linux-stable/fs/xfs/libxfs/xfs_inode_fork.c
Dave Chinner 01822a74ca xfs: standardize btree record checking code [v24.5]
While I was cleaning things up for 6.1, I noticed that the btree
 _query_range and _query_all functions don't perform the same checking
 that the _get_rec functions perform.  In fact, they don't perform /any/
 sanity checking, which means that callers aren't warned about impossible
 records.
 
 Therefore, hoist the record validation and complaint logging code into
 separate functions, and call them from any place where we convert an
 ondisk record into an incore record.  For online scrub, we can replace
 checking code with a call to the record checking functions in libxfs,
 thereby reducing the size of the codebase.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZDYdnwAKCRBKO3ySh0YR
 ppn6AQCOWjqsq7klLAQdvEDm3O8v4k94geKdn4Ruvbptwa2iUQD/WAJ5LwKnEPuQ
 +eB5AfzsziMQMNX7DtUwncaDJm1RBgY=
 =ys9Z
 -----END PGP SIGNATURE-----

Merge tag 'btree-complain-bad-records-6.4_2023-04-11' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into guilt/xfs-for-next

xfs: standardize btree record checking code [v24.5]

While I was cleaning things up for 6.1, I noticed that the btree
_query_range and _query_all functions don't perform the same checking
that the _get_rec functions perform.  In fact, they don't perform /any/
sanity checking, which means that callers aren't warned about impossible
records.

Therefore, hoist the record validation and complaint logging code into
separate functions, and call them from any place where we convert an
ondisk record into an incore record.  For online scrub, we can replace
checking code with a call to the record checking functions in libxfs,
thereby reducing the size of the codebase.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-14 07:09:18 +10:00

794 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_dir2_priv.h"
#include "xfs_attr_leaf.h"
#include "xfs_types.h"
#include "xfs_errortag.h"
struct kmem_cache *xfs_ifork_cache;
void
xfs_init_local_fork(
struct xfs_inode *ip,
int whichfork,
const void *data,
int64_t size)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
int mem_size = size;
bool zero_terminate;
/*
* If we are using the local fork to store a symlink body we need to
* zero-terminate it so that we can pass it back to the VFS directly.
* Overallocate the in-memory fork by one for that and add a zero
* to terminate it below.
*/
zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
if (zero_terminate)
mem_size++;
if (size) {
ifp->if_u1.if_data = kmem_alloc(mem_size, KM_NOFS);
memcpy(ifp->if_u1.if_data, data, size);
if (zero_terminate)
ifp->if_u1.if_data[size] = '\0';
} else {
ifp->if_u1.if_data = NULL;
}
ifp->if_bytes = size;
}
/*
* The file is in-lined in the on-disk inode.
*/
STATIC int
xfs_iformat_local(
struct xfs_inode *ip,
struct xfs_dinode *dip,
int whichfork,
int size)
{
/*
* If the size is unreasonable, then something
* is wrong and we just bail out rather than crash in
* kmem_alloc() or memcpy() below.
*/
if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
xfs_warn(ip->i_mount,
"corrupt inode %llu (bad size %d for local fork, size = %zd).",
(unsigned long long) ip->i_ino, size,
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_local", dip, sizeof(*dip),
__this_address);
return -EFSCORRUPTED;
}
xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
return 0;
}
/*
* The file consists of a set of extents all of which fit into the on-disk
* inode.
*/
STATIC int
xfs_iformat_extents(
struct xfs_inode *ip,
struct xfs_dinode *dip,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
int state = xfs_bmap_fork_to_state(whichfork);
xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork);
int size = nex * sizeof(xfs_bmbt_rec_t);
struct xfs_iext_cursor icur;
struct xfs_bmbt_rec *dp;
struct xfs_bmbt_irec new;
int i;
/*
* If the number of extents is unreasonable, then something is wrong and
* we just bail out rather than crash in kmem_alloc() or memcpy() below.
*/
if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
ip->i_ino, nex);
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_extents(1)", dip, sizeof(*dip),
__this_address);
return -EFSCORRUPTED;
}
ifp->if_bytes = 0;
ifp->if_u1.if_root = NULL;
ifp->if_height = 0;
if (size) {
dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
xfs_iext_first(ifp, &icur);
for (i = 0; i < nex; i++, dp++) {
xfs_failaddr_t fa;
xfs_bmbt_disk_get_all(dp, &new);
fa = xfs_bmap_validate_extent(ip, whichfork, &new);
if (fa) {
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_extents(2)",
dp, sizeof(*dp), fa);
return xfs_bmap_complain_bad_rec(ip, whichfork,
fa, &new);
}
xfs_iext_insert(ip, &icur, &new, state);
trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
xfs_iext_next(ifp, &icur);
}
}
return 0;
}
/*
* The file has too many extents to fit into
* the inode, so they are in B-tree format.
* Allocate a buffer for the root of the B-tree
* and copy the root into it. The i_extents
* field will remain NULL until all of the
* extents are read in (when they are needed).
*/
STATIC int
xfs_iformat_btree(
struct xfs_inode *ip,
struct xfs_dinode *dip,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
xfs_bmdr_block_t *dfp;
struct xfs_ifork *ifp;
/* REFERENCED */
int nrecs;
int size;
int level;
ifp = xfs_ifork_ptr(ip, whichfork);
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
size = XFS_BMAP_BROOT_SPACE(mp, dfp);
nrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
/*
* blow out if -- fork has less extents than can fit in
* fork (fork shouldn't be a btree format), root btree
* block has more records than can fit into the fork,
* or the number of extents is greater than the number of
* blocks.
*/
if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
nrecs == 0 ||
XFS_BMDR_SPACE_CALC(nrecs) >
XFS_DFORK_SIZE(dip, mp, whichfork) ||
ifp->if_nextents > ip->i_nblocks) ||
level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
xfs_warn(mp, "corrupt inode %llu (btree).",
(unsigned long long) ip->i_ino);
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_btree", dfp, size,
__this_address);
return -EFSCORRUPTED;
}
ifp->if_broot_bytes = size;
ifp->if_broot = kmem_alloc(size, KM_NOFS);
ASSERT(ifp->if_broot != NULL);
/*
* Copy and convert from the on-disk structure
* to the in-memory structure.
*/
xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
ifp->if_broot, size);
ifp->if_bytes = 0;
ifp->if_u1.if_root = NULL;
ifp->if_height = 0;
return 0;
}
int
xfs_iformat_data_fork(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct inode *inode = VFS_I(ip);
int error;
/*
* Initialize the extent count early, as the per-format routines may
* depend on it. Use release semantics to set needextents /after/ we
* set the format. This ensures that we can use acquire semantics on
* needextents in xfs_need_iread_extents() and be guaranteed to see a
* valid format value after that load.
*/
ip->i_df.if_format = dip->di_format;
ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
smp_store_release(&ip->i_df.if_needextents,
ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
switch (inode->i_mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
ip->i_disk_size = 0;
inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
return 0;
case S_IFREG:
case S_IFLNK:
case S_IFDIR:
switch (ip->i_df.if_format) {
case XFS_DINODE_FMT_LOCAL:
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
be64_to_cpu(dip->di_size));
if (!error)
error = xfs_ifork_verify_local_data(ip);
return error;
case XFS_DINODE_FMT_EXTENTS:
return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
case XFS_DINODE_FMT_BTREE:
return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
default:
xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
dip, sizeof(*dip), __this_address);
return -EFSCORRUPTED;
}
break;
default:
xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
sizeof(*dip), __this_address);
return -EFSCORRUPTED;
}
}
static uint16_t
xfs_dfork_attr_shortform_size(
struct xfs_dinode *dip)
{
struct xfs_attr_shortform *atp =
(struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
return be16_to_cpu(atp->hdr.totsize);
}
void
xfs_ifork_init_attr(
struct xfs_inode *ip,
enum xfs_dinode_fmt format,
xfs_extnum_t nextents)
{
/*
* Initialize the extent count early, as the per-format routines may
* depend on it. Use release semantics to set needextents /after/ we
* set the format. This ensures that we can use acquire semantics on
* needextents in xfs_need_iread_extents() and be guaranteed to see a
* valid format value after that load.
*/
ip->i_af.if_format = format;
ip->i_af.if_nextents = nextents;
smp_store_release(&ip->i_af.if_needextents,
ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
}
void
xfs_ifork_zap_attr(
struct xfs_inode *ip)
{
xfs_idestroy_fork(&ip->i_af);
memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
}
int
xfs_iformat_attr_fork(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
xfs_extnum_t naextents = xfs_dfork_attr_extents(dip);
int error = 0;
/*
* Initialize the extent count early, as the per-format routines may
* depend on it.
*/
xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
switch (ip->i_af.if_format) {
case XFS_DINODE_FMT_LOCAL:
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
xfs_dfork_attr_shortform_size(dip));
if (!error)
error = xfs_ifork_verify_local_attr(ip);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
break;
default:
xfs_inode_verifier_error(ip, error, __func__, dip,
sizeof(*dip), __this_address);
error = -EFSCORRUPTED;
break;
}
if (error)
xfs_ifork_zap_attr(ip);
return error;
}
/*
* Reallocate the space for if_broot based on the number of records
* being added or deleted as indicated in rec_diff. Move the records
* and pointers in if_broot to fit the new size. When shrinking this
* will eliminate holes between the records and pointers created by
* the caller. When growing this will create holes to be filled in
* by the caller.
*
* The caller must not request to add more records than would fit in
* the on-disk inode root. If the if_broot is currently NULL, then
* if we are adding records, one will be allocated. The caller must also
* not request that the number of records go below zero, although
* it can go to zero.
*
* ip -- the inode whose if_broot area is changing
* ext_diff -- the change in the number of records, positive or negative,
* requested for the if_broot array.
*/
void
xfs_iroot_realloc(
xfs_inode_t *ip,
int rec_diff,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
int cur_max;
struct xfs_ifork *ifp;
struct xfs_btree_block *new_broot;
int new_max;
size_t new_size;
char *np;
char *op;
/*
* Handle the degenerate case quietly.
*/
if (rec_diff == 0) {
return;
}
ifp = xfs_ifork_ptr(ip, whichfork);
if (rec_diff > 0) {
/*
* If there wasn't any memory allocated before, just
* allocate it now and get out.
*/
if (ifp->if_broot_bytes == 0) {
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
ifp->if_broot_bytes = (int)new_size;
return;
}
/*
* If there is already an existing if_broot, then we need
* to realloc() it and shift the pointers to their new
* location. The records don't change location because
* they are kept butted up against the btree block header.
*/
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff;
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
ifp->if_broot = krealloc(ifp->if_broot, new_size,
GFP_NOFS | __GFP_NOFAIL);
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
(int)new_size);
ifp->if_broot_bytes = (int)new_size;
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
xfs_inode_fork_size(ip, whichfork));
memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
return;
}
/*
* rec_diff is less than 0. In this case, we are shrinking the
* if_broot buffer. It must already exist. If we go to zero
* records, just get rid of the root and clear the status bit.
*/
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff;
ASSERT(new_max >= 0);
if (new_max > 0)
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
else
new_size = 0;
if (new_size > 0) {
new_broot = kmem_alloc(new_size, KM_NOFS);
/*
* First copy over the btree block header.
*/
memcpy(new_broot, ifp->if_broot,
XFS_BMBT_BLOCK_LEN(ip->i_mount));
} else {
new_broot = NULL;
}
/*
* Only copy the records and pointers if there are any.
*/
if (new_max > 0) {
/*
* First copy the records.
*/
op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
/*
* Then copy the pointers.
*/
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
(int)new_size);
memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
}
kmem_free(ifp->if_broot);
ifp->if_broot = new_broot;
ifp->if_broot_bytes = (int)new_size;
if (ifp->if_broot)
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
xfs_inode_fork_size(ip, whichfork));
return;
}
/*
* This is called when the amount of space needed for if_data
* is increased or decreased. The change in size is indicated by
* the number of bytes that need to be added or deleted in the
* byte_diff parameter.
*
* If the amount of space needed has decreased below the size of the
* inline buffer, then switch to using the inline buffer. Otherwise,
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
* to what is needed.
*
* ip -- the inode whose if_data area is changing
* byte_diff -- the change in the number of bytes, positive or negative,
* requested for the if_data array.
*/
void
xfs_idata_realloc(
struct xfs_inode *ip,
int64_t byte_diff,
int whichfork)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
int64_t new_size = ifp->if_bytes + byte_diff;
ASSERT(new_size >= 0);
ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
if (byte_diff == 0)
return;
if (new_size == 0) {
kmem_free(ifp->if_u1.if_data);
ifp->if_u1.if_data = NULL;
ifp->if_bytes = 0;
return;
}
ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, new_size,
GFP_NOFS | __GFP_NOFAIL);
ifp->if_bytes = new_size;
}
void
xfs_idestroy_fork(
struct xfs_ifork *ifp)
{
if (ifp->if_broot != NULL) {
kmem_free(ifp->if_broot);
ifp->if_broot = NULL;
}
switch (ifp->if_format) {
case XFS_DINODE_FMT_LOCAL:
kmem_free(ifp->if_u1.if_data);
ifp->if_u1.if_data = NULL;
break;
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
if (ifp->if_height)
xfs_iext_destroy(ifp);
break;
}
}
/*
* Convert in-core extents to on-disk form
*
* In the case of the data fork, the in-core and on-disk fork sizes can be
* different due to delayed allocation extents. We only copy on-disk extents
* here, so callers must always use the physical fork size to determine the
* size of the buffer passed to this routine. We will return the size actually
* used.
*/
int
xfs_iextents_copy(
struct xfs_inode *ip,
struct xfs_bmbt_rec *dp,
int whichfork)
{
int state = xfs_bmap_fork_to_state(whichfork);
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec rec;
int64_t copied = 0;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
ASSERT(ifp->if_bytes > 0);
for_each_xfs_iext(ifp, &icur, &rec) {
if (isnullstartblock(rec.br_startblock))
continue;
ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
xfs_bmbt_disk_set_all(dp, &rec);
trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
copied += sizeof(struct xfs_bmbt_rec);
dp++;
}
ASSERT(copied > 0);
ASSERT(copied <= ifp->if_bytes);
return copied;
}
/*
* Each of the following cases stores data into the same region
* of the on-disk inode, so only one of them can be valid at
* any given time. While it is possible to have conflicting formats
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
* in EXTENTS format, this can only happen when the fork has
* changed formats after being modified but before being flushed.
* In these cases, the format always takes precedence, because the
* format indicates the current state of the fork.
*/
void
xfs_iflush_fork(
struct xfs_inode *ip,
struct xfs_dinode *dip,
struct xfs_inode_log_item *iip,
int whichfork)
{
char *cp;
struct xfs_ifork *ifp;
xfs_mount_t *mp;
static const short brootflag[2] =
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
static const short dataflag[2] =
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
static const short extflag[2] =
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
if (!iip)
return;
ifp = xfs_ifork_ptr(ip, whichfork);
/*
* This can happen if we gave up in iformat in an error path,
* for the attribute fork.
*/
if (!ifp) {
ASSERT(whichfork == XFS_ATTR_FORK);
return;
}
cp = XFS_DFORK_PTR(dip, whichfork);
mp = ip->i_mount;
switch (ifp->if_format) {
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & dataflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(ifp->if_u1.if_data != NULL);
ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
}
break;
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & extflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(ifp->if_nextents > 0);
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
whichfork);
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & brootflag[whichfork]) &&
(ifp->if_broot_bytes > 0)) {
ASSERT(ifp->if_broot != NULL);
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
xfs_inode_fork_size(ip, whichfork));
xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
(xfs_bmdr_block_t *)cp,
XFS_DFORK_SIZE(dip, mp, whichfork));
}
break;
case XFS_DINODE_FMT_DEV:
if (iip->ili_fields & XFS_ILOG_DEV) {
ASSERT(whichfork == XFS_DATA_FORK);
xfs_dinode_put_rdev(dip,
linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
}
break;
default:
ASSERT(0);
break;
}
}
/* Convert bmap state flags to an inode fork. */
struct xfs_ifork *
xfs_iext_state_to_fork(
struct xfs_inode *ip,
int state)
{
if (state & BMAP_COWFORK)
return ip->i_cowfp;
else if (state & BMAP_ATTRFORK)
return &ip->i_af;
return &ip->i_df;
}
/*
* Initialize an inode's copy-on-write fork.
*/
void
xfs_ifork_init_cow(
struct xfs_inode *ip)
{
if (ip->i_cowfp)
return;
ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
GFP_NOFS | __GFP_NOFAIL);
ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
}
/* Verify the inline contents of the data fork of an inode. */
int
xfs_ifork_verify_local_data(
struct xfs_inode *ip)
{
xfs_failaddr_t fa = NULL;
switch (VFS_I(ip)->i_mode & S_IFMT) {
case S_IFDIR:
fa = xfs_dir2_sf_verify(ip);
break;
case S_IFLNK:
fa = xfs_symlink_shortform_verify(ip);
break;
default:
break;
}
if (fa) {
xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
return -EFSCORRUPTED;
}
return 0;
}
/* Verify the inline contents of the attr fork of an inode. */
int
xfs_ifork_verify_local_attr(
struct xfs_inode *ip)
{
struct xfs_ifork *ifp = &ip->i_af;
xfs_failaddr_t fa;
if (!xfs_inode_has_attr_fork(ip))
fa = __this_address;
else
fa = xfs_attr_shortform_verify(ip);
if (fa) {
xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
ifp->if_u1.if_data, ifp->if_bytes, fa);
return -EFSCORRUPTED;
}
return 0;
}
int
xfs_iext_count_may_overflow(
struct xfs_inode *ip,
int whichfork,
int nr_to_add)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
uint64_t max_exts;
uint64_t nr_exts;
if (whichfork == XFS_COW_FORK)
return 0;
max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
whichfork);
if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
max_exts = 10;
nr_exts = ifp->if_nextents + nr_to_add;
if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
return -EFBIG;
return 0;
}
/*
* Upgrade this inode's extent counter fields to be able to handle a potential
* increase in the extent count by nr_to_add. Normally this is the same
* quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
*/
int
xfs_iext_count_upgrade(
struct xfs_trans *tp,
struct xfs_inode *ip,
uint nr_to_add)
{
ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
if (!xfs_has_large_extent_counts(ip->i_mount) ||
xfs_inode_has_large_extent_counts(ip) ||
XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
return -EFBIG;
ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
return 0;
}