linux-stable/drivers/staging/wusbcore/crypto.c
Greg Kroah-Hartman 71ed79b0e4 USB: Move wusbcore and UWB to staging as it is obsolete
The UWB and wusbcore code is long obsolete, so let us just move the code
out of the real part of the kernel and into the drivers/staging/
location with plans to remove it entirely in a few releases.

Link: https://lore.kernel.org/r/20190806101509.GA11280@kroah.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-08 07:52:01 +02:00

441 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Ultra Wide Band
* AES-128 CCM Encryption
*
* Copyright (C) 2007 Intel Corporation
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
*
* We don't do any encryption here; we use the Linux Kernel's AES-128
* crypto modules to construct keys and payload blocks in a way
* defined by WUSB1.0[6]. Check the erratas, as typos are are patched
* there.
*
* Thanks a zillion to John Keys for his help and clarifications over
* the designed-by-a-committee text.
*
* So the idea is that there is this basic Pseudo-Random-Function
* defined in WUSB1.0[6.5] which is the core of everything. It works
* by tweaking some blocks, AES crypting them and then xoring
* something else with them (this seems to be called CBC(AES) -- can
* you tell I know jack about crypto?). So we just funnel it into the
* Linux Crypto API.
*
* We leave a crypto test module so we can verify that vectors match,
* every now and then.
*
* Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
* am learning a lot...
*
* Conveniently, some data structures that need to be
* funneled through AES are...16 bytes in size!
*/
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/crypto.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include "../uwb/uwb.h"
#include "include/wusb.h"
static int debug_crypto_verify;
module_param(debug_crypto_verify, int, 0);
MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
static void wusb_key_dump(const void *buf, size_t len)
{
print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
buf, len, 0);
}
/*
* Block of data, as understood by AES-CCM
*
* The code assumes this structure is nothing but a 16 byte array
* (packed in a struct to avoid common mess ups that I usually do with
* arrays and enforcing type checking).
*/
struct aes_ccm_block {
u8 data[16];
} __attribute__((packed));
/*
* Counter-mode Blocks (WUSB1.0[6.4])
*
* According to CCM (or so it seems), for the purpose of calculating
* the MIC, the message is broken in N counter-mode blocks, B0, B1,
* ... BN.
*
* B0 contains flags, the CCM nonce and l(m).
*
* B1 contains l(a), the MAC header, the encryption offset and padding.
*
* If EO is nonzero, additional blocks are built from payload bytes
* until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
* padding is not xmitted.
*/
/* WUSB1.0[T6.4] */
struct aes_ccm_b0 {
u8 flags; /* 0x59, per CCM spec */
struct aes_ccm_nonce ccm_nonce;
__be16 lm;
} __attribute__((packed));
/* WUSB1.0[T6.5] */
struct aes_ccm_b1 {
__be16 la;
u8 mac_header[10];
__le16 eo;
u8 security_reserved; /* This is always zero */
u8 padding; /* 0 */
} __attribute__((packed));
/*
* Encryption Blocks (WUSB1.0[6.4.4])
*
* CCM uses Ax blocks to generate a keystream with which the MIC and
* the message's payload are encoded. A0 always encrypts/decrypts the
* MIC. Ax (x>0) are used for the successive payload blocks.
*
* The x is the counter, and is increased for each block.
*/
struct aes_ccm_a {
u8 flags; /* 0x01, per CCM spec */
struct aes_ccm_nonce ccm_nonce;
__be16 counter; /* Value of x */
} __attribute__((packed));
/* Scratch space for MAC calculations. */
struct wusb_mac_scratch {
struct aes_ccm_b0 b0;
struct aes_ccm_b1 b1;
struct aes_ccm_a ax;
};
/*
* CC-MAC function WUSB1.0[6.5]
*
* Take a data string and produce the encrypted CBC Counter-mode MIC
*
* Note the names for most function arguments are made to (more or
* less) match those used in the pseudo-function definition given in
* WUSB1.0[6.5].
*
* @tfm_cbc: CBC(AES) blkcipher handle (initialized)
*
* @tfm_aes: AES cipher handle (initialized)
*
* @mic: buffer for placing the computed MIC (Message Integrity
* Code). This is exactly 8 bytes, and we expect the buffer to
* be at least eight bytes in length.
*
* @key: 128 bit symmetric key
*
* @n: CCM nonce
*
* @a: ASCII string, 14 bytes long (I guess zero padded if needed;
* we use exactly 14 bytes).
*
* @b: data stream to be processed
*
* @blen: size of b...
*
* Still not very clear how this is done, but looks like this: we
* create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
* @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
* take the payload and divide it in blocks (16 bytes), xor them with
* the previous crypto result (16 bytes) and crypt it, repeat the next
* block with the output of the previous one, rinse wash. So we use
* the CBC-MAC(AES) shash, that does precisely that. The IV (Initial
* Vector) is 16 bytes and is set to zero, so
*
* (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
* using the 14 bytes of @a to fill up
* b1.{mac_header,e0,security_reserved,padding}.
*
* NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
* l(m) is orthogonal, they bear no relationship, so it is not
* in conflict with the parameter's relation that
* WUSB1.0[6.4.2]) defines.
*
* NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
* first errata released on 2005/07.
*
* NOTE: we need to clean IV to zero at each invocation to make sure
* we start with a fresh empty Initial Vector, so that the CBC
* works ok.
*
* NOTE: blen is not aligned to a block size, we'll pad zeros, that's
* what sg[4] is for. Maybe there is a smarter way to do this.
*/
static int wusb_ccm_mac(struct crypto_shash *tfm_cbcmac,
struct wusb_mac_scratch *scratch,
void *mic,
const struct aes_ccm_nonce *n,
const struct aes_ccm_label *a, const void *b,
size_t blen)
{
SHASH_DESC_ON_STACK(desc, tfm_cbcmac);
u8 iv[AES_BLOCK_SIZE];
/*
* These checks should be compile time optimized out
* ensure @a fills b1's mac_header and following fields
*/
BUILD_BUG_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
BUILD_BUG_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
BUILD_BUG_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
BUILD_BUG_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
/* Setup B0 */
scratch->b0.flags = 0x59; /* Format B0 */
scratch->b0.ccm_nonce = *n;
scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
/* Setup B1
*
* The WUSB spec is anything but clear! WUSB1.0[6.5]
* says that to initialize B1 from A with 'l(a) = blen +
* 14'--after clarification, it means to use A's contents
* for MAC Header, EO, sec reserved and padding.
*/
scratch->b1.la = cpu_to_be16(blen + 14);
memcpy(&scratch->b1.mac_header, a, sizeof(*a));
desc->tfm = tfm_cbcmac;
crypto_shash_init(desc);
crypto_shash_update(desc, (u8 *)&scratch->b0, sizeof(scratch->b0) +
sizeof(scratch->b1));
crypto_shash_finup(desc, b, blen, iv);
/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
* The procedure is to AES crypt the A0 block and XOR the MIC
* Tag against it; we only do the first 8 bytes and place it
* directly in the destination buffer.
*/
scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */
scratch->ax.ccm_nonce = *n;
scratch->ax.counter = 0;
/* reuse the CBC-MAC transform to perform the single block encryption */
crypto_shash_digest(desc, (u8 *)&scratch->ax, sizeof(scratch->ax),
(u8 *)&scratch->ax);
crypto_xor_cpy(mic, (u8 *)&scratch->ax, iv, 8);
return 8;
}
/*
* WUSB Pseudo Random Function (WUSB1.0[6.5])
*
* @b: buffer to the source data; cannot be a global or const local
* (will confuse the scatterlists)
*/
ssize_t wusb_prf(void *out, size_t out_size,
const u8 key[16], const struct aes_ccm_nonce *_n,
const struct aes_ccm_label *a,
const void *b, size_t blen, size_t len)
{
ssize_t result, bytes = 0, bitr;
struct aes_ccm_nonce n = *_n;
struct crypto_shash *tfm_cbcmac;
struct wusb_mac_scratch scratch;
u64 sfn = 0;
__le64 sfn_le;
tfm_cbcmac = crypto_alloc_shash("cbcmac(aes)", 0, 0);
if (IS_ERR(tfm_cbcmac)) {
result = PTR_ERR(tfm_cbcmac);
printk(KERN_ERR "E: can't load CBCMAC-AES: %d\n", (int)result);
goto error_alloc_cbcmac;
}
result = crypto_shash_setkey(tfm_cbcmac, key, AES_BLOCK_SIZE);
if (result < 0) {
printk(KERN_ERR "E: can't set CBCMAC-AES key: %d\n", (int)result);
goto error_setkey_cbcmac;
}
for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
sfn_le = cpu_to_le64(sfn++);
memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
result = wusb_ccm_mac(tfm_cbcmac, &scratch, out + bytes,
&n, a, b, blen);
if (result < 0)
goto error_ccm_mac;
bytes += result;
}
result = bytes;
error_ccm_mac:
error_setkey_cbcmac:
crypto_free_shash(tfm_cbcmac);
error_alloc_cbcmac:
return result;
}
/* WUSB1.0[A.2] test vectors */
static const u8 stv_hsmic_key[16] = {
0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
};
static const struct aes_ccm_nonce stv_hsmic_n = {
.sfn = { 0 },
.tkid = { 0x76, 0x98, 0x01, },
.dest_addr = { .data = { 0xbe, 0x00 } },
.src_addr = { .data = { 0x76, 0x98 } },
};
/*
* Out-of-band MIC Generation verification code
*
*/
static int wusb_oob_mic_verify(void)
{
int result;
u8 mic[8];
/* WUSB1.0[A.2] test vectors */
static const struct usb_handshake stv_hsmic_hs = {
.bMessageNumber = 2,
.bStatus = 00,
.tTKID = { 0x76, 0x98, 0x01 },
.bReserved = 00,
.CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
0x3c, 0x3d, 0x3e, 0x3f },
.nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f },
.MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
0x14, 0x7b },
};
size_t hs_size;
result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
if (result < 0)
printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
printk(KERN_ERR "E: OOB MIC test: "
"mismatch between MIC result and WUSB1.0[A2]\n");
hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
wusb_key_dump(&stv_hsmic_hs, hs_size);
printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
sizeof(stv_hsmic_n));
wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
printk(KERN_ERR "E: MIC out:\n");
wusb_key_dump(mic, sizeof(mic));
printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
result = -EINVAL;
} else
result = 0;
return result;
}
/*
* Test vectors for Key derivation
*
* These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
* (errata corrected in 2005/07).
*/
static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
};
static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
.sfn = { 0 },
.tkid = { 0x76, 0x98, 0x01, },
.dest_addr = { .data = { 0xbe, 0x00 } },
.src_addr = { .data = { 0x76, 0x98 } },
};
static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
.kck = {
0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
},
.ptk = {
0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
}
};
/*
* Performa a test to make sure we match the vectors defined in
* WUSB1.0[A.1](Errata2006/12)
*/
static int wusb_key_derive_verify(void)
{
int result = 0;
struct wusb_keydvt_out keydvt_out;
/* These come from WUSB1.0[A.1] + 2006/12 errata */
static const struct wusb_keydvt_in stv_keydvt_in_a1 = {
.hnonce = {
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
},
.dnonce = {
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
}
};
result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
&stv_keydvt_in_a1);
if (result < 0)
printk(KERN_ERR "E: WUSB key derivation test: "
"derivation failed: %d\n", result);
if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
printk(KERN_ERR "E: WUSB key derivation test: "
"mismatch between key derivation result "
"and WUSB1.0[A1] Errata 2006/12\n");
printk(KERN_ERR "E: keydvt in: key\n");
wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
printk(KERN_ERR "E: keydvt in: nonce\n");
wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
printk(KERN_ERR "E: keydvt out: KCK\n");
wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
printk(KERN_ERR "E: keydvt out: PTK\n");
wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
result = -EINVAL;
} else
result = 0;
return result;
}
/*
* Initialize crypto system
*
* FIXME: we do nothing now, other than verifying. Later on we'll
* cache the encryption stuff, so that's why we have a separate init.
*/
int wusb_crypto_init(void)
{
int result;
if (debug_crypto_verify) {
result = wusb_key_derive_verify();
if (result < 0)
return result;
return wusb_oob_mic_verify();
}
return 0;
}
void wusb_crypto_exit(void)
{
/* FIXME: free cached crypto transforms */
}