linux-stable/include/net/tls.h
Vakul Garg 4509de1468 net/tls: Move protocol constants from cipher context to tls context
Each tls context maintains two cipher contexts (one each for tx and rx
directions). For each tls session, the constants such as protocol
version, ciphersuite, iv size, associated data size etc are same for
both the directions and need to be stored only once per tls context.
Hence these are moved from 'struct cipher_context' to 'struct
tls_prot_info' and stored only once in 'struct tls_context'.

Signed-off-by: Vakul Garg <vakul.garg@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-19 10:40:36 -08:00

561 lines
15 KiB
C

/*
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _TLS_OFFLOAD_H
#define _TLS_OFFLOAD_H
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/crypto.h>
#include <linux/socket.h>
#include <linux/tcp.h>
#include <linux/skmsg.h>
#include <net/tcp.h>
#include <net/strparser.h>
#include <crypto/aead.h>
#include <uapi/linux/tls.h>
/* Maximum data size carried in a TLS record */
#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
#define TLS_HEADER_SIZE 5
#define TLS_NONCE_OFFSET TLS_HEADER_SIZE
#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
#define TLS_RECORD_TYPE_DATA 0x17
#define TLS_AAD_SPACE_SIZE 13
#define TLS_DEVICE_NAME_MAX 32
/*
* This structure defines the routines for Inline TLS driver.
* The following routines are optional and filled with a
* null pointer if not defined.
*
* @name: Its the name of registered Inline tls device
* @dev_list: Inline tls device list
* int (*feature)(struct tls_device *device);
* Called to return Inline TLS driver capability
*
* int (*hash)(struct tls_device *device, struct sock *sk);
* This function sets Inline driver for listen and program
* device specific functioanlity as required
*
* void (*unhash)(struct tls_device *device, struct sock *sk);
* This function cleans listen state set by Inline TLS driver
*
* void (*release)(struct kref *kref);
* Release the registered device and allocated resources
* @kref: Number of reference to tls_device
*/
struct tls_device {
char name[TLS_DEVICE_NAME_MAX];
struct list_head dev_list;
int (*feature)(struct tls_device *device);
int (*hash)(struct tls_device *device, struct sock *sk);
void (*unhash)(struct tls_device *device, struct sock *sk);
void (*release)(struct kref *kref);
struct kref kref;
};
enum {
TLS_BASE,
TLS_SW,
#ifdef CONFIG_TLS_DEVICE
TLS_HW,
#endif
TLS_HW_RECORD,
TLS_NUM_CONFIG,
};
/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
* allocated or mapped for each TLS record. After encryption, the records are
* stores in a linked list.
*/
struct tls_rec {
struct list_head list;
int tx_ready;
int tx_flags;
int inplace_crypto;
struct sk_msg msg_plaintext;
struct sk_msg msg_encrypted;
/* AAD | msg_plaintext.sg.data | sg_tag */
struct scatterlist sg_aead_in[2];
/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
struct scatterlist sg_aead_out[2];
char content_type;
struct scatterlist sg_content_type;
char aad_space[TLS_AAD_SPACE_SIZE];
u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE +
TLS_CIPHER_AES_GCM_128_SALT_SIZE];
struct aead_request aead_req;
u8 aead_req_ctx[];
};
struct tx_work {
struct delayed_work work;
struct sock *sk;
};
struct tls_sw_context_tx {
struct crypto_aead *aead_send;
struct crypto_wait async_wait;
struct tx_work tx_work;
struct tls_rec *open_rec;
struct list_head tx_list;
atomic_t encrypt_pending;
int async_notify;
int async_capable;
#define BIT_TX_SCHEDULED 0
unsigned long tx_bitmask;
};
struct tls_sw_context_rx {
struct crypto_aead *aead_recv;
struct crypto_wait async_wait;
struct strparser strp;
struct sk_buff_head rx_list; /* list of decrypted 'data' records */
void (*saved_data_ready)(struct sock *sk);
struct sk_buff *recv_pkt;
u8 control;
int async_capable;
bool decrypted;
atomic_t decrypt_pending;
bool async_notify;
};
struct tls_record_info {
struct list_head list;
u32 end_seq;
int len;
int num_frags;
skb_frag_t frags[MAX_SKB_FRAGS];
};
struct tls_offload_context_tx {
struct crypto_aead *aead_send;
spinlock_t lock; /* protects records list */
struct list_head records_list;
struct tls_record_info *open_record;
struct tls_record_info *retransmit_hint;
u64 hint_record_sn;
u64 unacked_record_sn;
struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
void (*sk_destruct)(struct sock *sk);
u8 driver_state[];
/* The TLS layer reserves room for driver specific state
* Currently the belief is that there is not enough
* driver specific state to justify another layer of indirection
*/
#define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
};
#define TLS_OFFLOAD_CONTEXT_SIZE_TX \
(ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \
TLS_DRIVER_STATE_SIZE)
enum {
TLS_PENDING_CLOSED_RECORD
};
struct cipher_context {
char *iv;
char *rec_seq;
};
union tls_crypto_context {
struct tls_crypto_info info;
union {
struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
};
};
struct tls_prot_info {
u16 version;
u16 cipher_type;
u16 prepend_size;
u16 tag_size;
u16 overhead_size;
u16 iv_size;
u16 rec_seq_size;
u16 aad_size;
u16 tail_size;
};
struct tls_context {
struct tls_prot_info prot_info;
union tls_crypto_context crypto_send;
union tls_crypto_context crypto_recv;
struct list_head list;
struct net_device *netdev;
refcount_t refcount;
void *priv_ctx_tx;
void *priv_ctx_rx;
u8 tx_conf:3;
u8 rx_conf:3;
struct cipher_context tx;
struct cipher_context rx;
struct scatterlist *partially_sent_record;
u16 partially_sent_offset;
unsigned long flags;
bool in_tcp_sendpages;
bool pending_open_record_frags;
int (*push_pending_record)(struct sock *sk, int flags);
void (*sk_write_space)(struct sock *sk);
void (*sk_destruct)(struct sock *sk);
void (*sk_proto_close)(struct sock *sk, long timeout);
int (*setsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
unsigned int optlen);
int (*getsockopt)(struct sock *sk, int level,
int optname, char __user *optval,
int __user *optlen);
int (*hash)(struct sock *sk);
void (*unhash)(struct sock *sk);
};
struct tls_offload_context_rx {
/* sw must be the first member of tls_offload_context_rx */
struct tls_sw_context_rx sw;
atomic64_t resync_req;
u8 driver_state[];
/* The TLS layer reserves room for driver specific state
* Currently the belief is that there is not enough
* driver specific state to justify another layer of indirection
*/
};
#define TLS_OFFLOAD_CONTEXT_SIZE_RX \
(ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
TLS_DRIVER_STATE_SIZE)
int wait_on_pending_writer(struct sock *sk, long *timeo);
int tls_sk_query(struct sock *sk, int optname, char __user *optval,
int __user *optlen);
int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
unsigned int optlen);
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
int tls_sw_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags);
void tls_sw_close(struct sock *sk, long timeout);
void tls_sw_free_resources_tx(struct sock *sk);
void tls_sw_free_resources_rx(struct sock *sk);
void tls_sw_release_resources_rx(struct sock *sk);
int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags, int *addr_len);
bool tls_sw_stream_read(const struct sock *sk);
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags);
int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
int tls_device_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags);
void tls_device_sk_destruct(struct sock *sk);
void tls_device_init(void);
void tls_device_cleanup(void);
int tls_tx_records(struct sock *sk, int flags);
struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
u32 seq, u64 *p_record_sn);
static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
{
return rec->len == 0;
}
static inline u32 tls_record_start_seq(struct tls_record_info *rec)
{
return rec->end_seq - rec->len;
}
void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
int tls_push_sg(struct sock *sk, struct tls_context *ctx,
struct scatterlist *sg, u16 first_offset,
int flags);
int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
int flags);
int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
int flags, long *timeo);
static inline bool tls_is_pending_closed_record(struct tls_context *ctx)
{
return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
}
static inline int tls_complete_pending_work(struct sock *sk,
struct tls_context *ctx,
int flags, long *timeo)
{
int rc = 0;
if (unlikely(sk->sk_write_pending))
rc = wait_on_pending_writer(sk, timeo);
if (!rc && tls_is_pending_closed_record(ctx))
rc = tls_push_pending_closed_record(sk, ctx, flags, timeo);
return rc;
}
static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
{
return !!ctx->partially_sent_record;
}
static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
{
return tls_ctx->pending_open_record_frags;
}
static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
{
struct tls_rec *rec;
rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
if (!rec)
return false;
return READ_ONCE(rec->tx_ready);
}
struct sk_buff *
tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
struct sk_buff *skb);
static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
{
#ifdef CONFIG_SOCK_VALIDATE_XMIT
return sk_fullsock(sk) &
(smp_load_acquire(&sk->sk_validate_xmit_skb) ==
&tls_validate_xmit_skb);
#else
return false;
#endif
}
static inline void tls_err_abort(struct sock *sk, int err)
{
sk->sk_err = err;
sk->sk_error_report(sk);
}
static inline bool tls_bigint_increment(unsigned char *seq, int len)
{
int i;
for (i = len - 1; i >= 0; i--) {
++seq[i];
if (seq[i] != 0)
break;
}
return (i == -1);
}
static inline struct tls_context *tls_get_ctx(const struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
return icsk->icsk_ulp_data;
}
static inline void tls_advance_record_sn(struct sock *sk,
struct cipher_context *ctx,
int version)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
tls_err_abort(sk, EBADMSG);
if (version != TLS_1_3_VERSION) {
tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
prot->iv_size);
}
}
static inline void tls_fill_prepend(struct tls_context *ctx,
char *buf,
size_t plaintext_len,
unsigned char record_type,
int version)
{
struct tls_prot_info *prot = &ctx->prot_info;
size_t pkt_len, iv_size = prot->iv_size;
pkt_len = plaintext_len + prot->tag_size;
if (version != TLS_1_3_VERSION) {
pkt_len += iv_size;
memcpy(buf + TLS_NONCE_OFFSET,
ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
}
/* we cover nonce explicit here as well, so buf should be of
* size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
*/
buf[0] = version == TLS_1_3_VERSION ?
TLS_RECORD_TYPE_DATA : record_type;
/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
buf[1] = TLS_1_2_VERSION_MINOR;
buf[2] = TLS_1_2_VERSION_MAJOR;
/* we can use IV for nonce explicit according to spec */
buf[3] = pkt_len >> 8;
buf[4] = pkt_len & 0xFF;
}
static inline void tls_make_aad(char *buf,
size_t size,
char *record_sequence,
int record_sequence_size,
unsigned char record_type,
int version)
{
if (version != TLS_1_3_VERSION) {
memcpy(buf, record_sequence, record_sequence_size);
buf += 8;
} else {
size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
}
buf[0] = version == TLS_1_3_VERSION ?
TLS_RECORD_TYPE_DATA : record_type;
buf[1] = TLS_1_2_VERSION_MAJOR;
buf[2] = TLS_1_2_VERSION_MINOR;
buf[3] = size >> 8;
buf[4] = size & 0xFF;
}
static inline void xor_iv_with_seq(int version, char *iv, char *seq)
{
int i;
if (version == TLS_1_3_VERSION) {
for (i = 0; i < 8; i++)
iv[i + 4] ^= seq[i];
}
}
static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
const struct tls_context *tls_ctx)
{
return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
}
static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
const struct tls_context *tls_ctx)
{
return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
}
static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context *tls_ctx)
{
return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
}
static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (!ctx)
return false;
return !!tls_sw_ctx_tx(ctx);
}
static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context *tls_ctx)
{
return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
}
/* The TLS context is valid until sk_destruct is called */
static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
}
int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
unsigned char *record_type);
void tls_register_device(struct tls_device *device);
void tls_unregister_device(struct tls_device *device);
int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
int decrypt_skb(struct sock *sk, struct sk_buff *skb,
struct scatterlist *sgout);
struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
struct net_device *dev,
struct sk_buff *skb);
int tls_sw_fallback_init(struct sock *sk,
struct tls_offload_context_tx *offload_ctx,
struct tls_crypto_info *crypto_info);
int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
void tls_device_offload_cleanup_rx(struct sock *sk);
void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
#endif /* _TLS_OFFLOAD_H */