCmT0m8YuXMrr1XYtWIWnyU4twT/bmfk9UKU
 DgmuE1GmpHbWQgIf11eYWxbgfIuY9F/QyHzljW8P+Jgln7F4d8WDVJln8Yw0z/Bm
 w/4kvYv7AHOHQvzjCi971ANvnhsgjeKMSmt2RrcGefn+6t3pNsdZEUYGR9xdAxCz
 fvcje6nUoGjPr9J4F/JdZPmCb7jwSGpF01OvA//H8YjUwP3+msBwxVhRSH1FA1m3
 SVKedXmAUMNAaqtqCNFZmUiNB5LbW4cldFSnNf4CVW9w9bXe2jIKqjjsPi8m57B1
 H4zwr1WTtY2s2n2fdYOAtzmOaOJFXa7PIrGo3onj1mSgcyKOVeoMI5+NR/pwxgIR
 9Z8633bhTfGVHRyC7p0XpakcZd0jbl0yq+bbvgH2sof+RNWYuoZQ92DJ05/g3zOK
 Mj54PNjAgY+Z+TqX/vjlEdWs4SoBcnL3cAy9RFKGRDUoGDPeqiW6qa7Y9oAFZHfk
 PX3oboI0VYn5F9BVGO4i+9cL/CNL4b6sb5FBvL+0EwUBhWTxeKE=
 =BAP+
 -----END PGP SIGNATURE-----

Merge tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux

Pull rust updates from Miguel Ojeda:
 "In terms of lines, most changes this time are on the pinned-init API
  and infrastructure. While we have a Rust version upgrade, and thus a
  bunch of changes from the vendored 'alloc' crate as usual, this time
  those do not account for many lines.

  Toolchain and infrastructure:

   - Upgrade to Rust 1.71.1. This is the second such upgrade, which is a
     smaller jump compared to the last time.

     This version allows us to remove the '__rust_*' allocator functions
     -- the compiler now generates them as expected, thus now our
     'KernelAllocator' is used.

     It also introduces the 'offset_of!' macro in the standard library
     (as an unstable feature) which we will need soon. So far, we were
     using a declarative macro as a prerequisite in some not-yet-landed
     patch series, which did not support sub-fields (i.e. nested
     structs):

         #[repr(C)]
         struct S {
             a: u16,
             b: (u8, u8),
         }

         assert_eq!(offset_of!(S, b.1), 3);

   - Upgrade to bindgen 0.65.1. This is the first time we upgrade its
     version.

     Given it is a fairly big jump, it comes with a fair number of
     improvements/changes that affect us, such as a fix needed to
     support LLVM 16 as well as proper support for '__noreturn' C
     functions, which are now mapped to return the '!' type in Rust:

         void __noreturn f(void); // C
         pub fn f() -> !;         // Rust

   - 'scripts/rust_is_available.sh' improvements and fixes.

     This series takes care of all the issues known so far and adds a
     few new checks to cover for even more cases, plus adds some more
     help texts. All this together will hopefully make problematic
     setups easier to identify and to be solved by users building the
     kernel.

     In addition, it adds a test suite which covers all branches of the
     shell script, as well as tests for the issues found so far.

   - Support rust-analyzer for out-of-tree modules too.

   - Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates.

   - Drop 'scripts/is_rust_module.sh' since it is not needed anymore.

  Macros crate:

   - New 'paste!' proc macro.

     This macro is a more flexible version of 'concat_idents!': it
     allows the resulting identifier to be used to declare new items and
     it allows to transform the identifiers before concatenating them,
     e.g.

         let x_1 = 42;
         paste!(let [<x _2>] = [<x _1>];);
         assert!(x_1 == x_2);

     The macro is then used for several of the pinned-init API changes
     in this pull.

  Pinned-init API:

   - Make '#[pin_data]' compatible with conditional compilation of
     fields, allowing to write code like:

         #[pin_data]
         pub struct Foo {
             #[cfg(CONFIG_BAR)]
             a: Bar,
             #[cfg(not(CONFIG_BAR))]
             a: Baz,
         }

   - New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait,
     which allows 'unsafe' implementations for structs where every field
     implements the 'Zeroable' trait, e.g.:

         #[derive(Zeroable)]
         pub struct DriverData {
             id: i64,
             buf_ptr: *mut u8,
             len: usize,
         }

   - Add '..Zeroable::zeroed()' syntax to the 'pin_init!' macro for
     zeroing all other fields, e.g.:

         pin_init!(Buf {
             buf: [1; 64],
             ..Zeroable::zeroed()
         });

   - New '{,pin_}init_array_from_fn()' functions to create array
     initializers given a generator function, e.g.:

         let b: Box<[usize; 1_000]> = Box::init::<Error>(
             init_array_from_fn(|i| i)
         ).unwrap();

         assert_eq!(b.len(), 1_000);
         assert_eq!(b[123], 123);

   - New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to
     execute a closure on the value directly after initialization, e.g.:

         let foo = init!(Foo {
             buf <- init::zeroed()
         }).chain(|foo| {
             foo.setup();
             Ok(())
         });

   - Support arbitrary paths in init macros, instead of just identifiers
     and generic types.

   - Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and
     'Opaque<T>' types.

   - Make initializer values inaccessible after initialization.

   - Make guards in the init macros hygienic.

  'allocator' module:

   - Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing
     misaligned allocations when the Rust 1.71.1 upgrade is applied
     later in this pull.

     The equivalent fix for the previous compiler version (where
     'KernelAllocator' is not yet used) was merged into 6.5 already,
     which added the 'krealloc_aligned()' function used here.

   - Implement 'KernelAllocator::{realloc, alloc_zeroed}' for
     performance, using 'krealloc_aligned()' too, which forwards the
     call to the C API.

  'types' module:

   - Make 'Opaque' be '!Unpin', removing the need to add a
     'PhantomPinned' field to Rust structs that contain C structs which
     must not be moved.

   - Make 'Opaque' use 'UnsafeCell' as the outer type, rather than
     inner.

  Documentation:

   - Suggest obtaining the source code of the Rust's 'core' library
     using the tarball instead of the repository.

  MAINTAINERS:

   - Andreas and Alice, from Samsung and Google respectively, are
     joining as reviewers of the "RUST" entry.

  As well as a few other minor changes and cleanups"

* tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux: (42 commits)
  rust: init: update expanded macro explanation
  rust: init: add `{pin_}chain` functions to `{Pin}Init<T, E>`
  rust: init: make `PinInit<T, E>` a supertrait of `Init<T, E>`
  rust: init: implement `Zeroable` for `UnsafeCell<T>` and `Opaque<T>`
  rust: init: add support for arbitrary paths in init macros
  rust: init: add functions to create array initializers
  rust: init: add `..Zeroable::zeroed()` syntax for zeroing all missing fields
  rust: init: make initializer values inaccessible after initializing
  rust: init: wrap type checking struct initializers in a closure
  rust: init: make guards in the init macros hygienic
  rust: add derive macro for `Zeroable`
  rust: init: make `#[pin_data]` compatible with conditional compilation of fields
  rust: init: consolidate init macros
  docs: rust: clarify what 'rustup override' does
  docs: rust: update instructions for obtaining 'core' source
  docs: rust: add command line to rust-analyzer section
  scripts: generate_rust_analyzer: provide `cfg`s for `core` and `alloc`
  rust: bindgen: upgrade to 0.65.1
  rust: enable `no_mangle_with_rust_abi` Clippy lint
  rust: upgrade to Rust 1.71.1
  ...
2023-08-29 08:19:46 -07:00

167 lines
4.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Non-trivial C macros cannot be used in Rust. Similarly, inlined C functions
* cannot be called either. This file explicitly creates functions ("helpers")
* that wrap those so that they can be called from Rust.
*
* Even though Rust kernel modules should never use directly the bindings, some
* of these helpers need to be exported because Rust generics and inlined
* functions may not get their code generated in the crate where they are
* defined. Other helpers, called from non-inline functions, may not be
* exported, in principle. However, in general, the Rust compiler does not
* guarantee codegen will be performed for a non-inline function either.
* Therefore, this file exports all the helpers. In the future, this may be
* revisited to reduce the number of exports after the compiler is informed
* about the places codegen is required.
*
* All symbols are exported as GPL-only to guarantee no GPL-only feature is
* accidentally exposed.
*
* Sorted alphabetically.
*/
#include <kunit/test-bug.h>
#include <linux/bug.h>
#include <linux/build_bug.h>
#include <linux/err.h>
#include <linux/errname.h>
#include <linux/mutex.h>
#include <linux/refcount.h>
#include <linux/sched/signal.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
__noreturn void rust_helper_BUG(void)
{
BUG();
}
EXPORT_SYMBOL_GPL(rust_helper_BUG);
void rust_helper_mutex_lock(struct mutex *lock)
{
mutex_lock(lock);
}
EXPORT_SYMBOL_GPL(rust_helper_mutex_lock);
void rust_helper___spin_lock_init(spinlock_t *lock, const char *name,
struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_SPINLOCK
__raw_spin_lock_init(spinlock_check(lock), name, key, LD_WAIT_CONFIG);
#else
spin_lock_init(lock);
#endif
}
EXPORT_SYMBOL_GPL(rust_helper___spin_lock_init);
void rust_helper_spin_lock(spinlock_t *lock)
{
spin_lock(lock);
}
EXPORT_SYMBOL_GPL(rust_helper_spin_lock);
void rust_helper_spin_unlock(spinlock_t *lock)
{
spin_unlock(lock);
}
EXPORT_SYMBOL_GPL(rust_helper_spin_unlock);
void rust_helper_init_wait(struct wait_queue_entry *wq_entry)
{
init_wait(wq_entry);
}
EXPORT_SYMBOL_GPL(rust_helper_init_wait);
int rust_helper_signal_pending(struct task_struct *t)
{
return signal_pending(t);
}
EXPORT_SYMBOL_GPL(rust_helper_signal_pending);
refcount_t rust_helper_REFCOUNT_INIT(int n)
{
return (refcount_t)REFCOUNT_INIT(n);
}
EXPORT_SYMBOL_GPL(rust_helper_REFCOUNT_INIT);
void rust_helper_refcount_inc(refcount_t *r)
{
refcount_inc(r);
}
EXPORT_SYMBOL_GPL(rust_helper_refcount_inc);
bool rust_helper_refcount_dec_and_test(refcount_t *r)
{
return refcount_dec_and_test(r);
}
EXPORT_SYMBOL_GPL(rust_helper_refcount_dec_and_test);
__force void *rust_helper_ERR_PTR(long err)
{
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(rust_helper_ERR_PTR);
bool rust_helper_IS_ERR(__force const void *ptr)
{
return IS_ERR(ptr);
}
EXPORT_SYMBOL_GPL(rust_helper_IS_ERR);
long rust_helper_PTR_ERR(__force const void *ptr)
{
return PTR_ERR(ptr);
}
EXPORT_SYMBOL_GPL(rust_helper_PTR_ERR);
const char *rust_helper_errname(int err)
{
return errname(err);
}
EXPORT_SYMBOL_GPL(rust_helper_errname);
struct task_struct *rust_helper_get_current(void)
{
return current;
}
EXPORT_SYMBOL_GPL(rust_helper_get_current);
void rust_helper_get_task_struct(struct task_struct *t)
{
get_task_struct(t);
}
EXPORT_SYMBOL_GPL(rust_helper_get_task_struct);
void rust_helper_put_task_struct(struct task_struct *t)
{
put_task_struct(t);
}
EXPORT_SYMBOL_GPL(rust_helper_put_task_struct);
struct kunit *rust_helper_kunit_get_current_test(void)
{
return kunit_get_current_test();
}
EXPORT_SYMBOL_GPL(rust_helper_kunit_get_current_test);
/*
* `bindgen` binds the C `size_t` type as the Rust `usize` type, so we can
* use it in contexts where Rust expects a `usize` like slice (array) indices.
* `usize` is defined to be the same as C's `uintptr_t` type (can hold any
* pointer) but not necessarily the same as `size_t` (can hold the size of any
* single object). Most modern platforms use the same concrete integer type for
* both of them, but in case we find ourselves on a platform where
* that's not true, fail early instead of risking ABI or
* integer-overflow issues.
*
* If your platform fails this assertion, it means that you are in
* danger of integer-overflow bugs (even if you attempt to add
* `--no-size_t-is-usize`). It may be easiest to change the kernel ABI on
* your platform such that `size_t` matches `uintptr_t` (i.e., to increase
* `size_t`, because `uintptr_t` has to be at least as big as `size_t`).
*/
static_assert(
sizeof(size_t) == sizeof(uintptr_t) &&
__alignof__(size_t) == __alignof__(uintptr_t),
"Rust code expects C `size_t` to match Rust `usize`"
);