linux-stable/fs/ntfs3/attrib.c
Konstantin Komarov ce46ae0c3e
fs/ntfs3: Keep prealloc for all types of files
Before we haven't kept prealloc for sparse files because we thought that
it will speed up create / write operations.
It lead to situation, when user reserved some space for sparse file,
filled volume, and wasn't able to write in reserved file.
With this commit we keep prealloc.
Now xfstest generic/274 pass.
Fixes: be71b5cba2 ("fs/ntfs3: Add attrib operations")

Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
2021-10-11 19:10:19 +03:00

2083 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
* TODO: Merge attr_set_size/attr_data_get_block/attr_allocate_frame?
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include "debug.h"
#include "ntfs.h"
#include "ntfs_fs.h"
/*
* You can set external NTFS_MIN_LOG2_OF_CLUMP/NTFS_MAX_LOG2_OF_CLUMP to manage
* preallocate algorithm.
*/
#ifndef NTFS_MIN_LOG2_OF_CLUMP
#define NTFS_MIN_LOG2_OF_CLUMP 16
#endif
#ifndef NTFS_MAX_LOG2_OF_CLUMP
#define NTFS_MAX_LOG2_OF_CLUMP 26
#endif
// 16M
#define NTFS_CLUMP_MIN (1 << (NTFS_MIN_LOG2_OF_CLUMP + 8))
// 16G
#define NTFS_CLUMP_MAX (1ull << (NTFS_MAX_LOG2_OF_CLUMP + 8))
static inline u64 get_pre_allocated(u64 size)
{
u32 clump;
u8 align_shift;
u64 ret;
if (size <= NTFS_CLUMP_MIN) {
clump = 1 << NTFS_MIN_LOG2_OF_CLUMP;
align_shift = NTFS_MIN_LOG2_OF_CLUMP;
} else if (size >= NTFS_CLUMP_MAX) {
clump = 1 << NTFS_MAX_LOG2_OF_CLUMP;
align_shift = NTFS_MAX_LOG2_OF_CLUMP;
} else {
align_shift = NTFS_MIN_LOG2_OF_CLUMP - 1 +
__ffs(size >> (8 + NTFS_MIN_LOG2_OF_CLUMP));
clump = 1u << align_shift;
}
ret = (((size + clump - 1) >> align_shift)) << align_shift;
return ret;
}
/*
* attr_must_be_resident
*
* Return: True if attribute must be resident.
*/
static inline bool attr_must_be_resident(struct ntfs_sb_info *sbi,
enum ATTR_TYPE type)
{
const struct ATTR_DEF_ENTRY *de;
switch (type) {
case ATTR_STD:
case ATTR_NAME:
case ATTR_ID:
case ATTR_LABEL:
case ATTR_VOL_INFO:
case ATTR_ROOT:
case ATTR_EA_INFO:
return true;
default:
de = ntfs_query_def(sbi, type);
if (de && (de->flags & NTFS_ATTR_MUST_BE_RESIDENT))
return true;
return false;
}
}
/*
* attr_load_runs - Load all runs stored in @attr.
*/
int attr_load_runs(struct ATTRIB *attr, struct ntfs_inode *ni,
struct runs_tree *run, const CLST *vcn)
{
int err;
CLST svcn = le64_to_cpu(attr->nres.svcn);
CLST evcn = le64_to_cpu(attr->nres.evcn);
u32 asize;
u16 run_off;
if (svcn >= evcn + 1 || run_is_mapped_full(run, svcn, evcn))
return 0;
if (vcn && (evcn < *vcn || *vcn < svcn))
return -EINVAL;
asize = le32_to_cpu(attr->size);
run_off = le16_to_cpu(attr->nres.run_off);
err = run_unpack_ex(run, ni->mi.sbi, ni->mi.rno, svcn, evcn,
vcn ? *vcn : svcn, Add2Ptr(attr, run_off),
asize - run_off);
if (err < 0)
return err;
return 0;
}
/*
* run_deallocate_ex - Deallocate clusters.
*/
static int run_deallocate_ex(struct ntfs_sb_info *sbi, struct runs_tree *run,
CLST vcn, CLST len, CLST *done, bool trim)
{
int err = 0;
CLST vcn_next, vcn0 = vcn, lcn, clen, dn = 0;
size_t idx;
if (!len)
goto out;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) {
failed:
run_truncate(run, vcn0);
err = -EINVAL;
goto out;
}
for (;;) {
if (clen > len)
clen = len;
if (!clen) {
err = -EINVAL;
goto out;
}
if (lcn != SPARSE_LCN) {
mark_as_free_ex(sbi, lcn, clen, trim);
dn += clen;
}
len -= clen;
if (!len)
break;
vcn_next = vcn + clen;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn != vcn_next) {
/* Save memory - don't load entire run. */
goto failed;
}
}
out:
if (done)
*done += dn;
return err;
}
/*
* attr_allocate_clusters - Find free space, mark it as used and store in @run.
*/
int attr_allocate_clusters(struct ntfs_sb_info *sbi, struct runs_tree *run,
CLST vcn, CLST lcn, CLST len, CLST *pre_alloc,
enum ALLOCATE_OPT opt, CLST *alen, const size_t fr,
CLST *new_lcn)
{
int err;
CLST flen, vcn0 = vcn, pre = pre_alloc ? *pre_alloc : 0;
struct wnd_bitmap *wnd = &sbi->used.bitmap;
size_t cnt = run->count;
for (;;) {
err = ntfs_look_for_free_space(sbi, lcn, len + pre, &lcn, &flen,
opt);
if (err == -ENOSPC && pre) {
pre = 0;
if (*pre_alloc)
*pre_alloc = 0;
continue;
}
if (err)
goto out;
if (new_lcn && vcn == vcn0)
*new_lcn = lcn;
/* Add new fragment into run storage. */
if (!run_add_entry(run, vcn, lcn, flen, opt == ALLOCATE_MFT)) {
/* Undo last 'ntfs_look_for_free_space' */
down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
wnd_set_free(wnd, lcn, flen);
up_write(&wnd->rw_lock);
err = -ENOMEM;
goto out;
}
vcn += flen;
if (flen >= len || opt == ALLOCATE_MFT ||
(fr && run->count - cnt >= fr)) {
*alen = vcn - vcn0;
return 0;
}
len -= flen;
}
out:
/* Undo 'ntfs_look_for_free_space' */
if (vcn - vcn0) {
run_deallocate_ex(sbi, run, vcn0, vcn - vcn0, NULL, false);
run_truncate(run, vcn0);
}
return err;
}
/*
* attr_make_nonresident
*
* If page is not NULL - it is already contains resident data
* and locked (called from ni_write_frame()).
*/
int attr_make_nonresident(struct ntfs_inode *ni, struct ATTRIB *attr,
struct ATTR_LIST_ENTRY *le, struct mft_inode *mi,
u64 new_size, struct runs_tree *run,
struct ATTRIB **ins_attr, struct page *page)
{
struct ntfs_sb_info *sbi;
struct ATTRIB *attr_s;
struct MFT_REC *rec;
u32 used, asize, rsize, aoff, align;
bool is_data;
CLST len, alen;
char *next;
int err;
if (attr->non_res) {
*ins_attr = attr;
return 0;
}
sbi = mi->sbi;
rec = mi->mrec;
attr_s = NULL;
used = le32_to_cpu(rec->used);
asize = le32_to_cpu(attr->size);
next = Add2Ptr(attr, asize);
aoff = PtrOffset(rec, attr);
rsize = le32_to_cpu(attr->res.data_size);
is_data = attr->type == ATTR_DATA && !attr->name_len;
align = sbi->cluster_size;
if (is_attr_compressed(attr))
align <<= COMPRESSION_UNIT;
len = (rsize + align - 1) >> sbi->cluster_bits;
run_init(run);
/* Make a copy of original attribute. */
attr_s = kmemdup(attr, asize, GFP_NOFS);
if (!attr_s) {
err = -ENOMEM;
goto out;
}
if (!len) {
/* Empty resident -> Empty nonresident. */
alen = 0;
} else {
const char *data = resident_data(attr);
err = attr_allocate_clusters(sbi, run, 0, 0, len, NULL,
ALLOCATE_DEF, &alen, 0, NULL);
if (err)
goto out1;
if (!rsize) {
/* Empty resident -> Non empty nonresident. */
} else if (!is_data) {
err = ntfs_sb_write_run(sbi, run, 0, data, rsize, 0);
if (err)
goto out2;
} else if (!page) {
char *kaddr;
page = grab_cache_page(ni->vfs_inode.i_mapping, 0);
if (!page) {
err = -ENOMEM;
goto out2;
}
kaddr = kmap_atomic(page);
memcpy(kaddr, data, rsize);
memset(kaddr + rsize, 0, PAGE_SIZE - rsize);
kunmap_atomic(kaddr);
flush_dcache_page(page);
SetPageUptodate(page);
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
}
/* Remove original attribute. */
used -= asize;
memmove(attr, Add2Ptr(attr, asize), used - aoff);
rec->used = cpu_to_le32(used);
mi->dirty = true;
if (le)
al_remove_le(ni, le);
err = ni_insert_nonresident(ni, attr_s->type, attr_name(attr_s),
attr_s->name_len, run, 0, alen,
attr_s->flags, &attr, NULL);
if (err)
goto out3;
kfree(attr_s);
attr->nres.data_size = cpu_to_le64(rsize);
attr->nres.valid_size = attr->nres.data_size;
*ins_attr = attr;
if (is_data)
ni->ni_flags &= ~NI_FLAG_RESIDENT;
/* Resident attribute becomes non resident. */
return 0;
out3:
attr = Add2Ptr(rec, aoff);
memmove(next, attr, used - aoff);
memcpy(attr, attr_s, asize);
rec->used = cpu_to_le32(used + asize);
mi->dirty = true;
out2:
/* Undo: do not trim new allocated clusters. */
run_deallocate(sbi, run, false);
run_close(run);
out1:
kfree(attr_s);
out:
return err;
}
/*
* attr_set_size_res - Helper for attr_set_size().
*/
static int attr_set_size_res(struct ntfs_inode *ni, struct ATTRIB *attr,
struct ATTR_LIST_ENTRY *le, struct mft_inode *mi,
u64 new_size, struct runs_tree *run,
struct ATTRIB **ins_attr)
{
struct ntfs_sb_info *sbi = mi->sbi;
struct MFT_REC *rec = mi->mrec;
u32 used = le32_to_cpu(rec->used);
u32 asize = le32_to_cpu(attr->size);
u32 aoff = PtrOffset(rec, attr);
u32 rsize = le32_to_cpu(attr->res.data_size);
u32 tail = used - aoff - asize;
char *next = Add2Ptr(attr, asize);
s64 dsize = ALIGN(new_size, 8) - ALIGN(rsize, 8);
if (dsize < 0) {
memmove(next + dsize, next, tail);
} else if (dsize > 0) {
if (used + dsize > sbi->max_bytes_per_attr)
return attr_make_nonresident(ni, attr, le, mi, new_size,
run, ins_attr, NULL);
memmove(next + dsize, next, tail);
memset(next, 0, dsize);
}
if (new_size > rsize)
memset(Add2Ptr(resident_data(attr), rsize), 0,
new_size - rsize);
rec->used = cpu_to_le32(used + dsize);
attr->size = cpu_to_le32(asize + dsize);
attr->res.data_size = cpu_to_le32(new_size);
mi->dirty = true;
*ins_attr = attr;
return 0;
}
/*
* attr_set_size - Change the size of attribute.
*
* Extend:
* - Sparse/compressed: No allocated clusters.
* - Normal: Append allocated and preallocated new clusters.
* Shrink:
* - No deallocate if @keep_prealloc is set.
*/
int attr_set_size(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, struct runs_tree *run,
u64 new_size, const u64 *new_valid, bool keep_prealloc,
struct ATTRIB **ret)
{
int err = 0;
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 cluster_bits = sbi->cluster_bits;
bool is_mft =
ni->mi.rno == MFT_REC_MFT && type == ATTR_DATA && !name_len;
u64 old_valid, old_size, old_alloc, new_alloc, new_alloc_tmp;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST alen, vcn, lcn, new_alen, old_alen, svcn, evcn;
CLST next_svcn, pre_alloc = -1, done = 0;
bool is_ext;
u32 align;
struct MFT_REC *rec;
again:
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, type, name, name_len, NULL,
&mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
if (!attr_b->non_res) {
err = attr_set_size_res(ni, attr_b, le_b, mi_b, new_size, run,
&attr_b);
if (err || !attr_b->non_res)
goto out;
/* Layout of records may be changed, so do a full search. */
goto again;
}
is_ext = is_attr_ext(attr_b);
again_1:
align = sbi->cluster_size;
if (is_ext)
align <<= attr_b->nres.c_unit;
old_valid = le64_to_cpu(attr_b->nres.valid_size);
old_size = le64_to_cpu(attr_b->nres.data_size);
old_alloc = le64_to_cpu(attr_b->nres.alloc_size);
old_alen = old_alloc >> cluster_bits;
new_alloc = (new_size + align - 1) & ~(u64)(align - 1);
new_alen = new_alloc >> cluster_bits;
if (keep_prealloc && new_size < old_size) {
attr_b->nres.data_size = cpu_to_le64(new_size);
mi_b->dirty = true;
goto ok;
}
vcn = old_alen - 1;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn = le64_to_cpu(attr_b->nres.evcn);
if (svcn <= vcn && vcn <= evcn) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, type, name, name_len, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
next_le_1:
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
}
next_le:
rec = mi->mrec;
err = attr_load_runs(attr, ni, run, NULL);
if (err)
goto out;
if (new_size > old_size) {
CLST to_allocate;
size_t free;
if (new_alloc <= old_alloc) {
attr_b->nres.data_size = cpu_to_le64(new_size);
mi_b->dirty = true;
goto ok;
}
to_allocate = new_alen - old_alen;
add_alloc_in_same_attr_seg:
lcn = 0;
if (is_mft) {
/* MFT allocates clusters from MFT zone. */
pre_alloc = 0;
} else if (is_ext) {
/* No preallocate for sparse/compress. */
pre_alloc = 0;
} else if (pre_alloc == -1) {
pre_alloc = 0;
if (type == ATTR_DATA && !name_len &&
sbi->options->prealloc) {
CLST new_alen2 = bytes_to_cluster(
sbi, get_pre_allocated(new_size));
pre_alloc = new_alen2 - new_alen;
}
/* Get the last LCN to allocate from. */
if (old_alen &&
!run_lookup_entry(run, vcn, &lcn, NULL, NULL)) {
lcn = SPARSE_LCN;
}
if (lcn == SPARSE_LCN)
lcn = 0;
else if (lcn)
lcn += 1;
free = wnd_zeroes(&sbi->used.bitmap);
if (to_allocate > free) {
err = -ENOSPC;
goto out;
}
if (pre_alloc && to_allocate + pre_alloc > free)
pre_alloc = 0;
}
vcn = old_alen;
if (is_ext) {
if (!run_add_entry(run, vcn, SPARSE_LCN, to_allocate,
false)) {
err = -ENOMEM;
goto out;
}
alen = to_allocate;
} else {
/* ~3 bytes per fragment. */
err = attr_allocate_clusters(
sbi, run, vcn, lcn, to_allocate, &pre_alloc,
is_mft ? ALLOCATE_MFT : 0, &alen,
is_mft ? 0
: (sbi->record_size -
le32_to_cpu(rec->used) + 8) /
3 +
1,
NULL);
if (err)
goto out;
}
done += alen;
vcn += alen;
if (to_allocate > alen)
to_allocate -= alen;
else
to_allocate = 0;
pack_runs:
err = mi_pack_runs(mi, attr, run, vcn - svcn);
if (err)
goto out;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
new_alloc_tmp = (u64)next_svcn << cluster_bits;
attr_b->nres.alloc_size = cpu_to_le64(new_alloc_tmp);
mi_b->dirty = true;
if (next_svcn >= vcn && !to_allocate) {
/* Normal way. Update attribute and exit. */
attr_b->nres.data_size = cpu_to_le64(new_size);
goto ok;
}
/* At least two MFT to avoid recursive loop. */
if (is_mft && next_svcn == vcn &&
((u64)done << sbi->cluster_bits) >= 2 * sbi->record_size) {
new_size = new_alloc_tmp;
attr_b->nres.data_size = attr_b->nres.alloc_size;
goto ok;
}
if (le32_to_cpu(rec->used) < sbi->record_size) {
old_alen = next_svcn;
evcn = old_alen - 1;
goto add_alloc_in_same_attr_seg;
}
attr_b->nres.data_size = attr_b->nres.alloc_size;
if (new_alloc_tmp < old_valid)
attr_b->nres.valid_size = attr_b->nres.data_size;
if (type == ATTR_LIST) {
err = ni_expand_list(ni);
if (err)
goto out;
if (next_svcn < vcn)
goto pack_runs;
/* Layout of records is changed. */
goto again;
}
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
/* Layout of records is changed. */
}
if (next_svcn >= vcn) {
/* This is MFT data, repeat. */
goto again;
}
/* Insert new attribute segment. */
err = ni_insert_nonresident(ni, type, name, name_len, run,
next_svcn, vcn - next_svcn,
attr_b->flags, &attr, &mi);
if (err)
goto out;
if (!is_mft)
run_truncate_head(run, evcn + 1);
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
le_b = NULL;
/*
* Layout of records maybe changed.
* Find base attribute to update.
*/
attr_b = ni_find_attr(ni, NULL, &le_b, type, name, name_len,
NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
attr_b->nres.alloc_size = cpu_to_le64((u64)vcn << cluster_bits);
attr_b->nres.data_size = attr_b->nres.alloc_size;
attr_b->nres.valid_size = attr_b->nres.alloc_size;
mi_b->dirty = true;
goto again_1;
}
if (new_size != old_size ||
(new_alloc != old_alloc && !keep_prealloc)) {
vcn = max(svcn, new_alen);
new_alloc_tmp = (u64)vcn << cluster_bits;
alen = 0;
err = run_deallocate_ex(sbi, run, vcn, evcn - vcn + 1, &alen,
true);
if (err)
goto out;
run_truncate(run, vcn);
if (vcn > svcn) {
err = mi_pack_runs(mi, attr, run, vcn - svcn);
if (err)
goto out;
} else if (le && le->vcn) {
u16 le_sz = le16_to_cpu(le->size);
/*
* NOTE: List entries for one attribute are always
* the same size. We deal with last entry (vcn==0)
* and it is not first in entries array
* (list entry for std attribute always first).
* So it is safe to step back.
*/
mi_remove_attr(NULL, mi, attr);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
le = (struct ATTR_LIST_ENTRY *)((u8 *)le - le_sz);
} else {
attr->nres.evcn = cpu_to_le64((u64)vcn - 1);
mi->dirty = true;
}
attr_b->nres.alloc_size = cpu_to_le64(new_alloc_tmp);
if (vcn == new_alen) {
attr_b->nres.data_size = cpu_to_le64(new_size);
if (new_size < old_valid)
attr_b->nres.valid_size =
attr_b->nres.data_size;
} else {
if (new_alloc_tmp <=
le64_to_cpu(attr_b->nres.data_size))
attr_b->nres.data_size =
attr_b->nres.alloc_size;
if (new_alloc_tmp <
le64_to_cpu(attr_b->nres.valid_size))
attr_b->nres.valid_size =
attr_b->nres.alloc_size;
}
if (is_ext)
le64_sub_cpu(&attr_b->nres.total_size,
((u64)alen << cluster_bits));
mi_b->dirty = true;
if (new_alloc_tmp <= new_alloc)
goto ok;
old_size = new_alloc_tmp;
vcn = svcn - 1;
if (le == le_b) {
attr = attr_b;
mi = mi_b;
evcn = svcn - 1;
svcn = 0;
goto next_le;
}
if (le->type != type || le->name_len != name_len ||
memcmp(le_name(le), name, name_len * sizeof(short))) {
err = -EINVAL;
goto out;
}
err = ni_load_mi(ni, le, &mi);
if (err)
goto out;
attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
goto next_le_1;
}
ok:
if (new_valid) {
__le64 valid = cpu_to_le64(min(*new_valid, new_size));
if (attr_b->nres.valid_size != valid) {
attr_b->nres.valid_size = valid;
mi_b->dirty = true;
}
}
out:
if (!err && attr_b && ret)
*ret = attr_b;
/* Update inode_set_bytes. */
if (!err && ((type == ATTR_DATA && !name_len) ||
(type == ATTR_ALLOC && name == I30_NAME))) {
bool dirty = false;
if (ni->vfs_inode.i_size != new_size) {
ni->vfs_inode.i_size = new_size;
dirty = true;
}
if (attr_b && attr_b->non_res) {
new_alloc = le64_to_cpu(attr_b->nres.alloc_size);
if (inode_get_bytes(&ni->vfs_inode) != new_alloc) {
inode_set_bytes(&ni->vfs_inode, new_alloc);
dirty = true;
}
}
if (dirty) {
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mark_inode_dirty(&ni->vfs_inode);
}
}
return err;
}
int attr_data_get_block(struct ntfs_inode *ni, CLST vcn, CLST clen, CLST *lcn,
CLST *len, bool *new)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi;
u8 cluster_bits;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST hint, svcn, to_alloc, evcn1, next_svcn, asize, end;
u64 total_size;
u32 clst_per_frame;
bool ok;
if (new)
*new = false;
down_read(&ni->file.run_lock);
ok = run_lookup_entry(run, vcn, lcn, len, NULL);
up_read(&ni->file.run_lock);
if (ok && (*lcn != SPARSE_LCN || !new)) {
/* Normal way. */
return 0;
}
if (!clen)
clen = 1;
if (ok && clen > *len)
clen = *len;
sbi = ni->mi.sbi;
cluster_bits = sbi->cluster_bits;
ni_lock(ni);
down_write(&ni->file.run_lock);
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
if (!attr_b->non_res) {
*lcn = RESIDENT_LCN;
*len = 1;
goto out;
}
asize = le64_to_cpu(attr_b->nres.alloc_size) >> sbi->cluster_bits;
if (vcn >= asize) {
err = -EINVAL;
goto out;
}
clst_per_frame = 1u << attr_b->nres.c_unit;
to_alloc = (clen + clst_per_frame - 1) & ~(clst_per_frame - 1);
if (vcn + to_alloc > asize)
to_alloc = asize - vcn;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
attr = attr_b;
le = le_b;
mi = mi_b;
if (le_b && (vcn < svcn || evcn1 <= vcn)) {
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
err = attr_load_runs(attr, ni, run, NULL);
if (err)
goto out;
if (!ok) {
ok = run_lookup_entry(run, vcn, lcn, len, NULL);
if (ok && (*lcn != SPARSE_LCN || !new)) {
/* Normal way. */
err = 0;
goto ok;
}
if (!ok && !new) {
*len = 0;
err = 0;
goto ok;
}
if (ok && clen > *len) {
clen = *len;
to_alloc = (clen + clst_per_frame - 1) &
~(clst_per_frame - 1);
}
}
if (!is_attr_ext(attr_b)) {
err = -EINVAL;
goto out;
}
/* Get the last LCN to allocate from. */
hint = 0;
if (vcn > evcn1) {
if (!run_add_entry(run, evcn1, SPARSE_LCN, vcn - evcn1,
false)) {
err = -ENOMEM;
goto out;
}
} else if (vcn && !run_lookup_entry(run, vcn - 1, &hint, NULL, NULL)) {
hint = -1;
}
err = attr_allocate_clusters(
sbi, run, vcn, hint + 1, to_alloc, NULL, 0, len,
(sbi->record_size - le32_to_cpu(mi->mrec->used) + 8) / 3 + 1,
lcn);
if (err)
goto out;
*new = true;
end = vcn + *len;
total_size = le64_to_cpu(attr_b->nres.total_size) +
((u64)*len << cluster_bits);
repack:
err = mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn);
if (err)
goto out;
attr_b->nres.total_size = cpu_to_le64(total_size);
inode_set_bytes(&ni->vfs_inode, total_size);
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mi_b->dirty = true;
mark_inode_dirty(&ni->vfs_inode);
/* Stored [vcn : next_svcn) from [vcn : end). */
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
if (end <= evcn1) {
if (next_svcn == evcn1) {
/* Normal way. Update attribute and exit. */
goto ok;
}
/* Add new segment [next_svcn : evcn1 - next_svcn). */
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
/* Layout of records is changed. */
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL,
0, NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
attr = attr_b;
le = le_b;
mi = mi_b;
goto repack;
}
}
svcn = evcn1;
/* Estimate next attribute. */
attr = ni_find_attr(ni, attr, &le, ATTR_DATA, NULL, 0, &svcn, &mi);
if (attr) {
CLST alloc = bytes_to_cluster(
sbi, le64_to_cpu(attr_b->nres.alloc_size));
CLST evcn = le64_to_cpu(attr->nres.evcn);
if (end < next_svcn)
end = next_svcn;
while (end > evcn) {
/* Remove segment [svcn : evcn). */
mi_remove_attr(NULL, mi, attr);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
if (evcn + 1 >= alloc) {
/* Last attribute segment. */
evcn1 = evcn + 1;
goto ins_ext;
}
if (ni_load_mi(ni, le, &mi)) {
attr = NULL;
goto out;
}
attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0,
&le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
}
if (end < svcn)
end = svcn;
err = attr_load_runs(attr, ni, run, &end);
if (err)
goto out;
evcn1 = evcn + 1;
attr->nres.svcn = cpu_to_le64(next_svcn);
err = mi_pack_runs(mi, attr, run, evcn1 - next_svcn);
if (err)
goto out;
le->vcn = cpu_to_le64(next_svcn);
ni->attr_list.dirty = true;
mi->dirty = true;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
}
ins_ext:
if (evcn1 > next_svcn) {
err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run,
next_svcn, evcn1 - next_svcn,
attr_b->flags, &attr, &mi);
if (err)
goto out;
}
ok:
run_truncate_around(run, vcn);
out:
up_write(&ni->file.run_lock);
ni_unlock(ni);
return err;
}
int attr_data_read_resident(struct ntfs_inode *ni, struct page *page)
{
u64 vbo;
struct ATTRIB *attr;
u32 data_size;
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, NULL);
if (!attr)
return -EINVAL;
if (attr->non_res)
return E_NTFS_NONRESIDENT;
vbo = page->index << PAGE_SHIFT;
data_size = le32_to_cpu(attr->res.data_size);
if (vbo < data_size) {
const char *data = resident_data(attr);
char *kaddr = kmap_atomic(page);
u32 use = data_size - vbo;
if (use > PAGE_SIZE)
use = PAGE_SIZE;
memcpy(kaddr, data + vbo, use);
memset(kaddr + use, 0, PAGE_SIZE - use);
kunmap_atomic(kaddr);
flush_dcache_page(page);
SetPageUptodate(page);
} else if (!PageUptodate(page)) {
zero_user_segment(page, 0, PAGE_SIZE);
SetPageUptodate(page);
}
return 0;
}
int attr_data_write_resident(struct ntfs_inode *ni, struct page *page)
{
u64 vbo;
struct mft_inode *mi;
struct ATTRIB *attr;
u32 data_size;
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
if (!attr)
return -EINVAL;
if (attr->non_res) {
/* Return special error code to check this case. */
return E_NTFS_NONRESIDENT;
}
vbo = page->index << PAGE_SHIFT;
data_size = le32_to_cpu(attr->res.data_size);
if (vbo < data_size) {
char *data = resident_data(attr);
char *kaddr = kmap_atomic(page);
u32 use = data_size - vbo;
if (use > PAGE_SIZE)
use = PAGE_SIZE;
memcpy(data + vbo, kaddr, use);
kunmap_atomic(kaddr);
mi->dirty = true;
}
ni->i_valid = data_size;
return 0;
}
/*
* attr_load_runs_vcn - Load runs with VCN.
*/
int attr_load_runs_vcn(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, struct runs_tree *run,
CLST vcn)
{
struct ATTRIB *attr;
int err;
CLST svcn, evcn;
u16 ro;
attr = ni_find_attr(ni, NULL, NULL, type, name, name_len, &vcn, NULL);
if (!attr) {
/* Is record corrupted? */
return -ENOENT;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
if (evcn < vcn || vcn < svcn) {
/* Is record corrupted? */
return -EINVAL;
}
ro = le16_to_cpu(attr->nres.run_off);
err = run_unpack_ex(run, ni->mi.sbi, ni->mi.rno, svcn, evcn, svcn,
Add2Ptr(attr, ro), le32_to_cpu(attr->size) - ro);
if (err < 0)
return err;
return 0;
}
/*
* attr_load_runs_range - Load runs for given range [from to).
*/
int attr_load_runs_range(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, struct runs_tree *run,
u64 from, u64 to)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 cluster_bits = sbi->cluster_bits;
CLST vcn = from >> cluster_bits;
CLST vcn_last = (to - 1) >> cluster_bits;
CLST lcn, clen;
int err;
for (vcn = from >> cluster_bits; vcn <= vcn_last; vcn += clen) {
if (!run_lookup_entry(run, vcn, &lcn, &clen, NULL)) {
err = attr_load_runs_vcn(ni, type, name, name_len, run,
vcn);
if (err)
return err;
clen = 0; /* Next run_lookup_entry(vcn) must be success. */
}
}
return 0;
}
#ifdef CONFIG_NTFS3_LZX_XPRESS
/*
* attr_wof_frame_info
*
* Read header of Xpress/LZX file to get info about frame.
*/
int attr_wof_frame_info(struct ntfs_inode *ni, struct ATTRIB *attr,
struct runs_tree *run, u64 frame, u64 frames,
u8 frame_bits, u32 *ondisk_size, u64 *vbo_data)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
u64 vbo[2], off[2], wof_size;
u32 voff;
u8 bytes_per_off;
char *addr;
struct page *page;
int i, err;
__le32 *off32;
__le64 *off64;
if (ni->vfs_inode.i_size < 0x100000000ull) {
/* File starts with array of 32 bit offsets. */
bytes_per_off = sizeof(__le32);
vbo[1] = frame << 2;
*vbo_data = frames << 2;
} else {
/* File starts with array of 64 bit offsets. */
bytes_per_off = sizeof(__le64);
vbo[1] = frame << 3;
*vbo_data = frames << 3;
}
/*
* Read 4/8 bytes at [vbo - 4(8)] == offset where compressed frame starts.
* Read 4/8 bytes at [vbo] == offset where compressed frame ends.
*/
if (!attr->non_res) {
if (vbo[1] + bytes_per_off > le32_to_cpu(attr->res.data_size)) {
ntfs_inode_err(&ni->vfs_inode, "is corrupted");
return -EINVAL;
}
addr = resident_data(attr);
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, vbo[1]);
off[0] = vbo[1] ? le32_to_cpu(off32[-1]) : 0;
off[1] = le32_to_cpu(off32[0]);
} else {
off64 = Add2Ptr(addr, vbo[1]);
off[0] = vbo[1] ? le64_to_cpu(off64[-1]) : 0;
off[1] = le64_to_cpu(off64[0]);
}
*vbo_data += off[0];
*ondisk_size = off[1] - off[0];
return 0;
}
wof_size = le64_to_cpu(attr->nres.data_size);
down_write(&ni->file.run_lock);
page = ni->file.offs_page;
if (!page) {
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto out;
}
page->index = -1;
ni->file.offs_page = page;
}
lock_page(page);
addr = page_address(page);
if (vbo[1]) {
voff = vbo[1] & (PAGE_SIZE - 1);
vbo[0] = vbo[1] - bytes_per_off;
i = 0;
} else {
voff = 0;
vbo[0] = 0;
off[0] = 0;
i = 1;
}
do {
pgoff_t index = vbo[i] >> PAGE_SHIFT;
if (index != page->index) {
u64 from = vbo[i] & ~(u64)(PAGE_SIZE - 1);
u64 to = min(from + PAGE_SIZE, wof_size);
err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
ARRAY_SIZE(WOF_NAME), run,
from, to);
if (err)
goto out1;
err = ntfs_bio_pages(sbi, run, &page, 1, from,
to - from, REQ_OP_READ);
if (err) {
page->index = -1;
goto out1;
}
page->index = index;
}
if (i) {
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, voff);
off[1] = le32_to_cpu(*off32);
} else {
off64 = Add2Ptr(addr, voff);
off[1] = le64_to_cpu(*off64);
}
} else if (!voff) {
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, PAGE_SIZE - sizeof(u32));
off[0] = le32_to_cpu(*off32);
} else {
off64 = Add2Ptr(addr, PAGE_SIZE - sizeof(u64));
off[0] = le64_to_cpu(*off64);
}
} else {
/* Two values in one page. */
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, voff);
off[0] = le32_to_cpu(off32[-1]);
off[1] = le32_to_cpu(off32[0]);
} else {
off64 = Add2Ptr(addr, voff);
off[0] = le64_to_cpu(off64[-1]);
off[1] = le64_to_cpu(off64[0]);
}
break;
}
} while (++i < 2);
*vbo_data += off[0];
*ondisk_size = off[1] - off[0];
out1:
unlock_page(page);
out:
up_write(&ni->file.run_lock);
return err;
}
#endif
/*
* attr_is_frame_compressed - Used to detect compressed frame.
*/
int attr_is_frame_compressed(struct ntfs_inode *ni, struct ATTRIB *attr,
CLST frame, CLST *clst_data)
{
int err;
u32 clst_frame;
CLST clen, lcn, vcn, alen, slen, vcn_next;
size_t idx;
struct runs_tree *run;
*clst_data = 0;
if (!is_attr_compressed(attr))
return 0;
if (!attr->non_res)
return 0;
clst_frame = 1u << attr->nres.c_unit;
vcn = frame * clst_frame;
run = &ni->file.run;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) {
err = attr_load_runs_vcn(ni, attr->type, attr_name(attr),
attr->name_len, run, vcn);
if (err)
return err;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx))
return -EINVAL;
}
if (lcn == SPARSE_LCN) {
/* Sparsed frame. */
return 0;
}
if (clen >= clst_frame) {
/*
* The frame is not compressed 'cause
* it does not contain any sparse clusters.
*/
*clst_data = clst_frame;
return 0;
}
alen = bytes_to_cluster(ni->mi.sbi, le64_to_cpu(attr->nres.alloc_size));
slen = 0;
*clst_data = clen;
/*
* The frame is compressed if *clst_data + slen >= clst_frame.
* Check next fragments.
*/
while ((vcn += clen) < alen) {
vcn_next = vcn;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn_next != vcn) {
err = attr_load_runs_vcn(ni, attr->type,
attr_name(attr),
attr->name_len, run, vcn_next);
if (err)
return err;
vcn = vcn_next;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx))
return -EINVAL;
}
if (lcn == SPARSE_LCN) {
slen += clen;
} else {
if (slen) {
/*
* Data_clusters + sparse_clusters =
* not enough for frame.
*/
return -EINVAL;
}
*clst_data += clen;
}
if (*clst_data + slen >= clst_frame) {
if (!slen) {
/*
* There is no sparsed clusters in this frame
* so it is not compressed.
*/
*clst_data = clst_frame;
} else {
/* Frame is compressed. */
}
break;
}
}
return 0;
}
/*
* attr_allocate_frame - Allocate/free clusters for @frame.
*
* Assumed: down_write(&ni->file.run_lock);
*/
int attr_allocate_frame(struct ntfs_inode *ni, CLST frame, size_t compr_size,
u64 new_valid)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST svcn, evcn1, next_svcn, lcn, len;
CLST vcn, end, clst_data;
u64 total_size, valid_size, data_size;
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b)
return -ENOENT;
if (!is_attr_ext(attr_b))
return -EINVAL;
vcn = frame << NTFS_LZNT_CUNIT;
total_size = le64_to_cpu(attr_b->nres.total_size);
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
data_size = le64_to_cpu(attr_b->nres.data_size);
if (svcn <= vcn && vcn < evcn1) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
err = attr_load_runs(attr, ni, run, NULL);
if (err)
goto out;
err = attr_is_frame_compressed(ni, attr_b, frame, &clst_data);
if (err)
goto out;
total_size -= (u64)clst_data << sbi->cluster_bits;
len = bytes_to_cluster(sbi, compr_size);
if (len == clst_data)
goto out;
if (len < clst_data) {
err = run_deallocate_ex(sbi, run, vcn + len, clst_data - len,
NULL, true);
if (err)
goto out;
if (!run_add_entry(run, vcn + len, SPARSE_LCN, clst_data - len,
false)) {
err = -ENOMEM;
goto out;
}
end = vcn + clst_data;
/* Run contains updated range [vcn + len : end). */
} else {
CLST alen, hint = 0;
/* Get the last LCN to allocate from. */
if (vcn + clst_data &&
!run_lookup_entry(run, vcn + clst_data - 1, &hint, NULL,
NULL)) {
hint = -1;
}
err = attr_allocate_clusters(sbi, run, vcn + clst_data,
hint + 1, len - clst_data, NULL, 0,
&alen, 0, &lcn);
if (err)
goto out;
end = vcn + len;
/* Run contains updated range [vcn + clst_data : end). */
}
total_size += (u64)len << sbi->cluster_bits;
repack:
err = mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn);
if (err)
goto out;
attr_b->nres.total_size = cpu_to_le64(total_size);
inode_set_bytes(&ni->vfs_inode, total_size);
mi_b->dirty = true;
mark_inode_dirty(&ni->vfs_inode);
/* Stored [vcn : next_svcn) from [vcn : end). */
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
if (end <= evcn1) {
if (next_svcn == evcn1) {
/* Normal way. Update attribute and exit. */
goto ok;
}
/* Add new segment [next_svcn : evcn1 - next_svcn). */
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
/* Layout of records is changed. */
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL,
0, NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
attr = attr_b;
le = le_b;
mi = mi_b;
goto repack;
}
}
svcn = evcn1;
/* Estimate next attribute. */
attr = ni_find_attr(ni, attr, &le, ATTR_DATA, NULL, 0, &svcn, &mi);
if (attr) {
CLST alloc = bytes_to_cluster(
sbi, le64_to_cpu(attr_b->nres.alloc_size));
CLST evcn = le64_to_cpu(attr->nres.evcn);
if (end < next_svcn)
end = next_svcn;
while (end > evcn) {
/* Remove segment [svcn : evcn). */
mi_remove_attr(NULL, mi, attr);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
if (evcn + 1 >= alloc) {
/* Last attribute segment. */
evcn1 = evcn + 1;
goto ins_ext;
}
if (ni_load_mi(ni, le, &mi)) {
attr = NULL;
goto out;
}
attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0,
&le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
}
if (end < svcn)
end = svcn;
err = attr_load_runs(attr, ni, run, &end);
if (err)
goto out;
evcn1 = evcn + 1;
attr->nres.svcn = cpu_to_le64(next_svcn);
err = mi_pack_runs(mi, attr, run, evcn1 - next_svcn);
if (err)
goto out;
le->vcn = cpu_to_le64(next_svcn);
ni->attr_list.dirty = true;
mi->dirty = true;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
}
ins_ext:
if (evcn1 > next_svcn) {
err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run,
next_svcn, evcn1 - next_svcn,
attr_b->flags, &attr, &mi);
if (err)
goto out;
}
ok:
run_truncate_around(run, vcn);
out:
if (new_valid > data_size)
new_valid = data_size;
valid_size = le64_to_cpu(attr_b->nres.valid_size);
if (new_valid != valid_size) {
attr_b->nres.valid_size = cpu_to_le64(valid_size);
mi_b->dirty = true;
}
return err;
}
/*
* attr_collapse_range - Collapse range in file.
*/
int attr_collapse_range(struct ntfs_inode *ni, u64 vbo, u64 bytes)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST svcn, evcn1, len, dealloc, alen;
CLST vcn, end;
u64 valid_size, data_size, alloc_size, total_size;
u32 mask;
__le16 a_flags;
if (!bytes)
return 0;
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b)
return -ENOENT;
if (!attr_b->non_res) {
/* Attribute is resident. Nothing to do? */
return 0;
}
data_size = le64_to_cpu(attr_b->nres.data_size);
alloc_size = le64_to_cpu(attr_b->nres.alloc_size);
a_flags = attr_b->flags;
if (is_attr_ext(attr_b)) {
total_size = le64_to_cpu(attr_b->nres.total_size);
mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1;
} else {
total_size = alloc_size;
mask = sbi->cluster_mask;
}
if ((vbo & mask) || (bytes & mask)) {
/* Allow to collapse only cluster aligned ranges. */
return -EINVAL;
}
if (vbo > data_size)
return -EINVAL;
down_write(&ni->file.run_lock);
if (vbo + bytes >= data_size) {
u64 new_valid = min(ni->i_valid, vbo);
/* Simple truncate file at 'vbo'. */
truncate_setsize(&ni->vfs_inode, vbo);
err = attr_set_size(ni, ATTR_DATA, NULL, 0, &ni->file.run, vbo,
&new_valid, true, NULL);
if (!err && new_valid < ni->i_valid)
ni->i_valid = new_valid;
goto out;
}
/*
* Enumerate all attribute segments and collapse.
*/
alen = alloc_size >> sbi->cluster_bits;
vcn = vbo >> sbi->cluster_bits;
len = bytes >> sbi->cluster_bits;
end = vcn + len;
dealloc = 0;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
if (svcn <= vcn && vcn < evcn1) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
for (;;) {
if (svcn >= end) {
/* Shift VCN- */
attr->nres.svcn = cpu_to_le64(svcn - len);
attr->nres.evcn = cpu_to_le64(evcn1 - 1 - len);
if (le) {
le->vcn = attr->nres.svcn;
ni->attr_list.dirty = true;
}
mi->dirty = true;
} else if (svcn < vcn || end < evcn1) {
CLST vcn1, eat, next_svcn;
/* Collapse a part of this attribute segment. */
err = attr_load_runs(attr, ni, run, &svcn);
if (err)
goto out;
vcn1 = max(vcn, svcn);
eat = min(end, evcn1) - vcn1;
err = run_deallocate_ex(sbi, run, vcn1, eat, &dealloc,
true);
if (err)
goto out;
if (!run_collapse_range(run, vcn1, eat)) {
err = -ENOMEM;
goto out;
}
if (svcn >= vcn) {
/* Shift VCN */
attr->nres.svcn = cpu_to_le64(vcn);
if (le) {
le->vcn = attr->nres.svcn;
ni->attr_list.dirty = true;
}
}
err = mi_pack_runs(mi, attr, run, evcn1 - svcn - eat);
if (err)
goto out;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
if (next_svcn + eat < evcn1) {
err = ni_insert_nonresident(
ni, ATTR_DATA, NULL, 0, run, next_svcn,
evcn1 - eat - next_svcn, a_flags, &attr,
&mi);
if (err)
goto out;
/* Layout of records maybe changed. */
attr_b = NULL;
le = al_find_ex(ni, NULL, ATTR_DATA, NULL, 0,
&next_svcn);
if (!le) {
err = -EINVAL;
goto out;
}
}
/* Free all allocated memory. */
run_truncate(run, 0);
} else {
u16 le_sz;
u16 roff = le16_to_cpu(attr->nres.run_off);
run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn,
evcn1 - 1, svcn, Add2Ptr(attr, roff),
le32_to_cpu(attr->size) - roff);
/* Delete this attribute segment. */
mi_remove_attr(NULL, mi, attr);
if (!le)
break;
le_sz = le16_to_cpu(le->size);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
if (evcn1 >= alen)
break;
if (!svcn) {
/* Load next record that contains this attribute. */
if (ni_load_mi(ni, le, &mi)) {
err = -EINVAL;
goto out;
}
/* Look for required attribute. */
attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL,
0, &le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
goto next_attr;
}
le = (struct ATTR_LIST_ENTRY *)((u8 *)le - le_sz);
}
if (evcn1 >= alen)
break;
attr = ni_enum_attr_ex(ni, attr, &le, &mi);
if (!attr) {
err = -EINVAL;
goto out;
}
next_attr:
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
if (!attr_b) {
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL,
&mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
}
data_size -= bytes;
valid_size = ni->i_valid;
if (vbo + bytes <= valid_size)
valid_size -= bytes;
else if (vbo < valid_size)
valid_size = vbo;
attr_b->nres.alloc_size = cpu_to_le64(alloc_size - bytes);
attr_b->nres.data_size = cpu_to_le64(data_size);
attr_b->nres.valid_size = cpu_to_le64(min(valid_size, data_size));
total_size -= (u64)dealloc << sbi->cluster_bits;
if (is_attr_ext(attr_b))
attr_b->nres.total_size = cpu_to_le64(total_size);
mi_b->dirty = true;
/* Update inode size. */
ni->i_valid = valid_size;
ni->vfs_inode.i_size = data_size;
inode_set_bytes(&ni->vfs_inode, total_size);
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mark_inode_dirty(&ni->vfs_inode);
out:
up_write(&ni->file.run_lock);
if (err)
make_bad_inode(&ni->vfs_inode);
return err;
}
/*
* attr_punch_hole
*
* Not for normal files.
*/
int attr_punch_hole(struct ntfs_inode *ni, u64 vbo, u64 bytes, u32 *frame_size)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST svcn, evcn1, vcn, len, end, alen, dealloc;
u64 total_size, alloc_size;
u32 mask;
if (!bytes)
return 0;
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b)
return -ENOENT;
if (!attr_b->non_res) {
u32 data_size = le32_to_cpu(attr->res.data_size);
u32 from, to;
if (vbo > data_size)
return 0;
from = vbo;
to = min_t(u64, vbo + bytes, data_size);
memset(Add2Ptr(resident_data(attr_b), from), 0, to - from);
return 0;
}
if (!is_attr_ext(attr_b))
return -EOPNOTSUPP;
alloc_size = le64_to_cpu(attr_b->nres.alloc_size);
total_size = le64_to_cpu(attr_b->nres.total_size);
if (vbo >= alloc_size) {
/* NOTE: It is allowed. */
return 0;
}
mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1;
bytes += vbo;
if (bytes > alloc_size)
bytes = alloc_size;
bytes -= vbo;
if ((vbo & mask) || (bytes & mask)) {
/* We have to zero a range(s). */
if (frame_size == NULL) {
/* Caller insists range is aligned. */
return -EINVAL;
}
*frame_size = mask + 1;
return E_NTFS_NOTALIGNED;
}
down_write(&ni->file.run_lock);
/*
* Enumerate all attribute segments and punch hole where necessary.
*/
alen = alloc_size >> sbi->cluster_bits;
vcn = vbo >> sbi->cluster_bits;
len = bytes >> sbi->cluster_bits;
end = vcn + len;
dealloc = 0;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
if (svcn <= vcn && vcn < evcn1) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
while (svcn < end) {
CLST vcn1, zero, dealloc2;
err = attr_load_runs(attr, ni, run, &svcn);
if (err)
goto out;
vcn1 = max(vcn, svcn);
zero = min(end, evcn1) - vcn1;
dealloc2 = dealloc;
err = run_deallocate_ex(sbi, run, vcn1, zero, &dealloc, true);
if (err)
goto out;
if (dealloc2 == dealloc) {
/* Looks like the required range is already sparsed. */
} else {
if (!run_add_entry(run, vcn1, SPARSE_LCN, zero,
false)) {
err = -ENOMEM;
goto out;
}
err = mi_pack_runs(mi, attr, run, evcn1 - svcn);
if (err)
goto out;
}
/* Free all allocated memory. */
run_truncate(run, 0);
if (evcn1 >= alen)
break;
attr = ni_enum_attr_ex(ni, attr, &le, &mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
total_size -= (u64)dealloc << sbi->cluster_bits;
attr_b->nres.total_size = cpu_to_le64(total_size);
mi_b->dirty = true;
/* Update inode size. */
inode_set_bytes(&ni->vfs_inode, total_size);
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mark_inode_dirty(&ni->vfs_inode);
out:
up_write(&ni->file.run_lock);
if (err)
make_bad_inode(&ni->vfs_inode);
return err;
}