linux-stable/sound/pci/emu10k1/io.c

718 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Lee Revell <rlrevell@joe-job.com>
* James Courtier-Dutton <James@superbug.co.uk>
* Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
* Creative Labs, Inc.
*
* Routines for control of EMU10K1 chips
*/
#include <linux/time.h>
#include <sound/core.h>
#include <sound/emu10k1.h>
#include <linux/delay.h>
#include <linux/export.h>
#include "p17v.h"
static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
{
if (snd_BUG_ON(!emu))
return false;
if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
: (0xffff0000 & ~PTR_ADDRESS_MASK))))
return false;
if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
return false;
return true;
}
unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
{
unsigned long flags;
unsigned int regptr, val;
unsigned int mask;
regptr = (reg << 16) | chn;
if (!check_ptr_reg(emu, regptr))
return 0;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
val = inl(emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
if (reg & 0xff000000) {
unsigned char size, offset;
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = (1 << size) - 1;
return (val >> offset) & mask;
} else {
return val;
}
}
EXPORT_SYMBOL(snd_emu10k1_ptr_read);
void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
{
unsigned int regptr;
unsigned long flags;
unsigned int mask;
regptr = (reg << 16) | chn;
if (!check_ptr_reg(emu, regptr))
return;
if (reg & 0xff000000) {
unsigned char size, offset;
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = (1 << size) - 1;
if (snd_BUG_ON(data & ~mask))
return;
mask <<= offset;
data <<= offset;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
data |= inl(emu->port + DATA) & ~mask;
} else {
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
}
outl(data, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
EXPORT_SYMBOL(snd_emu10k1_ptr_write);
void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
{
va_list va;
u32 addr_mask;
unsigned long flags;
if (snd_BUG_ON(!emu))
return;
if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
return;
addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
va_start(va, chn);
spin_lock_irqsave(&emu->emu_lock, flags);
for (;;) {
u32 data;
u32 reg = va_arg(va, u32);
if (reg == REGLIST_END)
break;
data = va_arg(va, u32);
if (snd_BUG_ON(reg & addr_mask)) // Only raw registers supported here
continue;
outl((reg << 16) | chn, emu->port + PTR);
outl(data, emu->port + DATA);
}
spin_unlock_irqrestore(&emu->emu_lock, flags);
va_end(va);
}
EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
unsigned int reg,
unsigned int chn)
{
unsigned long flags;
unsigned int regptr, val;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR2);
val = inl(emu->port + DATA2);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
unsigned int reg,
unsigned int chn,
unsigned int data)
{
unsigned int regptr;
unsigned long flags;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR2);
outl(data, emu->port + DATA2);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
unsigned int data)
{
unsigned int reset, set;
unsigned int reg, tmp;
int n, result;
int err = 0;
/* This function is not re-entrant, so protect against it. */
spin_lock(&emu->spi_lock);
if (emu->card_capabilities->ca0108_chip)
reg = P17V_SPI;
else {
/* For other chip types the SPI register
* is currently unknown. */
err = 1;
goto spi_write_exit;
}
if (data > 0xffff) {
/* Only 16bit values allowed */
err = 1;
goto spi_write_exit;
}
tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
set = reset | 0x10000; /* Set xxx1xxxx */
snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
result = 1;
/* Wait for status bit to return to 0 */
for (n = 0; n < 100; n++) {
udelay(10);
tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
if (!(tmp & 0x10000)) {
result = 0;
break;
}
}
if (result) {
/* Timed out */
err = 1;
goto spi_write_exit;
}
snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
err = 0;
spi_write_exit:
spin_unlock(&emu->spi_lock);
return err;
}
/* The ADC does not support i2c read, so only write is implemented */
int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
u32 reg,
u32 value)
{
u32 tmp;
int timeout = 0;
int status;
int retry;
int err = 0;
if ((reg > 0x7f) || (value > 0x1ff)) {
dev_err(emu->card->dev, "i2c_write: invalid values.\n");
return -EINVAL;
}
/* This function is not re-entrant, so protect against it. */
spin_lock(&emu->i2c_lock);
tmp = reg << 25 | value << 16;
/* This controls the I2C connected to the WM8775 ADC Codec */
snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
for (retry = 0; retry < 10; retry++) {
/* Send the data to i2c */
tmp = 0;
tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
/* Wait till the transaction ends */
while (1) {
mdelay(1);
status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
timeout++;
if ((status & I2C_A_ADC_START) == 0)
break;
if (timeout > 1000) {
dev_warn(emu->card->dev,
"emu10k1:I2C:timeout status=0x%x\n",
status);
break;
}
}
//Read back and see if the transaction is successful
if ((status & I2C_A_ADC_ABORT) == 0)
break;
}
if (retry == 10) {
dev_err(emu->card->dev, "Writing to ADC failed!\n");
dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
status, reg, value);
/* dump_stack(); */
err = -EINVAL;
}
spin_unlock(&emu->i2c_lock);
return err;
}
static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
{
if (snd_BUG_ON(reg > 0x3f))
return;
reg += 0x40; /* 0x40 upwards are registers. */
if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
return;
outw(reg, emu->port + A_GPIO);
udelay(10);
outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
udelay(10);
outw(value, emu->port + A_GPIO);
udelay(10);
outw(value | 0x80 , emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
}
void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
{
if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
return;
snd_emu1010_fpga_write_locked(emu, reg, value);
}
void snd_emu1010_fpga_write_lock(struct snd_emu10k1 *emu, u32 reg, u32 value)
{
snd_emu1010_fpga_lock(emu);
snd_emu1010_fpga_write_locked(emu, reg, value);
snd_emu1010_fpga_unlock(emu);
}
void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
{
// The higest input pin is used as the designated interrupt trigger,
// so it needs to be masked out.
// But note that any other input pin change will also cause an IRQ,
// so using this function often causes an IRQ as a side effect.
u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
return;
if (snd_BUG_ON(reg > 0x3f))
return;
reg += 0x40; /* 0x40 upwards are registers. */
outw(reg, emu->port + A_GPIO);
udelay(10);
outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */
udelay(10);
*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
}
/* Each Destination has one and only one Source,
* but one Source can feed any number of Destinations simultaneously.
*/
void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
{
if (snd_BUG_ON(dst & ~0x71f))
return;
if (snd_BUG_ON(src & ~0x71f))
return;
snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
snd_emu1010_fpga_write(emu, EMU_HANA_SRCHI, src >> 8);
snd_emu1010_fpga_write(emu, EMU_HANA_SRCLO, src & 0x1f);
}
u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
{
u32 hi, lo;
if (snd_BUG_ON(dst & ~0x71f))
return 0;
snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
snd_emu1010_fpga_read(emu, EMU_HANA_SRCHI, &hi);
snd_emu1010_fpga_read(emu, EMU_HANA_SRCLO, &lo);
return (hi << 8) | lo;
}
int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
{
u32 reg_lo, reg_hi, value, value2;
switch (src) {
case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
return 0;
reg_lo = EMU_HANA_WC_SPDIF_LO;
reg_hi = EMU_HANA_WC_SPDIF_HI;
break;
case EMU_HANA_WCLOCK_HANA_ADAT_IN:
reg_lo = EMU_HANA_WC_ADAT_LO;
reg_hi = EMU_HANA_WC_ADAT_HI;
break;
case EMU_HANA_WCLOCK_SYNC_BNC:
reg_lo = EMU_HANA_WC_BNC_LO;
reg_hi = EMU_HANA_WC_BNC_HI;
break;
case EMU_HANA_WCLOCK_2ND_HANA:
reg_lo = EMU_HANA2_WC_SPDIF_LO;
reg_hi = EMU_HANA2_WC_SPDIF_HI;
break;
default:
return 0;
}
snd_emu1010_fpga_read(emu, reg_hi, &value);
snd_emu1010_fpga_read(emu, reg_lo, &value2);
// FIXME: The /4 is valid for 0404b, but contradicts all other info.
return 0x1770000 / 4 / (((value << 5) | value2) + 1);
}
void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
{
int clock;
u32 leds;
switch (emu->emu1010.wclock) {
case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
clock = 44100;
leds = EMU_HANA_DOCK_LEDS_2_44K;
break;
case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
clock = 48000;
leds = EMU_HANA_DOCK_LEDS_2_48K;
break;
default:
clock = snd_emu1010_get_raw_rate(
emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
// The raw rate reading is rather coarse (it cannot accurately
// represent 44.1 kHz) and fluctuates slightly. Luckily, the
// clock comes from digital inputs, which use standardized rates.
// So we round to the closest standard rate and ignore discrepancies.
if (clock < 46000) {
clock = 44100;
leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
} else {
clock = 48000;
leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
}
break;
}
emu->emu1010.word_clock = clock;
// FIXME: this should probably represent the AND of all currently
// used sources' lock status. But we don't know how to get that ...
leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
}
void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int enable;
spin_lock_irqsave(&emu->emu_lock, flags);
enable = inl(emu->port + INTE) | intrenb;
outl(enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int enable;
spin_lock_irqsave(&emu->emu_lock, flags);
enable = inl(emu->port + INTE) & ~intrenb;
outl(enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(CLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << (voicenum - 32);
} else {
outl(CLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << voicenum;
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(CLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << (voicenum - 32));
} else {
outl(CLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << voicenum);
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(CLIPH << 16, emu->port + PTR);
voicenum = 1 << (voicenum - 32);
} else {
outl(CLIPL << 16, emu->port + PTR);
voicenum = 1 << voicenum;
}
outl(voicenum, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(HLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << (voicenum - 32);
} else {
outl(HLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val |= 1 << voicenum;
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(HLIEH << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << (voicenum - 32));
} else {
outl(HLIEL << 16, emu->port + PTR);
val = inl(emu->port + DATA);
val &= ~(1 << voicenum);
}
outl(val, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(HLIPH << 16, emu->port + PTR);
voicenum = 1 << (voicenum - 32);
} else {
outl(HLIPL << 16, emu->port + PTR);
voicenum = 1 << voicenum;
}
outl(voicenum, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
#if 0
void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int sol;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(SOLEH << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol |= 1 << (voicenum - 32);
} else {
outl(SOLEL << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol |= 1 << voicenum;
}
outl(sol, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
{
unsigned long flags;
unsigned int sol;
spin_lock_irqsave(&emu->emu_lock, flags);
if (voicenum >= 32) {
outl(SOLEH << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol &= ~(1 << (voicenum - 32));
} else {
outl(SOLEL << 16, emu->port + PTR);
sol = inl(emu->port + DATA);
sol &= ~(1 << voicenum);
}
outl(sol, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
#endif
void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(SOLEL << 16, emu->port + PTR);
outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
outl(SOLEH << 16, emu->port + PTR);
outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
{
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(SOLEL << 16, emu->port + PTR);
outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
outl(SOLEH << 16, emu->port + PTR);
outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
{
unsigned long flags;
u32 soll, solh;
int ret = -EIO;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(SOLEL << 16, emu->port + PTR);
soll = inl(emu->port + DATA);
outl(SOLEH << 16, emu->port + PTR);
solh = inl(emu->port + DATA);
soll &= (u32)~voices;
solh &= (u32)(~voices >> 32);
for (int tries = 0; tries < 1000; tries++) {
const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
// First we wait for the third quarter of the sample cycle ...
u32 wc = inl(emu->port + WC);
u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
if (cc >= quart * 2 && cc < quart * 3) {
// ... and release the low voices, while the high ones are serviced.
outl(SOLEL << 16, emu->port + PTR);
outl(soll, emu->port + DATA);
// Then we wait for the first quarter of the next sample cycle ...
for (; tries < 1000; tries++) {
cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
if (cc < quart)
goto good;
// We will block for 10+ us with interrupts disabled. This is
// not nice at all, but necessary for reasonable reliability.
udelay(1);
}
break;
good:
// ... and release the high voices, while the low ones are serviced.
outl(SOLEH << 16, emu->port + PTR);
outl(solh, emu->port + DATA);
// Finally we verify that nothing interfered in fact.
if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
ret = 0;
} else {
ret = -EAGAIN;
}
break;
}
// Don't block for too long
spin_unlock_irqrestore(&emu->emu_lock, flags);
udelay(1);
spin_lock_irqsave(&emu->emu_lock, flags);
}
spin_unlock_irqrestore(&emu->emu_lock, flags);
return ret;
}
void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
{
volatile unsigned count;
unsigned int newtime = 0, curtime;
curtime = inl(emu->port + WC) >> 6;
while (wait-- > 0) {
count = 0;
while (count++ < 16384) {
newtime = inl(emu->port + WC) >> 6;
if (newtime != curtime)
break;
}
if (count > 16384)
break;
curtime = newtime;
}
}
unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
struct snd_emu10k1 *emu = ac97->private_data;
unsigned long flags;
unsigned short val;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
val = inw(emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
{
struct snd_emu10k1 *emu = ac97->private_data;
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
outw(data, emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}