linux-stable/fs/f2fs/super.c
Linus Torvalds c5d9ab85eb f2fs update for 6.9-rc1
In this round, there are a number of updates on mainly two areas: Zoned block
 device support and Per-file compression. For example, we've found several issues
 to support Zoned block device especially having large sections regarding to GC
 and file pinning used for Android devices. In compression side, we've fixed many
 corner race conditions that had broken the design assumption.
 
 Enhancement:
  - Support file pinning for Zoned block device having large section
  - Enhance the data recovery after sudden power cut on Zoned block device
  - Add more error injection cases to easily detect the kernel panics
  - add a proc entry show the entire disk layout
  - Improve various error paths paniced by BUG_ON in block allocation and GC
  - support SEEK_DATA and SEEK_HOLE for compression files
 
 Bug fix:
  - fix to avoid use-after-free issue in f2fs_filemap_fault
  - fix some race conditions to break the atomic write design assumption
  - fix to truncate meta inode pages forcely
  - resolve various per-file compression issues wrt the space management and
    compression policies
  - fix some swap-related bugs
 
 In addition, we removed deprecated codes such as io_bits and heap_allocation,
 and also fixed minor error handling routines with neat debugging messages.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAmX4gS0ACgkQQBSofoJI
 UNLmgBAAg4mvbWjmJ5VbXs4zGLOgLRJYcY1sZRO5Ufg4LhWzoGRxL1Dru+TELw0t
 1Ck2EQvP91XZ5weA5AZOfWbxcijy4+8L3P8L7ohOShudfACci0wQsx6IaUUWWylC
 ILA4+DkovpZrlu6th12Gj9QAM6TN9gdy3V1VLT5O/KmE1x6Pekwp2hQoIvVJRH5L
 I3KxOf5fTe3oWLvEN6m7yCz/8qGqz8+w0ae90UG0fqi0wVEuZJ99zsVPnuhu6uBo
 riFm2A6ra0I/JqoPyqn2QM6ApItM867ULo9EoyQVgq56Q1w31ENOJXsU9N7N4Wxt
 olgujH1SijkWk9ni57iKtMhR68e3Rs+pVsuNFmJuOPq0HASoggB66QRrVvCgM9JG
 z3D//CB2ONtX2XiKJMiTcX9VqIqrMw6L1eVxEZu0P96C3CS70MoBU69mdSR9Og2S
 5nQXja3yzFhdk3thp6+wAJ3I04ZQkf3qoHZB+0chU2Xl1pV+5NIkBgBsSw8g/TY3
 EIHMfK+TX0SBSNCvkUDEJ+Z8ZRID6tcbAquTSsBr6wxB+F9mq7onEvI8O7xwyH9W
 DU8xhymOE2QUoluNtyW7ww6HK913ripXIenI9LaYJnuj0XeDAcMIoPsgR7AGU5UG
 hshvirFdUdWRMTfXxNNUrvhOWI0qurQSVx+VV6Qb62DGqR5ofOw=
 =Qpvy
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs update from Jaegeuk Kim:
 "In this round, there are a number of updates on mainly two areas:
  Zoned block device support and Per-file compression. For example,
  we've found several issues to support Zoned block device especially
  having large sections regarding to GC and file pinning used for
  Android devices. In compression side, we've fixed many corner race
  conditions that had broken the design assumption.

  Enhancements:
   - Support file pinning for Zoned block device having large section
   - Enhance the data recovery after sudden power cut on Zoned block
     device
   - Add more error injection cases to easily detect the kernel panics
   - add a proc entry show the entire disk layout
   - Improve various error paths paniced by BUG_ON in block allocation
     and GC
   - support SEEK_DATA and SEEK_HOLE for compression files

  Bug fixes:
   - avoid use-after-free issue in f2fs_filemap_fault
   - fix some race conditions to break the atomic write design
     assumption
   - fix to truncate meta inode pages forcely
   - resolve various per-file compression issues wrt the space
     management and compression policies
   - fix some swap-related bugs

  In addition, we removed deprecated codes such as io_bits and
  heap_allocation, and also fixed minor error handling routines with
  neat debugging messages"

* tag 'f2fs-for-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (60 commits)
  f2fs: fix to avoid use-after-free issue in f2fs_filemap_fault
  f2fs: truncate page cache before clearing flags when aborting atomic write
  f2fs: mark inode dirty for FI_ATOMIC_COMMITTED flag
  f2fs: prevent atomic write on pinned file
  f2fs: fix to handle error paths of {new,change}_curseg()
  f2fs: unify the error handling of f2fs_is_valid_blkaddr
  f2fs: zone: fix to remove pow2 check condition for zoned block device
  f2fs: fix to truncate meta inode pages forcely
  f2fs: compress: fix reserve_cblocks counting error when out of space
  f2fs: compress: relocate some judgments in f2fs_reserve_compress_blocks
  f2fs: add a proc entry show disk layout
  f2fs: introduce SEGS_TO_BLKS/BLKS_TO_SEGS for cleanup
  f2fs: fix to check return value of f2fs_gc_range
  f2fs: fix to check return value __allocate_new_segment
  f2fs: fix to do sanity check in update_sit_entry
  f2fs: fix to reset fields for unloaded curseg
  f2fs: clean up new_curseg()
  f2fs: relocate f2fs_precache_extents() in f2fs_swap_activate()
  f2fs: fix blkofs_end correctly in f2fs_migrate_blocks()
  f2fs: ro: don't start discard thread for readonly image
  ...
2024-03-18 11:26:00 -07:00

5022 lines
130 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/super.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/fs_context.h>
#include <linux/sched/mm.h>
#include <linux/statfs.h>
#include <linux/buffer_head.h>
#include <linux/kthread.h>
#include <linux/parser.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/exportfs.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <linux/f2fs_fs.h>
#include <linux/sysfs.h>
#include <linux/quota.h>
#include <linux/unicode.h>
#include <linux/part_stat.h>
#include <linux/zstd.h>
#include <linux/lz4.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "gc.h"
#include "iostat.h"
#define CREATE_TRACE_POINTS
#include <trace/events/f2fs.h>
static struct kmem_cache *f2fs_inode_cachep;
#ifdef CONFIG_F2FS_FAULT_INJECTION
const char *f2fs_fault_name[FAULT_MAX] = {
[FAULT_KMALLOC] = "kmalloc",
[FAULT_KVMALLOC] = "kvmalloc",
[FAULT_PAGE_ALLOC] = "page alloc",
[FAULT_PAGE_GET] = "page get",
[FAULT_ALLOC_NID] = "alloc nid",
[FAULT_ORPHAN] = "orphan",
[FAULT_BLOCK] = "no more block",
[FAULT_DIR_DEPTH] = "too big dir depth",
[FAULT_EVICT_INODE] = "evict_inode fail",
[FAULT_TRUNCATE] = "truncate fail",
[FAULT_READ_IO] = "read IO error",
[FAULT_CHECKPOINT] = "checkpoint error",
[FAULT_DISCARD] = "discard error",
[FAULT_WRITE_IO] = "write IO error",
[FAULT_SLAB_ALLOC] = "slab alloc",
[FAULT_DQUOT_INIT] = "dquot initialize",
[FAULT_LOCK_OP] = "lock_op",
[FAULT_BLKADDR_VALIDITY] = "invalid blkaddr",
[FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr",
[FAULT_NO_SEGMENT] = "no free segment",
};
void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
unsigned int type)
{
struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
if (rate) {
atomic_set(&ffi->inject_ops, 0);
ffi->inject_rate = rate;
}
if (type)
ffi->inject_type = type;
if (!rate && !type)
memset(ffi, 0, sizeof(struct f2fs_fault_info));
}
#endif
/* f2fs-wide shrinker description */
static struct shrinker *f2fs_shrinker_info;
static int __init f2fs_init_shrinker(void)
{
f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker");
if (!f2fs_shrinker_info)
return -ENOMEM;
f2fs_shrinker_info->count_objects = f2fs_shrink_count;
f2fs_shrinker_info->scan_objects = f2fs_shrink_scan;
shrinker_register(f2fs_shrinker_info);
return 0;
}
static void f2fs_exit_shrinker(void)
{
shrinker_free(f2fs_shrinker_info);
}
enum {
Opt_gc_background,
Opt_disable_roll_forward,
Opt_norecovery,
Opt_discard,
Opt_nodiscard,
Opt_noheap,
Opt_heap,
Opt_user_xattr,
Opt_nouser_xattr,
Opt_acl,
Opt_noacl,
Opt_active_logs,
Opt_disable_ext_identify,
Opt_inline_xattr,
Opt_noinline_xattr,
Opt_inline_xattr_size,
Opt_inline_data,
Opt_inline_dentry,
Opt_noinline_dentry,
Opt_flush_merge,
Opt_noflush_merge,
Opt_barrier,
Opt_nobarrier,
Opt_fastboot,
Opt_extent_cache,
Opt_noextent_cache,
Opt_noinline_data,
Opt_data_flush,
Opt_reserve_root,
Opt_resgid,
Opt_resuid,
Opt_mode,
Opt_fault_injection,
Opt_fault_type,
Opt_lazytime,
Opt_nolazytime,
Opt_quota,
Opt_noquota,
Opt_usrquota,
Opt_grpquota,
Opt_prjquota,
Opt_usrjquota,
Opt_grpjquota,
Opt_prjjquota,
Opt_offusrjquota,
Opt_offgrpjquota,
Opt_offprjjquota,
Opt_jqfmt_vfsold,
Opt_jqfmt_vfsv0,
Opt_jqfmt_vfsv1,
Opt_alloc,
Opt_fsync,
Opt_test_dummy_encryption,
Opt_inlinecrypt,
Opt_checkpoint_disable,
Opt_checkpoint_disable_cap,
Opt_checkpoint_disable_cap_perc,
Opt_checkpoint_enable,
Opt_checkpoint_merge,
Opt_nocheckpoint_merge,
Opt_compress_algorithm,
Opt_compress_log_size,
Opt_compress_extension,
Opt_nocompress_extension,
Opt_compress_chksum,
Opt_compress_mode,
Opt_compress_cache,
Opt_atgc,
Opt_gc_merge,
Opt_nogc_merge,
Opt_discard_unit,
Opt_memory_mode,
Opt_age_extent_cache,
Opt_errors,
Opt_err,
};
static match_table_t f2fs_tokens = {
{Opt_gc_background, "background_gc=%s"},
{Opt_disable_roll_forward, "disable_roll_forward"},
{Opt_norecovery, "norecovery"},
{Opt_discard, "discard"},
{Opt_nodiscard, "nodiscard"},
{Opt_noheap, "no_heap"},
{Opt_heap, "heap"},
{Opt_user_xattr, "user_xattr"},
{Opt_nouser_xattr, "nouser_xattr"},
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_active_logs, "active_logs=%u"},
{Opt_disable_ext_identify, "disable_ext_identify"},
{Opt_inline_xattr, "inline_xattr"},
{Opt_noinline_xattr, "noinline_xattr"},
{Opt_inline_xattr_size, "inline_xattr_size=%u"},
{Opt_inline_data, "inline_data"},
{Opt_inline_dentry, "inline_dentry"},
{Opt_noinline_dentry, "noinline_dentry"},
{Opt_flush_merge, "flush_merge"},
{Opt_noflush_merge, "noflush_merge"},
{Opt_barrier, "barrier"},
{Opt_nobarrier, "nobarrier"},
{Opt_fastboot, "fastboot"},
{Opt_extent_cache, "extent_cache"},
{Opt_noextent_cache, "noextent_cache"},
{Opt_noinline_data, "noinline_data"},
{Opt_data_flush, "data_flush"},
{Opt_reserve_root, "reserve_root=%u"},
{Opt_resgid, "resgid=%u"},
{Opt_resuid, "resuid=%u"},
{Opt_mode, "mode=%s"},
{Opt_fault_injection, "fault_injection=%u"},
{Opt_fault_type, "fault_type=%u"},
{Opt_lazytime, "lazytime"},
{Opt_nolazytime, "nolazytime"},
{Opt_quota, "quota"},
{Opt_noquota, "noquota"},
{Opt_usrquota, "usrquota"},
{Opt_grpquota, "grpquota"},
{Opt_prjquota, "prjquota"},
{Opt_usrjquota, "usrjquota=%s"},
{Opt_grpjquota, "grpjquota=%s"},
{Opt_prjjquota, "prjjquota=%s"},
{Opt_offusrjquota, "usrjquota="},
{Opt_offgrpjquota, "grpjquota="},
{Opt_offprjjquota, "prjjquota="},
{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
{Opt_alloc, "alloc_mode=%s"},
{Opt_fsync, "fsync_mode=%s"},
{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
{Opt_test_dummy_encryption, "test_dummy_encryption"},
{Opt_inlinecrypt, "inlinecrypt"},
{Opt_checkpoint_disable, "checkpoint=disable"},
{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
{Opt_checkpoint_enable, "checkpoint=enable"},
{Opt_checkpoint_merge, "checkpoint_merge"},
{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
{Opt_compress_algorithm, "compress_algorithm=%s"},
{Opt_compress_log_size, "compress_log_size=%u"},
{Opt_compress_extension, "compress_extension=%s"},
{Opt_nocompress_extension, "nocompress_extension=%s"},
{Opt_compress_chksum, "compress_chksum"},
{Opt_compress_mode, "compress_mode=%s"},
{Opt_compress_cache, "compress_cache"},
{Opt_atgc, "atgc"},
{Opt_gc_merge, "gc_merge"},
{Opt_nogc_merge, "nogc_merge"},
{Opt_discard_unit, "discard_unit=%s"},
{Opt_memory_mode, "memory=%s"},
{Opt_age_extent_cache, "age_extent_cache"},
{Opt_errors, "errors=%s"},
{Opt_err, NULL},
};
void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
int level;
va_start(args, fmt);
level = printk_get_level(fmt);
vaf.fmt = printk_skip_level(fmt);
vaf.va = &args;
if (limit_rate)
printk_ratelimited("%c%cF2FS-fs (%s): %pV\n",
KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
else
printk("%c%cF2FS-fs (%s): %pV\n",
KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
va_end(args);
}
#if IS_ENABLED(CONFIG_UNICODE)
static const struct f2fs_sb_encodings {
__u16 magic;
char *name;
unsigned int version;
} f2fs_sb_encoding_map[] = {
{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
};
static const struct f2fs_sb_encodings *
f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
{
__u16 magic = le16_to_cpu(sb->s_encoding);
int i;
for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
if (magic == f2fs_sb_encoding_map[i].magic)
return &f2fs_sb_encoding_map[i];
return NULL;
}
struct kmem_cache *f2fs_cf_name_slab;
static int __init f2fs_create_casefold_cache(void)
{
f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
F2FS_NAME_LEN);
return f2fs_cf_name_slab ? 0 : -ENOMEM;
}
static void f2fs_destroy_casefold_cache(void)
{
kmem_cache_destroy(f2fs_cf_name_slab);
}
#else
static int __init f2fs_create_casefold_cache(void) { return 0; }
static void f2fs_destroy_casefold_cache(void) { }
#endif
static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
{
block_t limit = min((sbi->user_block_count >> 3),
sbi->user_block_count - sbi->reserved_blocks);
/* limit is 12.5% */
if (test_opt(sbi, RESERVE_ROOT) &&
F2FS_OPTION(sbi).root_reserved_blocks > limit) {
F2FS_OPTION(sbi).root_reserved_blocks = limit;
f2fs_info(sbi, "Reduce reserved blocks for root = %u",
F2FS_OPTION(sbi).root_reserved_blocks);
}
if (!test_opt(sbi, RESERVE_ROOT) &&
(!uid_eq(F2FS_OPTION(sbi).s_resuid,
make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
!gid_eq(F2FS_OPTION(sbi).s_resgid,
make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
from_kuid_munged(&init_user_ns,
F2FS_OPTION(sbi).s_resuid),
from_kgid_munged(&init_user_ns,
F2FS_OPTION(sbi).s_resgid));
}
static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
{
if (!F2FS_OPTION(sbi).unusable_cap_perc)
return;
if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
else
F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
F2FS_OPTION(sbi).unusable_cap_perc;
f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
F2FS_OPTION(sbi).unusable_cap,
F2FS_OPTION(sbi).unusable_cap_perc);
}
static void init_once(void *foo)
{
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
inode_init_once(&fi->vfs_inode);
}
#ifdef CONFIG_QUOTA
static const char * const quotatypes[] = INITQFNAMES;
#define QTYPE2NAME(t) (quotatypes[t])
static int f2fs_set_qf_name(struct super_block *sb, int qtype,
substring_t *args)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
char *qname;
int ret = -EINVAL;
if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
return -EINVAL;
}
if (f2fs_sb_has_quota_ino(sbi)) {
f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
return 0;
}
qname = match_strdup(args);
if (!qname) {
f2fs_err(sbi, "Not enough memory for storing quotafile name");
return -ENOMEM;
}
if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
ret = 0;
else
f2fs_err(sbi, "%s quota file already specified",
QTYPE2NAME(qtype));
goto errout;
}
if (strchr(qname, '/')) {
f2fs_err(sbi, "quotafile must be on filesystem root");
goto errout;
}
F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
set_opt(sbi, QUOTA);
return 0;
errout:
kfree(qname);
return ret;
}
static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
return -EINVAL;
}
kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
return 0;
}
static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
{
/*
* We do the test below only for project quotas. 'usrquota' and
* 'grpquota' mount options are allowed even without quota feature
* to support legacy quotas in quota files.
*/
if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
return -1;
}
if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
if (test_opt(sbi, USRQUOTA) &&
F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
clear_opt(sbi, USRQUOTA);
if (test_opt(sbi, GRPQUOTA) &&
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
clear_opt(sbi, GRPQUOTA);
if (test_opt(sbi, PRJQUOTA) &&
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
clear_opt(sbi, PRJQUOTA);
if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
test_opt(sbi, PRJQUOTA)) {
f2fs_err(sbi, "old and new quota format mixing");
return -1;
}
if (!F2FS_OPTION(sbi).s_jquota_fmt) {
f2fs_err(sbi, "journaled quota format not specified");
return -1;
}
}
if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
F2FS_OPTION(sbi).s_jquota_fmt = 0;
}
return 0;
}
#endif
static int f2fs_set_test_dummy_encryption(struct super_block *sb,
const char *opt,
const substring_t *arg,
bool is_remount)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct fs_parameter param = {
.type = fs_value_is_string,
.string = arg->from ? arg->from : "",
};
struct fscrypt_dummy_policy *policy =
&F2FS_OPTION(sbi).dummy_enc_policy;
int err;
if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
f2fs_warn(sbi, "test_dummy_encryption option not supported");
return -EINVAL;
}
if (!f2fs_sb_has_encrypt(sbi)) {
f2fs_err(sbi, "Encrypt feature is off");
return -EINVAL;
}
/*
* This mount option is just for testing, and it's not worthwhile to
* implement the extra complexity (e.g. RCU protection) that would be
* needed to allow it to be set or changed during remount. We do allow
* it to be specified during remount, but only if there is no change.
*/
if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
return -EINVAL;
}
err = fscrypt_parse_test_dummy_encryption(&param, policy);
if (err) {
if (err == -EEXIST)
f2fs_warn(sbi,
"Can't change test_dummy_encryption on remount");
else if (err == -EINVAL)
f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
opt);
else
f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
opt, err);
return -EINVAL;
}
f2fs_warn(sbi, "Test dummy encryption mode enabled");
return 0;
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
static bool is_compress_extension_exist(struct f2fs_sb_info *sbi,
const char *new_ext, bool is_ext)
{
unsigned char (*ext)[F2FS_EXTENSION_LEN];
int ext_cnt;
int i;
if (is_ext) {
ext = F2FS_OPTION(sbi).extensions;
ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
} else {
ext = F2FS_OPTION(sbi).noextensions;
ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
}
for (i = 0; i < ext_cnt; i++) {
if (!strcasecmp(new_ext, ext[i]))
return true;
}
return false;
}
/*
* 1. The same extension name cannot not appear in both compress and non-compress extension
* at the same time.
* 2. If the compress extension specifies all files, the types specified by the non-compress
* extension will be treated as special cases and will not be compressed.
* 3. Don't allow the non-compress extension specifies all files.
*/
static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
{
unsigned char (*ext)[F2FS_EXTENSION_LEN];
unsigned char (*noext)[F2FS_EXTENSION_LEN];
int ext_cnt, noext_cnt, index = 0, no_index = 0;
ext = F2FS_OPTION(sbi).extensions;
ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
noext = F2FS_OPTION(sbi).noextensions;
noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
if (!noext_cnt)
return 0;
for (no_index = 0; no_index < noext_cnt; no_index++) {
if (!strcasecmp("*", noext[no_index])) {
f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
return -EINVAL;
}
for (index = 0; index < ext_cnt; index++) {
if (!strcasecmp(ext[index], noext[no_index])) {
f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
ext[index]);
return -EINVAL;
}
}
}
return 0;
}
#ifdef CONFIG_F2FS_FS_LZ4
static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
{
#ifdef CONFIG_F2FS_FS_LZ4HC
unsigned int level;
if (strlen(str) == 3) {
F2FS_OPTION(sbi).compress_level = 0;
return 0;
}
str += 3;
if (str[0] != ':') {
f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
return -EINVAL;
}
if (kstrtouint(str + 1, 10, &level))
return -EINVAL;
if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
return -EINVAL;
}
F2FS_OPTION(sbi).compress_level = level;
return 0;
#else
if (strlen(str) == 3) {
F2FS_OPTION(sbi).compress_level = 0;
return 0;
}
f2fs_info(sbi, "kernel doesn't support lz4hc compression");
return -EINVAL;
#endif
}
#endif
#ifdef CONFIG_F2FS_FS_ZSTD
static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
{
int level;
int len = 4;
if (strlen(str) == len) {
F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
return 0;
}
str += len;
if (str[0] != ':') {
f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
return -EINVAL;
}
if (kstrtoint(str + 1, 10, &level))
return -EINVAL;
/* f2fs does not support negative compress level now */
if (level < 0) {
f2fs_info(sbi, "do not support negative compress level: %d", level);
return -ERANGE;
}
if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
f2fs_info(sbi, "invalid zstd compress level: %d", level);
return -EINVAL;
}
F2FS_OPTION(sbi).compress_level = level;
return 0;
}
#endif
#endif
static int parse_options(struct super_block *sb, char *options, bool is_remount)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
substring_t args[MAX_OPT_ARGS];
#ifdef CONFIG_F2FS_FS_COMPRESSION
unsigned char (*ext)[F2FS_EXTENSION_LEN];
unsigned char (*noext)[F2FS_EXTENSION_LEN];
int ext_cnt, noext_cnt;
#endif
char *p, *name;
int arg = 0;
kuid_t uid;
kgid_t gid;
int ret;
if (!options)
goto default_check;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
/*
* Initialize args struct so we know whether arg was
* found; some options take optional arguments.
*/
args[0].to = args[0].from = NULL;
token = match_token(p, f2fs_tokens, args);
switch (token) {
case Opt_gc_background:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "on")) {
F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
} else if (!strcmp(name, "off")) {
F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
} else if (!strcmp(name, "sync")) {
F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_disable_roll_forward:
set_opt(sbi, DISABLE_ROLL_FORWARD);
break;
case Opt_norecovery:
/* this option mounts f2fs with ro */
set_opt(sbi, NORECOVERY);
if (!f2fs_readonly(sb))
return -EINVAL;
break;
case Opt_discard:
if (!f2fs_hw_support_discard(sbi)) {
f2fs_warn(sbi, "device does not support discard");
break;
}
set_opt(sbi, DISCARD);
break;
case Opt_nodiscard:
if (f2fs_hw_should_discard(sbi)) {
f2fs_warn(sbi, "discard is required for zoned block devices");
return -EINVAL;
}
clear_opt(sbi, DISCARD);
break;
case Opt_noheap:
case Opt_heap:
f2fs_warn(sbi, "heap/no_heap options were deprecated");
break;
#ifdef CONFIG_F2FS_FS_XATTR
case Opt_user_xattr:
set_opt(sbi, XATTR_USER);
break;
case Opt_nouser_xattr:
clear_opt(sbi, XATTR_USER);
break;
case Opt_inline_xattr:
set_opt(sbi, INLINE_XATTR);
break;
case Opt_noinline_xattr:
clear_opt(sbi, INLINE_XATTR);
break;
case Opt_inline_xattr_size:
if (args->from && match_int(args, &arg))
return -EINVAL;
set_opt(sbi, INLINE_XATTR_SIZE);
F2FS_OPTION(sbi).inline_xattr_size = arg;
break;
#else
case Opt_user_xattr:
f2fs_info(sbi, "user_xattr options not supported");
break;
case Opt_nouser_xattr:
f2fs_info(sbi, "nouser_xattr options not supported");
break;
case Opt_inline_xattr:
f2fs_info(sbi, "inline_xattr options not supported");
break;
case Opt_noinline_xattr:
f2fs_info(sbi, "noinline_xattr options not supported");
break;
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
case Opt_acl:
set_opt(sbi, POSIX_ACL);
break;
case Opt_noacl:
clear_opt(sbi, POSIX_ACL);
break;
#else
case Opt_acl:
f2fs_info(sbi, "acl options not supported");
break;
case Opt_noacl:
f2fs_info(sbi, "noacl options not supported");
break;
#endif
case Opt_active_logs:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (arg != 2 && arg != 4 &&
arg != NR_CURSEG_PERSIST_TYPE)
return -EINVAL;
F2FS_OPTION(sbi).active_logs = arg;
break;
case Opt_disable_ext_identify:
set_opt(sbi, DISABLE_EXT_IDENTIFY);
break;
case Opt_inline_data:
set_opt(sbi, INLINE_DATA);
break;
case Opt_inline_dentry:
set_opt(sbi, INLINE_DENTRY);
break;
case Opt_noinline_dentry:
clear_opt(sbi, INLINE_DENTRY);
break;
case Opt_flush_merge:
set_opt(sbi, FLUSH_MERGE);
break;
case Opt_noflush_merge:
clear_opt(sbi, FLUSH_MERGE);
break;
case Opt_nobarrier:
set_opt(sbi, NOBARRIER);
break;
case Opt_barrier:
clear_opt(sbi, NOBARRIER);
break;
case Opt_fastboot:
set_opt(sbi, FASTBOOT);
break;
case Opt_extent_cache:
set_opt(sbi, READ_EXTENT_CACHE);
break;
case Opt_noextent_cache:
clear_opt(sbi, READ_EXTENT_CACHE);
break;
case Opt_noinline_data:
clear_opt(sbi, INLINE_DATA);
break;
case Opt_data_flush:
set_opt(sbi, DATA_FLUSH);
break;
case Opt_reserve_root:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (test_opt(sbi, RESERVE_ROOT)) {
f2fs_info(sbi, "Preserve previous reserve_root=%u",
F2FS_OPTION(sbi).root_reserved_blocks);
} else {
F2FS_OPTION(sbi).root_reserved_blocks = arg;
set_opt(sbi, RESERVE_ROOT);
}
break;
case Opt_resuid:
if (args->from && match_int(args, &arg))
return -EINVAL;
uid = make_kuid(current_user_ns(), arg);
if (!uid_valid(uid)) {
f2fs_err(sbi, "Invalid uid value %d", arg);
return -EINVAL;
}
F2FS_OPTION(sbi).s_resuid = uid;
break;
case Opt_resgid:
if (args->from && match_int(args, &arg))
return -EINVAL;
gid = make_kgid(current_user_ns(), arg);
if (!gid_valid(gid)) {
f2fs_err(sbi, "Invalid gid value %d", arg);
return -EINVAL;
}
F2FS_OPTION(sbi).s_resgid = gid;
break;
case Opt_mode:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "adaptive")) {
F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
} else if (!strcmp(name, "lfs")) {
F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
} else if (!strcmp(name, "fragment:segment")) {
F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
} else if (!strcmp(name, "fragment:block")) {
F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
#ifdef CONFIG_F2FS_FAULT_INJECTION
case Opt_fault_injection:
if (args->from && match_int(args, &arg))
return -EINVAL;
f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
set_opt(sbi, FAULT_INJECTION);
break;
case Opt_fault_type:
if (args->from && match_int(args, &arg))
return -EINVAL;
f2fs_build_fault_attr(sbi, 0, arg);
set_opt(sbi, FAULT_INJECTION);
break;
#else
case Opt_fault_injection:
f2fs_info(sbi, "fault_injection options not supported");
break;
case Opt_fault_type:
f2fs_info(sbi, "fault_type options not supported");
break;
#endif
case Opt_lazytime:
sb->s_flags |= SB_LAZYTIME;
break;
case Opt_nolazytime:
sb->s_flags &= ~SB_LAZYTIME;
break;
#ifdef CONFIG_QUOTA
case Opt_quota:
case Opt_usrquota:
set_opt(sbi, USRQUOTA);
break;
case Opt_grpquota:
set_opt(sbi, GRPQUOTA);
break;
case Opt_prjquota:
set_opt(sbi, PRJQUOTA);
break;
case Opt_usrjquota:
ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
if (ret)
return ret;
break;
case Opt_grpjquota:
ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
if (ret)
return ret;
break;
case Opt_prjjquota:
ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
if (ret)
return ret;
break;
case Opt_offusrjquota:
ret = f2fs_clear_qf_name(sb, USRQUOTA);
if (ret)
return ret;
break;
case Opt_offgrpjquota:
ret = f2fs_clear_qf_name(sb, GRPQUOTA);
if (ret)
return ret;
break;
case Opt_offprjjquota:
ret = f2fs_clear_qf_name(sb, PRJQUOTA);
if (ret)
return ret;
break;
case Opt_jqfmt_vfsold:
F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
break;
case Opt_jqfmt_vfsv0:
F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
break;
case Opt_jqfmt_vfsv1:
F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
break;
case Opt_noquota:
clear_opt(sbi, QUOTA);
clear_opt(sbi, USRQUOTA);
clear_opt(sbi, GRPQUOTA);
clear_opt(sbi, PRJQUOTA);
break;
#else
case Opt_quota:
case Opt_usrquota:
case Opt_grpquota:
case Opt_prjquota:
case Opt_usrjquota:
case Opt_grpjquota:
case Opt_prjjquota:
case Opt_offusrjquota:
case Opt_offgrpjquota:
case Opt_offprjjquota:
case Opt_jqfmt_vfsold:
case Opt_jqfmt_vfsv0:
case Opt_jqfmt_vfsv1:
case Opt_noquota:
f2fs_info(sbi, "quota operations not supported");
break;
#endif
case Opt_alloc:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "default")) {
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
} else if (!strcmp(name, "reuse")) {
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_fsync:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "posix")) {
F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
} else if (!strcmp(name, "strict")) {
F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
} else if (!strcmp(name, "nobarrier")) {
F2FS_OPTION(sbi).fsync_mode =
FSYNC_MODE_NOBARRIER;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_test_dummy_encryption:
ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
is_remount);
if (ret)
return ret;
break;
case Opt_inlinecrypt:
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
sb->s_flags |= SB_INLINECRYPT;
#else
f2fs_info(sbi, "inline encryption not supported");
#endif
break;
case Opt_checkpoint_disable_cap_perc:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (arg < 0 || arg > 100)
return -EINVAL;
F2FS_OPTION(sbi).unusable_cap_perc = arg;
set_opt(sbi, DISABLE_CHECKPOINT);
break;
case Opt_checkpoint_disable_cap:
if (args->from && match_int(args, &arg))
return -EINVAL;
F2FS_OPTION(sbi).unusable_cap = arg;
set_opt(sbi, DISABLE_CHECKPOINT);
break;
case Opt_checkpoint_disable:
set_opt(sbi, DISABLE_CHECKPOINT);
break;
case Opt_checkpoint_enable:
clear_opt(sbi, DISABLE_CHECKPOINT);
break;
case Opt_checkpoint_merge:
set_opt(sbi, MERGE_CHECKPOINT);
break;
case Opt_nocheckpoint_merge:
clear_opt(sbi, MERGE_CHECKPOINT);
break;
#ifdef CONFIG_F2FS_FS_COMPRESSION
case Opt_compress_algorithm:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "lzo")) {
#ifdef CONFIG_F2FS_FS_LZO
F2FS_OPTION(sbi).compress_level = 0;
F2FS_OPTION(sbi).compress_algorithm =
COMPRESS_LZO;
#else
f2fs_info(sbi, "kernel doesn't support lzo compression");
#endif
} else if (!strncmp(name, "lz4", 3)) {
#ifdef CONFIG_F2FS_FS_LZ4
ret = f2fs_set_lz4hc_level(sbi, name);
if (ret) {
kfree(name);
return -EINVAL;
}
F2FS_OPTION(sbi).compress_algorithm =
COMPRESS_LZ4;
#else
f2fs_info(sbi, "kernel doesn't support lz4 compression");
#endif
} else if (!strncmp(name, "zstd", 4)) {
#ifdef CONFIG_F2FS_FS_ZSTD
ret = f2fs_set_zstd_level(sbi, name);
if (ret) {
kfree(name);
return -EINVAL;
}
F2FS_OPTION(sbi).compress_algorithm =
COMPRESS_ZSTD;
#else
f2fs_info(sbi, "kernel doesn't support zstd compression");
#endif
} else if (!strcmp(name, "lzo-rle")) {
#ifdef CONFIG_F2FS_FS_LZORLE
F2FS_OPTION(sbi).compress_level = 0;
F2FS_OPTION(sbi).compress_algorithm =
COMPRESS_LZORLE;
#else
f2fs_info(sbi, "kernel doesn't support lzorle compression");
#endif
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_compress_log_size:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
if (args->from && match_int(args, &arg))
return -EINVAL;
if (arg < MIN_COMPRESS_LOG_SIZE ||
arg > MAX_COMPRESS_LOG_SIZE) {
f2fs_err(sbi,
"Compress cluster log size is out of range");
return -EINVAL;
}
F2FS_OPTION(sbi).compress_log_size = arg;
break;
case Opt_compress_extension:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
ext = F2FS_OPTION(sbi).extensions;
ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
if (strlen(name) >= F2FS_EXTENSION_LEN ||
ext_cnt >= COMPRESS_EXT_NUM) {
f2fs_err(sbi,
"invalid extension length/number");
kfree(name);
return -EINVAL;
}
if (is_compress_extension_exist(sbi, name, true)) {
kfree(name);
break;
}
strcpy(ext[ext_cnt], name);
F2FS_OPTION(sbi).compress_ext_cnt++;
kfree(name);
break;
case Opt_nocompress_extension:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
noext = F2FS_OPTION(sbi).noextensions;
noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
if (strlen(name) >= F2FS_EXTENSION_LEN ||
noext_cnt >= COMPRESS_EXT_NUM) {
f2fs_err(sbi,
"invalid extension length/number");
kfree(name);
return -EINVAL;
}
if (is_compress_extension_exist(sbi, name, false)) {
kfree(name);
break;
}
strcpy(noext[noext_cnt], name);
F2FS_OPTION(sbi).nocompress_ext_cnt++;
kfree(name);
break;
case Opt_compress_chksum:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
F2FS_OPTION(sbi).compress_chksum = true;
break;
case Opt_compress_mode:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "fs")) {
F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
} else if (!strcmp(name, "user")) {
F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_compress_cache:
if (!f2fs_sb_has_compression(sbi)) {
f2fs_info(sbi, "Image doesn't support compression");
break;
}
set_opt(sbi, COMPRESS_CACHE);
break;
#else
case Opt_compress_algorithm:
case Opt_compress_log_size:
case Opt_compress_extension:
case Opt_nocompress_extension:
case Opt_compress_chksum:
case Opt_compress_mode:
case Opt_compress_cache:
f2fs_info(sbi, "compression options not supported");
break;
#endif
case Opt_atgc:
set_opt(sbi, ATGC);
break;
case Opt_gc_merge:
set_opt(sbi, GC_MERGE);
break;
case Opt_nogc_merge:
clear_opt(sbi, GC_MERGE);
break;
case Opt_discard_unit:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "block")) {
F2FS_OPTION(sbi).discard_unit =
DISCARD_UNIT_BLOCK;
} else if (!strcmp(name, "segment")) {
F2FS_OPTION(sbi).discard_unit =
DISCARD_UNIT_SEGMENT;
} else if (!strcmp(name, "section")) {
F2FS_OPTION(sbi).discard_unit =
DISCARD_UNIT_SECTION;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_memory_mode:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "normal")) {
F2FS_OPTION(sbi).memory_mode =
MEMORY_MODE_NORMAL;
} else if (!strcmp(name, "low")) {
F2FS_OPTION(sbi).memory_mode =
MEMORY_MODE_LOW;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_age_extent_cache:
set_opt(sbi, AGE_EXTENT_CACHE);
break;
case Opt_errors:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (!strcmp(name, "remount-ro")) {
F2FS_OPTION(sbi).errors =
MOUNT_ERRORS_READONLY;
} else if (!strcmp(name, "continue")) {
F2FS_OPTION(sbi).errors =
MOUNT_ERRORS_CONTINUE;
} else if (!strcmp(name, "panic")) {
F2FS_OPTION(sbi).errors =
MOUNT_ERRORS_PANIC;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
default:
f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
p);
return -EINVAL;
}
}
default_check:
#ifdef CONFIG_QUOTA
if (f2fs_check_quota_options(sbi))
return -EINVAL;
#else
if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
return -EINVAL;
}
if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
return -EINVAL;
}
#endif
#if !IS_ENABLED(CONFIG_UNICODE)
if (f2fs_sb_has_casefold(sbi)) {
f2fs_err(sbi,
"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
return -EINVAL;
}
#endif
/*
* The BLKZONED feature indicates that the drive was formatted with
* zone alignment optimization. This is optional for host-aware
* devices, but mandatory for host-managed zoned block devices.
*/
if (f2fs_sb_has_blkzoned(sbi)) {
#ifdef CONFIG_BLK_DEV_ZONED
if (F2FS_OPTION(sbi).discard_unit !=
DISCARD_UNIT_SECTION) {
f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
F2FS_OPTION(sbi).discard_unit =
DISCARD_UNIT_SECTION;
}
if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) {
f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
return -EINVAL;
}
#else
f2fs_err(sbi, "Zoned block device support is not enabled");
return -EINVAL;
#endif
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_test_compress_extension(sbi)) {
f2fs_err(sbi, "invalid compress or nocompress extension");
return -EINVAL;
}
#endif
if (test_opt(sbi, INLINE_XATTR_SIZE)) {
int min_size, max_size;
if (!f2fs_sb_has_extra_attr(sbi) ||
!f2fs_sb_has_flexible_inline_xattr(sbi)) {
f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
return -EINVAL;
}
if (!test_opt(sbi, INLINE_XATTR)) {
f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
return -EINVAL;
}
min_size = MIN_INLINE_XATTR_SIZE;
max_size = MAX_INLINE_XATTR_SIZE;
if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
F2FS_OPTION(sbi).inline_xattr_size > max_size) {
f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
min_size, max_size);
return -EINVAL;
}
}
if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
f2fs_err(sbi, "LFS is not compatible with ATGC");
return -EINVAL;
}
if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
return -EINVAL;
}
if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
f2fs_err(sbi, "Allow to mount readonly mode only");
return -EROFS;
}
return 0;
}
static struct inode *f2fs_alloc_inode(struct super_block *sb)
{
struct f2fs_inode_info *fi;
if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
return NULL;
fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
if (!fi)
return NULL;
init_once((void *) fi);
/* Initialize f2fs-specific inode info */
atomic_set(&fi->dirty_pages, 0);
atomic_set(&fi->i_compr_blocks, 0);
init_f2fs_rwsem(&fi->i_sem);
spin_lock_init(&fi->i_size_lock);
INIT_LIST_HEAD(&fi->dirty_list);
INIT_LIST_HEAD(&fi->gdirty_list);
init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
init_f2fs_rwsem(&fi->i_xattr_sem);
/* Will be used by directory only */
fi->i_dir_level = F2FS_SB(sb)->dir_level;
return &fi->vfs_inode;
}
static int f2fs_drop_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int ret;
/*
* during filesystem shutdown, if checkpoint is disabled,
* drop useless meta/node dirty pages.
*/
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi)) {
trace_f2fs_drop_inode(inode, 1);
return 1;
}
}
/*
* This is to avoid a deadlock condition like below.
* writeback_single_inode(inode)
* - f2fs_write_data_page
* - f2fs_gc -> iput -> evict
* - inode_wait_for_writeback(inode)
*/
if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
if (!inode->i_nlink && !is_bad_inode(inode)) {
/* to avoid evict_inode call simultaneously */
atomic_inc(&inode->i_count);
spin_unlock(&inode->i_lock);
/* should remain fi->extent_tree for writepage */
f2fs_destroy_extent_node(inode);
sb_start_intwrite(inode->i_sb);
f2fs_i_size_write(inode, 0);
f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
inode, NULL, 0, DATA);
truncate_inode_pages_final(inode->i_mapping);
if (F2FS_HAS_BLOCKS(inode))
f2fs_truncate(inode);
sb_end_intwrite(inode->i_sb);
spin_lock(&inode->i_lock);
atomic_dec(&inode->i_count);
}
trace_f2fs_drop_inode(inode, 0);
return 0;
}
ret = generic_drop_inode(inode);
if (!ret)
ret = fscrypt_drop_inode(inode);
trace_f2fs_drop_inode(inode, ret);
return ret;
}
int f2fs_inode_dirtied(struct inode *inode, bool sync)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int ret = 0;
spin_lock(&sbi->inode_lock[DIRTY_META]);
if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
ret = 1;
} else {
set_inode_flag(inode, FI_DIRTY_INODE);
stat_inc_dirty_inode(sbi, DIRTY_META);
}
if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
list_add_tail(&F2FS_I(inode)->gdirty_list,
&sbi->inode_list[DIRTY_META]);
inc_page_count(sbi, F2FS_DIRTY_IMETA);
}
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return ret;
}
void f2fs_inode_synced(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
spin_lock(&sbi->inode_lock[DIRTY_META]);
if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return;
}
if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
list_del_init(&F2FS_I(inode)->gdirty_list);
dec_page_count(sbi, F2FS_DIRTY_IMETA);
}
clear_inode_flag(inode, FI_DIRTY_INODE);
clear_inode_flag(inode, FI_AUTO_RECOVER);
stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
spin_unlock(&sbi->inode_lock[DIRTY_META]);
}
/*
* f2fs_dirty_inode() is called from __mark_inode_dirty()
*
* We should call set_dirty_inode to write the dirty inode through write_inode.
*/
static void f2fs_dirty_inode(struct inode *inode, int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return;
if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
clear_inode_flag(inode, FI_AUTO_RECOVER);
f2fs_inode_dirtied(inode, false);
}
static void f2fs_free_inode(struct inode *inode)
{
fscrypt_free_inode(inode);
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
}
static void destroy_percpu_info(struct f2fs_sb_info *sbi)
{
percpu_counter_destroy(&sbi->total_valid_inode_count);
percpu_counter_destroy(&sbi->rf_node_block_count);
percpu_counter_destroy(&sbi->alloc_valid_block_count);
}
static void destroy_device_list(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < sbi->s_ndevs; i++) {
if (i > 0)
fput(FDEV(i).bdev_file);
#ifdef CONFIG_BLK_DEV_ZONED
kvfree(FDEV(i).blkz_seq);
#endif
}
kvfree(sbi->devs);
}
static void f2fs_put_super(struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int i;
int err = 0;
bool done;
/* unregister procfs/sysfs entries in advance to avoid race case */
f2fs_unregister_sysfs(sbi);
f2fs_quota_off_umount(sb);
/* prevent remaining shrinker jobs */
mutex_lock(&sbi->umount_mutex);
/*
* flush all issued checkpoints and stop checkpoint issue thread.
* after then, all checkpoints should be done by each process context.
*/
f2fs_stop_ckpt_thread(sbi);
/*
* We don't need to do checkpoint when superblock is clean.
* But, the previous checkpoint was not done by umount, it needs to do
* clean checkpoint again.
*/
if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
struct cp_control cpc = {
.reason = CP_UMOUNT,
};
stat_inc_cp_call_count(sbi, TOTAL_CALL);
err = f2fs_write_checkpoint(sbi, &cpc);
}
/* be sure to wait for any on-going discard commands */
done = f2fs_issue_discard_timeout(sbi);
if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
struct cp_control cpc = {
.reason = CP_UMOUNT | CP_TRIMMED,
};
stat_inc_cp_call_count(sbi, TOTAL_CALL);
err = f2fs_write_checkpoint(sbi, &cpc);
}
/*
* normally superblock is clean, so we need to release this.
* In addition, EIO will skip do checkpoint, we need this as well.
*/
f2fs_release_ino_entry(sbi, true);
f2fs_leave_shrinker(sbi);
mutex_unlock(&sbi->umount_mutex);
/* our cp_error case, we can wait for any writeback page */
f2fs_flush_merged_writes(sbi);
f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
if (err || f2fs_cp_error(sbi)) {
truncate_inode_pages_final(NODE_MAPPING(sbi));
truncate_inode_pages_final(META_MAPPING(sbi));
}
for (i = 0; i < NR_COUNT_TYPE; i++) {
if (!get_pages(sbi, i))
continue;
f2fs_err(sbi, "detect filesystem reference count leak during "
"umount, type: %d, count: %lld", i, get_pages(sbi, i));
f2fs_bug_on(sbi, 1);
}
f2fs_bug_on(sbi, sbi->fsync_node_num);
f2fs_destroy_compress_inode(sbi);
iput(sbi->node_inode);
sbi->node_inode = NULL;
iput(sbi->meta_inode);
sbi->meta_inode = NULL;
/*
* iput() can update stat information, if f2fs_write_checkpoint()
* above failed with error.
*/
f2fs_destroy_stats(sbi);
/* destroy f2fs internal modules */
f2fs_destroy_node_manager(sbi);
f2fs_destroy_segment_manager(sbi);
/* flush s_error_work before sbi destroy */
flush_work(&sbi->s_error_work);
f2fs_destroy_post_read_wq(sbi);
kvfree(sbi->ckpt);
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
kfree(sbi->raw_super);
f2fs_destroy_page_array_cache(sbi);
f2fs_destroy_xattr_caches(sbi);
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(F2FS_OPTION(sbi).s_qf_names[i]);
#endif
fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
destroy_percpu_info(sbi);
f2fs_destroy_iostat(sbi);
for (i = 0; i < NR_PAGE_TYPE; i++)
kvfree(sbi->write_io[i]);
#if IS_ENABLED(CONFIG_UNICODE)
utf8_unload(sb->s_encoding);
#endif
}
int f2fs_sync_fs(struct super_block *sb, int sync)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int err = 0;
if (unlikely(f2fs_cp_error(sbi)))
return 0;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
return 0;
trace_f2fs_sync_fs(sb, sync);
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
return -EAGAIN;
if (sync) {
stat_inc_cp_call_count(sbi, TOTAL_CALL);
err = f2fs_issue_checkpoint(sbi);
}
return err;
}
static int f2fs_freeze(struct super_block *sb)
{
if (f2fs_readonly(sb))
return 0;
/* IO error happened before */
if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
return -EIO;
/* must be clean, since sync_filesystem() was already called */
if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
return -EINVAL;
/* Let's flush checkpoints and stop the thread. */
f2fs_flush_ckpt_thread(F2FS_SB(sb));
/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
return 0;
}
static int f2fs_unfreeze(struct super_block *sb)
{
clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
return 0;
}
#ifdef CONFIG_QUOTA
static int f2fs_statfs_project(struct super_block *sb,
kprojid_t projid, struct kstatfs *buf)
{
struct kqid qid;
struct dquot *dquot;
u64 limit;
u64 curblock;
qid = make_kqid_projid(projid);
dquot = dqget(sb, qid);
if (IS_ERR(dquot))
return PTR_ERR(dquot);
spin_lock(&dquot->dq_dqb_lock);
limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
dquot->dq_dqb.dqb_bhardlimit);
if (limit)
limit >>= sb->s_blocksize_bits;
if (limit && buf->f_blocks > limit) {
curblock = (dquot->dq_dqb.dqb_curspace +
dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
buf->f_blocks = limit;
buf->f_bfree = buf->f_bavail =
(buf->f_blocks > curblock) ?
(buf->f_blocks - curblock) : 0;
}
limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
dquot->dq_dqb.dqb_ihardlimit);
if (limit && buf->f_files > limit) {
buf->f_files = limit;
buf->f_ffree =
(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
(buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
}
spin_unlock(&dquot->dq_dqb_lock);
dqput(dquot);
return 0;
}
#endif
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
block_t total_count, user_block_count, start_count;
u64 avail_node_count;
unsigned int total_valid_node_count;
total_count = le64_to_cpu(sbi->raw_super->block_count);
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
buf->f_type = F2FS_SUPER_MAGIC;
buf->f_bsize = sbi->blocksize;
buf->f_blocks = total_count - start_count;
spin_lock(&sbi->stat_lock);
user_block_count = sbi->user_block_count;
total_valid_node_count = valid_node_count(sbi);
avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
sbi->current_reserved_blocks;
if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
buf->f_bfree = 0;
else
buf->f_bfree -= sbi->unusable_block_count;
spin_unlock(&sbi->stat_lock);
if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
buf->f_bavail = buf->f_bfree -
F2FS_OPTION(sbi).root_reserved_blocks;
else
buf->f_bavail = 0;
if (avail_node_count > user_block_count) {
buf->f_files = user_block_count;
buf->f_ffree = buf->f_bavail;
} else {
buf->f_files = avail_node_count;
buf->f_ffree = min(avail_node_count - total_valid_node_count,
buf->f_bavail);
}
buf->f_namelen = F2FS_NAME_LEN;
buf->f_fsid = u64_to_fsid(id);
#ifdef CONFIG_QUOTA
if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
}
#endif
return 0;
}
static inline void f2fs_show_quota_options(struct seq_file *seq,
struct super_block *sb)
{
#ifdef CONFIG_QUOTA
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (F2FS_OPTION(sbi).s_jquota_fmt) {
char *fmtname = "";
switch (F2FS_OPTION(sbi).s_jquota_fmt) {
case QFMT_VFS_OLD:
fmtname = "vfsold";
break;
case QFMT_VFS_V0:
fmtname = "vfsv0";
break;
case QFMT_VFS_V1:
fmtname = "vfsv1";
break;
}
seq_printf(seq, ",jqfmt=%s", fmtname);
}
if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
seq_show_option(seq, "usrjquota",
F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
seq_show_option(seq, "grpjquota",
F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
seq_show_option(seq, "prjjquota",
F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
#endif
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
static inline void f2fs_show_compress_options(struct seq_file *seq,
struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
char *algtype = "";
int i;
if (!f2fs_sb_has_compression(sbi))
return;
switch (F2FS_OPTION(sbi).compress_algorithm) {
case COMPRESS_LZO:
algtype = "lzo";
break;
case COMPRESS_LZ4:
algtype = "lz4";
break;
case COMPRESS_ZSTD:
algtype = "zstd";
break;
case COMPRESS_LZORLE:
algtype = "lzo-rle";
break;
}
seq_printf(seq, ",compress_algorithm=%s", algtype);
if (F2FS_OPTION(sbi).compress_level)
seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
seq_printf(seq, ",compress_log_size=%u",
F2FS_OPTION(sbi).compress_log_size);
for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
seq_printf(seq, ",compress_extension=%s",
F2FS_OPTION(sbi).extensions[i]);
}
for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
seq_printf(seq, ",nocompress_extension=%s",
F2FS_OPTION(sbi).noextensions[i]);
}
if (F2FS_OPTION(sbi).compress_chksum)
seq_puts(seq, ",compress_chksum");
if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
seq_printf(seq, ",compress_mode=%s", "fs");
else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
seq_printf(seq, ",compress_mode=%s", "user");
if (test_opt(sbi, COMPRESS_CACHE))
seq_puts(seq, ",compress_cache");
}
#endif
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
{
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
seq_printf(seq, ",background_gc=%s", "sync");
else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
seq_printf(seq, ",background_gc=%s", "on");
else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
seq_printf(seq, ",background_gc=%s", "off");
if (test_opt(sbi, GC_MERGE))
seq_puts(seq, ",gc_merge");
else
seq_puts(seq, ",nogc_merge");
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
seq_puts(seq, ",disable_roll_forward");
if (test_opt(sbi, NORECOVERY))
seq_puts(seq, ",norecovery");
if (test_opt(sbi, DISCARD)) {
seq_puts(seq, ",discard");
if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
seq_printf(seq, ",discard_unit=%s", "block");
else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
seq_printf(seq, ",discard_unit=%s", "segment");
else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
seq_printf(seq, ",discard_unit=%s", "section");
} else {
seq_puts(seq, ",nodiscard");
}
#ifdef CONFIG_F2FS_FS_XATTR
if (test_opt(sbi, XATTR_USER))
seq_puts(seq, ",user_xattr");
else
seq_puts(seq, ",nouser_xattr");
if (test_opt(sbi, INLINE_XATTR))
seq_puts(seq, ",inline_xattr");
else
seq_puts(seq, ",noinline_xattr");
if (test_opt(sbi, INLINE_XATTR_SIZE))
seq_printf(seq, ",inline_xattr_size=%u",
F2FS_OPTION(sbi).inline_xattr_size);
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
if (test_opt(sbi, POSIX_ACL))
seq_puts(seq, ",acl");
else
seq_puts(seq, ",noacl");
#endif
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
seq_puts(seq, ",disable_ext_identify");
if (test_opt(sbi, INLINE_DATA))
seq_puts(seq, ",inline_data");
else
seq_puts(seq, ",noinline_data");
if (test_opt(sbi, INLINE_DENTRY))
seq_puts(seq, ",inline_dentry");
else
seq_puts(seq, ",noinline_dentry");
if (test_opt(sbi, FLUSH_MERGE))
seq_puts(seq, ",flush_merge");
else
seq_puts(seq, ",noflush_merge");
if (test_opt(sbi, NOBARRIER))
seq_puts(seq, ",nobarrier");
else
seq_puts(seq, ",barrier");
if (test_opt(sbi, FASTBOOT))
seq_puts(seq, ",fastboot");
if (test_opt(sbi, READ_EXTENT_CACHE))
seq_puts(seq, ",extent_cache");
else
seq_puts(seq, ",noextent_cache");
if (test_opt(sbi, AGE_EXTENT_CACHE))
seq_puts(seq, ",age_extent_cache");
if (test_opt(sbi, DATA_FLUSH))
seq_puts(seq, ",data_flush");
seq_puts(seq, ",mode=");
if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
seq_puts(seq, "adaptive");
else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
seq_puts(seq, "lfs");
else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
seq_puts(seq, "fragment:segment");
else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
seq_puts(seq, "fragment:block");
seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
if (test_opt(sbi, RESERVE_ROOT))
seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
F2FS_OPTION(sbi).root_reserved_blocks,
from_kuid_munged(&init_user_ns,
F2FS_OPTION(sbi).s_resuid),
from_kgid_munged(&init_user_ns,
F2FS_OPTION(sbi).s_resgid));
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (test_opt(sbi, FAULT_INJECTION)) {
seq_printf(seq, ",fault_injection=%u",
F2FS_OPTION(sbi).fault_info.inject_rate);
seq_printf(seq, ",fault_type=%u",
F2FS_OPTION(sbi).fault_info.inject_type);
}
#endif
#ifdef CONFIG_QUOTA
if (test_opt(sbi, QUOTA))
seq_puts(seq, ",quota");
if (test_opt(sbi, USRQUOTA))
seq_puts(seq, ",usrquota");
if (test_opt(sbi, GRPQUOTA))
seq_puts(seq, ",grpquota");
if (test_opt(sbi, PRJQUOTA))
seq_puts(seq, ",prjquota");
#endif
f2fs_show_quota_options(seq, sbi->sb);
fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
if (sbi->sb->s_flags & SB_INLINECRYPT)
seq_puts(seq, ",inlinecrypt");
if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
seq_printf(seq, ",alloc_mode=%s", "default");
else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
seq_printf(seq, ",alloc_mode=%s", "reuse");
if (test_opt(sbi, DISABLE_CHECKPOINT))
seq_printf(seq, ",checkpoint=disable:%u",
F2FS_OPTION(sbi).unusable_cap);
if (test_opt(sbi, MERGE_CHECKPOINT))
seq_puts(seq, ",checkpoint_merge");
else
seq_puts(seq, ",nocheckpoint_merge");
if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
seq_printf(seq, ",fsync_mode=%s", "posix");
else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
seq_printf(seq, ",fsync_mode=%s", "strict");
else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
seq_printf(seq, ",fsync_mode=%s", "nobarrier");
#ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_show_compress_options(seq, sbi->sb);
#endif
if (test_opt(sbi, ATGC))
seq_puts(seq, ",atgc");
if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
seq_printf(seq, ",memory=%s", "normal");
else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
seq_printf(seq, ",memory=%s", "low");
if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
seq_printf(seq, ",errors=%s", "remount-ro");
else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
seq_printf(seq, ",errors=%s", "continue");
else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
seq_printf(seq, ",errors=%s", "panic");
return 0;
}
static void default_options(struct f2fs_sb_info *sbi, bool remount)
{
/* init some FS parameters */
if (!remount) {
set_opt(sbi, READ_EXTENT_CACHE);
clear_opt(sbi, DISABLE_CHECKPOINT);
if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
set_opt(sbi, DISCARD);
if (f2fs_sb_has_blkzoned(sbi))
F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
else
F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
}
if (f2fs_sb_has_readonly(sbi))
F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
else
F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
SMALL_VOLUME_SEGMENTS)
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
else
F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
if (f2fs_sb_has_compression(sbi)) {
F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
F2FS_OPTION(sbi).compress_ext_cnt = 0;
F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
}
F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
sbi->sb->s_flags &= ~SB_INLINECRYPT;
set_opt(sbi, INLINE_XATTR);
set_opt(sbi, INLINE_DATA);
set_opt(sbi, INLINE_DENTRY);
set_opt(sbi, MERGE_CHECKPOINT);
F2FS_OPTION(sbi).unusable_cap = 0;
sbi->sb->s_flags |= SB_LAZYTIME;
if (!f2fs_is_readonly(sbi))
set_opt(sbi, FLUSH_MERGE);
if (f2fs_sb_has_blkzoned(sbi))
F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
else
F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
#ifdef CONFIG_F2FS_FS_XATTR
set_opt(sbi, XATTR_USER);
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
set_opt(sbi, POSIX_ACL);
#endif
f2fs_build_fault_attr(sbi, 0, 0);
}
#ifdef CONFIG_QUOTA
static int f2fs_enable_quotas(struct super_block *sb);
#endif
static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
{
unsigned int s_flags = sbi->sb->s_flags;
struct cp_control cpc;
unsigned int gc_mode = sbi->gc_mode;
int err = 0;
int ret;
block_t unusable;
if (s_flags & SB_RDONLY) {
f2fs_err(sbi, "checkpoint=disable on readonly fs");
return -EINVAL;
}
sbi->sb->s_flags |= SB_ACTIVE;
/* check if we need more GC first */
unusable = f2fs_get_unusable_blocks(sbi);
if (!f2fs_disable_cp_again(sbi, unusable))
goto skip_gc;
f2fs_update_time(sbi, DISABLE_TIME);
sbi->gc_mode = GC_URGENT_HIGH;
while (!f2fs_time_over(sbi, DISABLE_TIME)) {
struct f2fs_gc_control gc_control = {
.victim_segno = NULL_SEGNO,
.init_gc_type = FG_GC,
.should_migrate_blocks = false,
.err_gc_skipped = true,
.no_bg_gc = true,
.nr_free_secs = 1 };
f2fs_down_write(&sbi->gc_lock);
stat_inc_gc_call_count(sbi, FOREGROUND);
err = f2fs_gc(sbi, &gc_control);
if (err == -ENODATA) {
err = 0;
break;
}
if (err && err != -EAGAIN)
break;
}
ret = sync_filesystem(sbi->sb);
if (ret || err) {
err = ret ? ret : err;
goto restore_flag;
}
unusable = f2fs_get_unusable_blocks(sbi);
if (f2fs_disable_cp_again(sbi, unusable)) {
err = -EAGAIN;
goto restore_flag;
}
skip_gc:
f2fs_down_write(&sbi->gc_lock);
cpc.reason = CP_PAUSE;
set_sbi_flag(sbi, SBI_CP_DISABLED);
stat_inc_cp_call_count(sbi, TOTAL_CALL);
err = f2fs_write_checkpoint(sbi, &cpc);
if (err)
goto out_unlock;
spin_lock(&sbi->stat_lock);
sbi->unusable_block_count = unusable;
spin_unlock(&sbi->stat_lock);
out_unlock:
f2fs_up_write(&sbi->gc_lock);
restore_flag:
sbi->gc_mode = gc_mode;
sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
return err;
}
static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
{
int retry = DEFAULT_RETRY_IO_COUNT;
/* we should flush all the data to keep data consistency */
do {
sync_inodes_sb(sbi->sb);
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
if (unlikely(retry < 0))
f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
f2fs_down_write(&sbi->gc_lock);
f2fs_dirty_to_prefree(sbi);
clear_sbi_flag(sbi, SBI_CP_DISABLED);
set_sbi_flag(sbi, SBI_IS_DIRTY);
f2fs_up_write(&sbi->gc_lock);
f2fs_sync_fs(sbi->sb, 1);
/* Let's ensure there's no pending checkpoint anymore */
f2fs_flush_ckpt_thread(sbi);
}
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct f2fs_mount_info org_mount_opt;
unsigned long old_sb_flags;
int err;
bool need_restart_gc = false, need_stop_gc = false;
bool need_restart_flush = false, need_stop_flush = false;
bool need_restart_discard = false, need_stop_discard = false;
bool need_enable_checkpoint = false, need_disable_checkpoint = false;
bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
bool no_atgc = !test_opt(sbi, ATGC);
bool no_discard = !test_opt(sbi, DISCARD);
bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
bool block_unit_discard = f2fs_block_unit_discard(sbi);
#ifdef CONFIG_QUOTA
int i, j;
#endif
/*
* Save the old mount options in case we
* need to restore them.
*/
org_mount_opt = sbi->mount_opt;
old_sb_flags = sb->s_flags;
#ifdef CONFIG_QUOTA
org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++) {
if (F2FS_OPTION(sbi).s_qf_names[i]) {
org_mount_opt.s_qf_names[i] =
kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
GFP_KERNEL);
if (!org_mount_opt.s_qf_names[i]) {
for (j = 0; j < i; j++)
kfree(org_mount_opt.s_qf_names[j]);
return -ENOMEM;
}
} else {
org_mount_opt.s_qf_names[i] = NULL;
}
}
#endif
/* recover superblocks we couldn't write due to previous RO mount */
if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
err = f2fs_commit_super(sbi, false);
f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
err);
if (!err)
clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
}
default_options(sbi, true);
/* parse mount options */
err = parse_options(sb, data, true);
if (err)
goto restore_opts;
/* flush outstanding errors before changing fs state */
flush_work(&sbi->s_error_work);
/*
* Previous and new state of filesystem is RO,
* so skip checking GC and FLUSH_MERGE conditions.
*/
if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
goto skip;
if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) {
err = -EROFS;
goto restore_opts;
}
#ifdef CONFIG_QUOTA
if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
err = dquot_suspend(sb, -1);
if (err < 0)
goto restore_opts;
} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
/* dquot_resume needs RW */
sb->s_flags &= ~SB_RDONLY;
if (sb_any_quota_suspended(sb)) {
dquot_resume(sb, -1);
} else if (f2fs_sb_has_quota_ino(sbi)) {
err = f2fs_enable_quotas(sb);
if (err)
goto restore_opts;
}
}
#endif
if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
err = -EINVAL;
f2fs_warn(sbi, "LFS is not compatible with IPU");
goto restore_opts;
}
/* disallow enable atgc dynamically */
if (no_atgc == !!test_opt(sbi, ATGC)) {
err = -EINVAL;
f2fs_warn(sbi, "switch atgc option is not allowed");
goto restore_opts;
}
/* disallow enable/disable extent_cache dynamically */
if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
err = -EINVAL;
f2fs_warn(sbi, "switch extent_cache option is not allowed");
goto restore_opts;
}
/* disallow enable/disable age extent_cache dynamically */
if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
err = -EINVAL;
f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
goto restore_opts;
}
if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
err = -EINVAL;
f2fs_warn(sbi, "switch compress_cache option is not allowed");
goto restore_opts;
}
if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
err = -EINVAL;
f2fs_warn(sbi, "switch discard_unit option is not allowed");
goto restore_opts;
}
if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
err = -EINVAL;
f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
goto restore_opts;
}
/*
* We stop the GC thread if FS is mounted as RO
* or if background_gc = off is passed in mount
* option. Also sync the filesystem.
*/
if ((*flags & SB_RDONLY) ||
(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
!test_opt(sbi, GC_MERGE))) {
if (sbi->gc_thread) {
f2fs_stop_gc_thread(sbi);
need_restart_gc = true;
}
} else if (!sbi->gc_thread) {
err = f2fs_start_gc_thread(sbi);
if (err)
goto restore_opts;
need_stop_gc = true;
}
if (*flags & SB_RDONLY) {
sync_inodes_sb(sb);
set_sbi_flag(sbi, SBI_IS_DIRTY);
set_sbi_flag(sbi, SBI_IS_CLOSE);
f2fs_sync_fs(sb, 1);
clear_sbi_flag(sbi, SBI_IS_CLOSE);
}
/*
* We stop issue flush thread if FS is mounted as RO
* or if flush_merge is not passed in mount option.
*/
if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
clear_opt(sbi, FLUSH_MERGE);
f2fs_destroy_flush_cmd_control(sbi, false);
need_restart_flush = true;
} else {
err = f2fs_create_flush_cmd_control(sbi);
if (err)
goto restore_gc;
need_stop_flush = true;
}
if (no_discard == !!test_opt(sbi, DISCARD)) {
if (test_opt(sbi, DISCARD)) {
err = f2fs_start_discard_thread(sbi);
if (err)
goto restore_flush;
need_stop_discard = true;
} else {
f2fs_stop_discard_thread(sbi);
f2fs_issue_discard_timeout(sbi);
need_restart_discard = true;
}
}
if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
if (test_opt(sbi, DISABLE_CHECKPOINT)) {
err = f2fs_disable_checkpoint(sbi);
if (err)
goto restore_discard;
need_enable_checkpoint = true;
} else {
f2fs_enable_checkpoint(sbi);
need_disable_checkpoint = true;
}
}
/*
* Place this routine at the end, since a new checkpoint would be
* triggered while remount and we need to take care of it before
* returning from remount.
*/
if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
!test_opt(sbi, MERGE_CHECKPOINT)) {
f2fs_stop_ckpt_thread(sbi);
} else {
/* Flush if the prevous checkpoint, if exists. */
f2fs_flush_ckpt_thread(sbi);
err = f2fs_start_ckpt_thread(sbi);
if (err) {
f2fs_err(sbi,
"Failed to start F2FS issue_checkpoint_thread (%d)",
err);
goto restore_checkpoint;
}
}
skip:
#ifdef CONFIG_QUOTA
/* Release old quota file names */
for (i = 0; i < MAXQUOTAS; i++)
kfree(org_mount_opt.s_qf_names[i]);
#endif
/* Update the POSIXACL Flag */
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
limit_reserve_root(sbi);
adjust_unusable_cap_perc(sbi);
*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
return 0;
restore_checkpoint:
if (need_enable_checkpoint) {
f2fs_enable_checkpoint(sbi);
} else if (need_disable_checkpoint) {
if (f2fs_disable_checkpoint(sbi))
f2fs_warn(sbi, "checkpoint has not been disabled");
}
restore_discard:
if (need_restart_discard) {
if (f2fs_start_discard_thread(sbi))
f2fs_warn(sbi, "discard has been stopped");
} else if (need_stop_discard) {
f2fs_stop_discard_thread(sbi);
}
restore_flush:
if (need_restart_flush) {
if (f2fs_create_flush_cmd_control(sbi))
f2fs_warn(sbi, "background flush thread has stopped");
} else if (need_stop_flush) {
clear_opt(sbi, FLUSH_MERGE);
f2fs_destroy_flush_cmd_control(sbi, false);
}
restore_gc:
if (need_restart_gc) {
if (f2fs_start_gc_thread(sbi))
f2fs_warn(sbi, "background gc thread has stopped");
} else if (need_stop_gc) {
f2fs_stop_gc_thread(sbi);
}
restore_opts:
#ifdef CONFIG_QUOTA
F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++) {
kfree(F2FS_OPTION(sbi).s_qf_names[i]);
F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
}
#endif
sbi->mount_opt = org_mount_opt;
sb->s_flags = old_sb_flags;
return err;
}
#ifdef CONFIG_QUOTA
static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
{
/* need to recovery orphan */
if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
return true;
/* need to recovery data */
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
return false;
if (test_opt(sbi, NORECOVERY))
return false;
return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
}
static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
{
bool readonly = f2fs_readonly(sbi->sb);
if (!f2fs_need_recovery(sbi))
return false;
/* it doesn't need to check f2fs_sb_has_readonly() */
if (f2fs_hw_is_readonly(sbi))
return false;
if (readonly) {
sbi->sb->s_flags &= ~SB_RDONLY;
set_sbi_flag(sbi, SBI_IS_WRITABLE);
}
/*
* Turn on quotas which were not enabled for read-only mounts if
* filesystem has quota feature, so that they are updated correctly.
*/
return f2fs_enable_quota_files(sbi, readonly);
}
static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
bool quota_enabled)
{
if (quota_enabled)
f2fs_quota_off_umount(sbi->sb);
if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
clear_sbi_flag(sbi, SBI_IS_WRITABLE);
sbi->sb->s_flags |= SB_RDONLY;
}
}
/* Read data from quotafile */
static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
struct address_space *mapping = inode->i_mapping;
block_t blkidx = F2FS_BYTES_TO_BLK(off);
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
loff_t i_size = i_size_read(inode);
struct page *page;
if (off > i_size)
return 0;
if (off + len > i_size)
len = i_size - off;
toread = len;
while (toread > 0) {
tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
repeat:
page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
if (IS_ERR(page)) {
if (PTR_ERR(page) == -ENOMEM) {
memalloc_retry_wait(GFP_NOFS);
goto repeat;
}
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
return PTR_ERR(page);
}
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
return -EIO;
}
memcpy_from_page(data, page, offset, tocopy);
f2fs_put_page(page, 1);
offset = 0;
toread -= tocopy;
data += tocopy;
blkidx++;
}
return len;
}
/* Write to quotafile */
static ssize_t f2fs_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
struct address_space *mapping = inode->i_mapping;
const struct address_space_operations *a_ops = mapping->a_ops;
int offset = off & (sb->s_blocksize - 1);
size_t towrite = len;
struct page *page;
void *fsdata = NULL;
int err = 0;
int tocopy;
while (towrite > 0) {
tocopy = min_t(unsigned long, sb->s_blocksize - offset,
towrite);
retry:
err = a_ops->write_begin(NULL, mapping, off, tocopy,
&page, &fsdata);
if (unlikely(err)) {
if (err == -ENOMEM) {
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
goto retry;
}
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
break;
}
memcpy_to_page(page, offset, data, tocopy);
a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
page, fsdata);
offset = 0;
towrite -= tocopy;
off += tocopy;
data += tocopy;
cond_resched();
}
if (len == towrite)
return err;
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
f2fs_mark_inode_dirty_sync(inode, false);
return len - towrite;
}
int f2fs_dquot_initialize(struct inode *inode)
{
if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
return -ESRCH;
return dquot_initialize(inode);
}
static struct dquot __rcu **f2fs_get_dquots(struct inode *inode)
{
return F2FS_I(inode)->i_dquot;
}
static qsize_t *f2fs_get_reserved_space(struct inode *inode)
{
return &F2FS_I(inode)->i_reserved_quota;
}
static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
{
if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
return 0;
}
return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
F2FS_OPTION(sbi).s_jquota_fmt, type);
}
int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
{
int enabled = 0;
int i, err;
if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
err = f2fs_enable_quotas(sbi->sb);
if (err) {
f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
return 0;
}
return 1;
}
for (i = 0; i < MAXQUOTAS; i++) {
if (F2FS_OPTION(sbi).s_qf_names[i]) {
err = f2fs_quota_on_mount(sbi, i);
if (!err) {
enabled = 1;
continue;
}
f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
err, i);
}
}
return enabled;
}
static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
unsigned int flags)
{
struct inode *qf_inode;
unsigned long qf_inum;
unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
int err;
BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
qf_inum = f2fs_qf_ino(sb, type);
if (!qf_inum)
return -EPERM;
qf_inode = f2fs_iget(sb, qf_inum);
if (IS_ERR(qf_inode)) {
f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
return PTR_ERR(qf_inode);
}
/* Don't account quota for quota files to avoid recursion */
inode_lock(qf_inode);
qf_inode->i_flags |= S_NOQUOTA;
if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
F2FS_I(qf_inode)->i_flags |= qf_flag;
f2fs_set_inode_flags(qf_inode);
}
inode_unlock(qf_inode);
err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
iput(qf_inode);
return err;
}
static int f2fs_enable_quotas(struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int type, err = 0;
unsigned long qf_inum;
bool quota_mopt[MAXQUOTAS] = {
test_opt(sbi, USRQUOTA),
test_opt(sbi, GRPQUOTA),
test_opt(sbi, PRJQUOTA),
};
if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
f2fs_err(sbi, "quota file may be corrupted, skip loading it");
return 0;
}
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
for (type = 0; type < MAXQUOTAS; type++) {
qf_inum = f2fs_qf_ino(sb, type);
if (qf_inum) {
err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
DQUOT_USAGE_ENABLED |
(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
if (err) {
f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
type, err);
for (type--; type >= 0; type--)
dquot_quota_off(sb, type);
set_sbi_flag(F2FS_SB(sb),
SBI_QUOTA_NEED_REPAIR);
return err;
}
}
}
return 0;
}
static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
{
struct quota_info *dqopt = sb_dqopt(sbi->sb);
struct address_space *mapping = dqopt->files[type]->i_mapping;
int ret = 0;
ret = dquot_writeback_dquots(sbi->sb, type);
if (ret)
goto out;
ret = filemap_fdatawrite(mapping);
if (ret)
goto out;
/* if we are using journalled quota */
if (is_journalled_quota(sbi))
goto out;
ret = filemap_fdatawait(mapping);
truncate_inode_pages(&dqopt->files[type]->i_data, 0);
out:
if (ret)
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
return ret;
}
int f2fs_quota_sync(struct super_block *sb, int type)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct quota_info *dqopt = sb_dqopt(sb);
int cnt;
int ret = 0;
/*
* Now when everything is written we can discard the pagecache so
* that userspace sees the changes.
*/
for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
if (type != -1 && cnt != type)
continue;
if (!sb_has_quota_active(sb, cnt))
continue;
if (!f2fs_sb_has_quota_ino(sbi))
inode_lock(dqopt->files[cnt]);
/*
* do_quotactl
* f2fs_quota_sync
* f2fs_down_read(quota_sem)
* dquot_writeback_dquots()
* f2fs_dquot_commit
* block_operation
* f2fs_down_read(quota_sem)
*/
f2fs_lock_op(sbi);
f2fs_down_read(&sbi->quota_sem);
ret = f2fs_quota_sync_file(sbi, cnt);
f2fs_up_read(&sbi->quota_sem);
f2fs_unlock_op(sbi);
if (!f2fs_sb_has_quota_ino(sbi))
inode_unlock(dqopt->files[cnt]);
if (ret)
break;
}
return ret;
}
static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
const struct path *path)
{
struct inode *inode;
int err;
/* if quota sysfile exists, deny enabling quota with specific file */
if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
return -EBUSY;
}
if (path->dentry->d_sb != sb)
return -EXDEV;
err = f2fs_quota_sync(sb, type);
if (err)
return err;
inode = d_inode(path->dentry);
err = filemap_fdatawrite(inode->i_mapping);
if (err)
return err;
err = filemap_fdatawait(inode->i_mapping);
if (err)
return err;
err = dquot_quota_on(sb, type, format_id, path);
if (err)
return err;
inode_lock(inode);
F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
f2fs_set_inode_flags(inode);
inode_unlock(inode);
f2fs_mark_inode_dirty_sync(inode, false);
return 0;
}
static int __f2fs_quota_off(struct super_block *sb, int type)
{
struct inode *inode = sb_dqopt(sb)->files[type];
int err;
if (!inode || !igrab(inode))
return dquot_quota_off(sb, type);
err = f2fs_quota_sync(sb, type);
if (err)
goto out_put;
err = dquot_quota_off(sb, type);
if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
goto out_put;
inode_lock(inode);
F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
f2fs_set_inode_flags(inode);
inode_unlock(inode);
f2fs_mark_inode_dirty_sync(inode, false);
out_put:
iput(inode);
return err;
}
static int f2fs_quota_off(struct super_block *sb, int type)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int err;
err = __f2fs_quota_off(sb, type);
/*
* quotactl can shutdown journalled quota, result in inconsistence
* between quota record and fs data by following updates, tag the
* flag to let fsck be aware of it.
*/
if (is_journalled_quota(sbi))
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
return err;
}
void f2fs_quota_off_umount(struct super_block *sb)
{
int type;
int err;
for (type = 0; type < MAXQUOTAS; type++) {
err = __f2fs_quota_off(sb, type);
if (err) {
int ret = dquot_quota_off(sb, type);
f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
type, err, ret);
set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
}
}
/*
* In case of checkpoint=disable, we must flush quota blocks.
* This can cause NULL exception for node_inode in end_io, since
* put_super already dropped it.
*/
sync_filesystem(sb);
}
static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
{
struct quota_info *dqopt = sb_dqopt(sb);
int type;
for (type = 0; type < MAXQUOTAS; type++) {
if (!dqopt->files[type])
continue;
f2fs_inode_synced(dqopt->files[type]);
}
}
static int f2fs_dquot_commit(struct dquot *dquot)
{
struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
int ret;
f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
ret = dquot_commit(dquot);
if (ret < 0)
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
f2fs_up_read(&sbi->quota_sem);
return ret;
}
static int f2fs_dquot_acquire(struct dquot *dquot)
{
struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
int ret;
f2fs_down_read(&sbi->quota_sem);
ret = dquot_acquire(dquot);
if (ret < 0)
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
f2fs_up_read(&sbi->quota_sem);
return ret;
}
static int f2fs_dquot_release(struct dquot *dquot)
{
struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
int ret = dquot_release(dquot);
if (ret < 0)
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
return ret;
}
static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
{
struct super_block *sb = dquot->dq_sb;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int ret = dquot_mark_dquot_dirty(dquot);
/* if we are using journalled quota */
if (is_journalled_quota(sbi))
set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
return ret;
}
static int f2fs_dquot_commit_info(struct super_block *sb, int type)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int ret = dquot_commit_info(sb, type);
if (ret < 0)
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
return ret;
}
static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
{
*projid = F2FS_I(inode)->i_projid;
return 0;
}
static const struct dquot_operations f2fs_quota_operations = {
.get_reserved_space = f2fs_get_reserved_space,
.write_dquot = f2fs_dquot_commit,
.acquire_dquot = f2fs_dquot_acquire,
.release_dquot = f2fs_dquot_release,
.mark_dirty = f2fs_dquot_mark_dquot_dirty,
.write_info = f2fs_dquot_commit_info,
.alloc_dquot = dquot_alloc,
.destroy_dquot = dquot_destroy,
.get_projid = f2fs_get_projid,
.get_next_id = dquot_get_next_id,
};
static const struct quotactl_ops f2fs_quotactl_ops = {
.quota_on = f2fs_quota_on,
.quota_off = f2fs_quota_off,
.quota_sync = f2fs_quota_sync,
.get_state = dquot_get_state,
.set_info = dquot_set_dqinfo,
.get_dqblk = dquot_get_dqblk,
.set_dqblk = dquot_set_dqblk,
.get_nextdqblk = dquot_get_next_dqblk,
};
#else
int f2fs_dquot_initialize(struct inode *inode)
{
return 0;
}
int f2fs_quota_sync(struct super_block *sb, int type)
{
return 0;
}
void f2fs_quota_off_umount(struct super_block *sb)
{
}
#endif
static const struct super_operations f2fs_sops = {
.alloc_inode = f2fs_alloc_inode,
.free_inode = f2fs_free_inode,
.drop_inode = f2fs_drop_inode,
.write_inode = f2fs_write_inode,
.dirty_inode = f2fs_dirty_inode,
.show_options = f2fs_show_options,
#ifdef CONFIG_QUOTA
.quota_read = f2fs_quota_read,
.quota_write = f2fs_quota_write,
.get_dquots = f2fs_get_dquots,
#endif
.evict_inode = f2fs_evict_inode,
.put_super = f2fs_put_super,
.sync_fs = f2fs_sync_fs,
.freeze_fs = f2fs_freeze,
.unfreeze_fs = f2fs_unfreeze,
.statfs = f2fs_statfs,
.remount_fs = f2fs_remount,
};
#ifdef CONFIG_FS_ENCRYPTION
static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
{
return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
ctx, len, NULL);
}
static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
void *fs_data)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
/*
* Encrypting the root directory is not allowed because fsck
* expects lost+found directory to exist and remain unencrypted
* if LOST_FOUND feature is enabled.
*
*/
if (f2fs_sb_has_lost_found(sbi) &&
inode->i_ino == F2FS_ROOT_INO(sbi))
return -EPERM;
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
ctx, len, fs_data, XATTR_CREATE);
}
static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
{
return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
}
static bool f2fs_has_stable_inodes(struct super_block *sb)
{
return true;
}
static struct block_device **f2fs_get_devices(struct super_block *sb,
unsigned int *num_devs)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct block_device **devs;
int i;
if (!f2fs_is_multi_device(sbi))
return NULL;
devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
if (!devs)
return ERR_PTR(-ENOMEM);
for (i = 0; i < sbi->s_ndevs; i++)
devs[i] = FDEV(i).bdev;
*num_devs = sbi->s_ndevs;
return devs;
}
static const struct fscrypt_operations f2fs_cryptops = {
.needs_bounce_pages = 1,
.has_32bit_inodes = 1,
.supports_subblock_data_units = 1,
.legacy_key_prefix = "f2fs:",
.get_context = f2fs_get_context,
.set_context = f2fs_set_context,
.get_dummy_policy = f2fs_get_dummy_policy,
.empty_dir = f2fs_empty_dir,
.has_stable_inodes = f2fs_has_stable_inodes,
.get_devices = f2fs_get_devices,
};
#endif
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
if (f2fs_check_nid_range(sbi, ino))
return ERR_PTR(-ESTALE);
/*
* f2fs_iget isn't quite right if the inode is currently unallocated!
* However f2fs_iget currently does appropriate checks to handle stale
* inodes so everything is OK.
*/
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (unlikely(generation && inode->i_generation != generation)) {
/* we didn't find the right inode.. */
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
f2fs_nfs_get_inode);
}
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
f2fs_nfs_get_inode);
}
static const struct export_operations f2fs_export_ops = {
.encode_fh = generic_encode_ino32_fh,
.fh_to_dentry = f2fs_fh_to_dentry,
.fh_to_parent = f2fs_fh_to_parent,
.get_parent = f2fs_get_parent,
};
loff_t max_file_blocks(struct inode *inode)
{
loff_t result = 0;
loff_t leaf_count;
/*
* note: previously, result is equal to (DEF_ADDRS_PER_INODE -
* DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
* space in inode.i_addr, it will be more safe to reassign
* result as zero.
*/
if (inode && f2fs_compressed_file(inode))
leaf_count = ADDRS_PER_BLOCK(inode);
else
leaf_count = DEF_ADDRS_PER_BLOCK;
/* two direct node blocks */
result += (leaf_count * 2);
/* two indirect node blocks */
leaf_count *= NIDS_PER_BLOCK;
result += (leaf_count * 2);
/* one double indirect node block */
leaf_count *= NIDS_PER_BLOCK;
result += leaf_count;
/*
* For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with
* a 4K crypto data unit, we must restrict the max filesize to what can
* fit within U32_MAX + 1 data units.
*/
result = min(result, (((loff_t)U32_MAX + 1) * 4096) >> F2FS_BLKSIZE_BITS);
return result;
}
static int __f2fs_commit_super(struct buffer_head *bh,
struct f2fs_super_block *super)
{
lock_buffer(bh);
if (super)
memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
set_buffer_dirty(bh);
unlock_buffer(bh);
/* it's rare case, we can do fua all the time */
return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
}
static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
struct buffer_head *bh)
{
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
(bh->b_data + F2FS_SUPER_OFFSET);
struct super_block *sb = sbi->sb;
u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
u32 segment_count = le32_to_cpu(raw_super->segment_count);
u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
u64 main_end_blkaddr = main_blkaddr +
(segment_count_main << log_blocks_per_seg);
u64 seg_end_blkaddr = segment0_blkaddr +
(segment_count << log_blocks_per_seg);
if (segment0_blkaddr != cp_blkaddr) {
f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
segment0_blkaddr, cp_blkaddr);
return true;
}
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
sit_blkaddr) {
f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
cp_blkaddr, sit_blkaddr,
segment_count_ckpt << log_blocks_per_seg);
return true;
}
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
nat_blkaddr) {
f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
sit_blkaddr, nat_blkaddr,
segment_count_sit << log_blocks_per_seg);
return true;
}
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
ssa_blkaddr) {
f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
nat_blkaddr, ssa_blkaddr,
segment_count_nat << log_blocks_per_seg);
return true;
}
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
main_blkaddr) {
f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
ssa_blkaddr, main_blkaddr,
segment_count_ssa << log_blocks_per_seg);
return true;
}
if (main_end_blkaddr > seg_end_blkaddr) {
f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
main_blkaddr, seg_end_blkaddr,
segment_count_main << log_blocks_per_seg);
return true;
} else if (main_end_blkaddr < seg_end_blkaddr) {
int err = 0;
char *res;
/* fix in-memory information all the time */
raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
segment0_blkaddr) >> log_blocks_per_seg);
if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
res = "internally";
} else {
err = __f2fs_commit_super(bh, NULL);
res = err ? "failed" : "done";
}
f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
res, main_blkaddr, seg_end_blkaddr,
segment_count_main << log_blocks_per_seg);
if (err)
return true;
}
return false;
}
static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
struct buffer_head *bh)
{
block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
block_t total_sections, blocks_per_seg;
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
(bh->b_data + F2FS_SUPER_OFFSET);
size_t crc_offset = 0;
__u32 crc = 0;
if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
return -EINVAL;
}
/* Check checksum_offset and crc in superblock */
if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
crc_offset = le32_to_cpu(raw_super->checksum_offset);
if (crc_offset !=
offsetof(struct f2fs_super_block, crc)) {
f2fs_info(sbi, "Invalid SB checksum offset: %zu",
crc_offset);
return -EFSCORRUPTED;
}
crc = le32_to_cpu(raw_super->crc);
if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
return -EFSCORRUPTED;
}
}
/* Currently, support only 4KB block size */
if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
le32_to_cpu(raw_super->log_blocksize),
F2FS_BLKSIZE_BITS);
return -EFSCORRUPTED;
}
/* check log blocks per segment */
if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
f2fs_info(sbi, "Invalid log blocks per segment (%u)",
le32_to_cpu(raw_super->log_blocks_per_seg));
return -EFSCORRUPTED;
}
/* Currently, support 512/1024/2048/4096/16K bytes sector size */
if (le32_to_cpu(raw_super->log_sectorsize) >
F2FS_MAX_LOG_SECTOR_SIZE ||
le32_to_cpu(raw_super->log_sectorsize) <
F2FS_MIN_LOG_SECTOR_SIZE) {
f2fs_info(sbi, "Invalid log sectorsize (%u)",
le32_to_cpu(raw_super->log_sectorsize));
return -EFSCORRUPTED;
}
if (le32_to_cpu(raw_super->log_sectors_per_block) +
le32_to_cpu(raw_super->log_sectorsize) !=
F2FS_MAX_LOG_SECTOR_SIZE) {
f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
le32_to_cpu(raw_super->log_sectors_per_block),
le32_to_cpu(raw_super->log_sectorsize));
return -EFSCORRUPTED;
}
segment_count = le32_to_cpu(raw_super->segment_count);
segment_count_main = le32_to_cpu(raw_super->segment_count_main);
segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
total_sections = le32_to_cpu(raw_super->section_count);
/* blocks_per_seg should be 512, given the above check */
blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
if (segment_count > F2FS_MAX_SEGMENT ||
segment_count < F2FS_MIN_SEGMENTS) {
f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
return -EFSCORRUPTED;
}
if (total_sections > segment_count_main || total_sections < 1 ||
segs_per_sec > segment_count || !segs_per_sec) {
f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
segment_count, total_sections, segs_per_sec);
return -EFSCORRUPTED;
}
if (segment_count_main != total_sections * segs_per_sec) {
f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
segment_count_main, total_sections, segs_per_sec);
return -EFSCORRUPTED;
}
if ((segment_count / segs_per_sec) < total_sections) {
f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
segment_count, segs_per_sec, total_sections);
return -EFSCORRUPTED;
}
if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
segment_count, le64_to_cpu(raw_super->block_count));
return -EFSCORRUPTED;
}
if (RDEV(0).path[0]) {
block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
int i = 1;
while (i < MAX_DEVICES && RDEV(i).path[0]) {
dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
i++;
}
if (segment_count != dev_seg_count) {
f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
segment_count, dev_seg_count);
return -EFSCORRUPTED;
}
} else {
if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
!bdev_is_zoned(sbi->sb->s_bdev)) {
f2fs_info(sbi, "Zoned block device path is missing");
return -EFSCORRUPTED;
}
}
if (secs_per_zone > total_sections || !secs_per_zone) {
f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
secs_per_zone, total_sections);
return -EFSCORRUPTED;
}
if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
(le32_to_cpu(raw_super->extension_count) +
raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
le32_to_cpu(raw_super->extension_count),
raw_super->hot_ext_count,
F2FS_MAX_EXTENSION);
return -EFSCORRUPTED;
}
if (le32_to_cpu(raw_super->cp_payload) >=
(blocks_per_seg - F2FS_CP_PACKS -
NR_CURSEG_PERSIST_TYPE)) {
f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
le32_to_cpu(raw_super->cp_payload),
blocks_per_seg - F2FS_CP_PACKS -
NR_CURSEG_PERSIST_TYPE);
return -EFSCORRUPTED;
}
/* check reserved ino info */
if (le32_to_cpu(raw_super->node_ino) != 1 ||
le32_to_cpu(raw_super->meta_ino) != 2 ||
le32_to_cpu(raw_super->root_ino) != 3) {
f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
le32_to_cpu(raw_super->node_ino),
le32_to_cpu(raw_super->meta_ino),
le32_to_cpu(raw_super->root_ino));
return -EFSCORRUPTED;
}
/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
if (sanity_check_area_boundary(sbi, bh))
return -EFSCORRUPTED;
return 0;
}
int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
{
unsigned int total, fsmeta;
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned int ovp_segments, reserved_segments;
unsigned int main_segs, blocks_per_seg;
unsigned int sit_segs, nat_segs;
unsigned int sit_bitmap_size, nat_bitmap_size;
unsigned int log_blocks_per_seg;
unsigned int segment_count_main;
unsigned int cp_pack_start_sum, cp_payload;
block_t user_block_count, valid_user_blocks;
block_t avail_node_count, valid_node_count;
unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
int i, j;
total = le32_to_cpu(raw_super->segment_count);
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
sit_segs = le32_to_cpu(raw_super->segment_count_sit);
fsmeta += sit_segs;
nat_segs = le32_to_cpu(raw_super->segment_count_nat);
fsmeta += nat_segs;
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
if (unlikely(fsmeta >= total))
return 1;
ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
if (!f2fs_sb_has_readonly(sbi) &&
unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
ovp_segments == 0 || reserved_segments == 0)) {
f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
return 1;
}
user_block_count = le64_to_cpu(ckpt->user_block_count);
segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
(f2fs_sb_has_readonly(sbi) ? 1 : 0);
log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
if (!user_block_count || user_block_count >=
segment_count_main << log_blocks_per_seg) {
f2fs_err(sbi, "Wrong user_block_count: %u",
user_block_count);
return 1;
}
valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
if (valid_user_blocks > user_block_count) {
f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
valid_user_blocks, user_block_count);
return 1;
}
valid_node_count = le32_to_cpu(ckpt->valid_node_count);
avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
if (valid_node_count > avail_node_count) {
f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
valid_node_count, avail_node_count);
return 1;
}
main_segs = le32_to_cpu(raw_super->segment_count_main);
blocks_per_seg = BLKS_PER_SEG(sbi);
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
return 1;
if (f2fs_sb_has_readonly(sbi))
goto check_data;
for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
le32_to_cpu(ckpt->cur_node_segno[j])) {
f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
i, j,
le32_to_cpu(ckpt->cur_node_segno[i]));
return 1;
}
}
}
check_data:
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
return 1;
if (f2fs_sb_has_readonly(sbi))
goto skip_cross;
for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
le32_to_cpu(ckpt->cur_data_segno[j])) {
f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
i, j,
le32_to_cpu(ckpt->cur_data_segno[i]));
return 1;
}
}
}
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
le32_to_cpu(ckpt->cur_data_segno[j])) {
f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
i, j,
le32_to_cpu(ckpt->cur_node_segno[i]));
return 1;
}
}
}
skip_cross:
sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
sit_bitmap_size, nat_bitmap_size);
return 1;
}
cp_pack_start_sum = __start_sum_addr(sbi);
cp_payload = __cp_payload(sbi);
if (cp_pack_start_sum < cp_payload + 1 ||
cp_pack_start_sum > blocks_per_seg - 1 -
NR_CURSEG_PERSIST_TYPE) {
f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
cp_pack_start_sum);
return 1;
}
if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
"please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
"fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
le32_to_cpu(ckpt->checksum_offset));
return 1;
}
nat_blocks = nat_segs << log_blocks_per_seg;
nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
(cp_payload + F2FS_CP_PACKS +
NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
cp_payload, nat_bits_blocks);
return 1;
}
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_err(sbi, "A bug case: need to run fsck");
return 1;
}
return 0;
}
static void init_sb_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = sbi->raw_super;
int i;
sbi->log_sectors_per_block =
le32_to_cpu(raw_super->log_sectors_per_block);
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
sbi->blocksize = BIT(sbi->log_blocksize);
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
sbi->total_sections = le32_to_cpu(raw_super->section_count);
sbi->total_node_count = SEGS_TO_BLKS(sbi,
((le32_to_cpu(raw_super->segment_count_nat) / 2) *
NAT_ENTRY_PER_BLOCK));
F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
sbi->cur_victim_sec = NULL_SECNO;
sbi->gc_mode = GC_NORMAL;
sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
sbi->migration_granularity = SEGS_PER_SEC(sbi);
sbi->seq_file_ra_mul = MIN_RA_MUL;
sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
spin_lock_init(&sbi->gc_remaining_trials_lock);
atomic64_set(&sbi->current_atomic_write, 0);
sbi->dir_level = DEF_DIR_LEVEL;
sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
DEF_UMOUNT_DISCARD_TIMEOUT;
clear_sbi_flag(sbi, SBI_NEED_FSCK);
for (i = 0; i < NR_COUNT_TYPE; i++)
atomic_set(&sbi->nr_pages[i], 0);
for (i = 0; i < META; i++)
atomic_set(&sbi->wb_sync_req[i], 0);
INIT_LIST_HEAD(&sbi->s_list);
mutex_init(&sbi->umount_mutex);
init_f2fs_rwsem(&sbi->io_order_lock);
spin_lock_init(&sbi->cp_lock);
sbi->dirty_device = 0;
spin_lock_init(&sbi->dev_lock);
init_f2fs_rwsem(&sbi->sb_lock);
init_f2fs_rwsem(&sbi->pin_sem);
}
static int init_percpu_info(struct f2fs_sb_info *sbi)
{
int err;
err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
if (err)
return err;
err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
if (err)
goto err_valid_block;
err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
GFP_KERNEL);
if (err)
goto err_node_block;
return 0;
err_node_block:
percpu_counter_destroy(&sbi->rf_node_block_count);
err_valid_block:
percpu_counter_destroy(&sbi->alloc_valid_block_count);
return err;
}
#ifdef CONFIG_BLK_DEV_ZONED
struct f2fs_report_zones_args {
struct f2fs_sb_info *sbi;
struct f2fs_dev_info *dev;
};
static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
struct f2fs_report_zones_args *rz_args = data;
block_t unusable_blocks = (zone->len - zone->capacity) >>
F2FS_LOG_SECTORS_PER_BLOCK;
if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
return 0;
set_bit(idx, rz_args->dev->blkz_seq);
if (!rz_args->sbi->unusable_blocks_per_sec) {
rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
return 0;
}
if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
return -EINVAL;
}
return 0;
}
static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
{
struct block_device *bdev = FDEV(devi).bdev;
sector_t nr_sectors = bdev_nr_sectors(bdev);
struct f2fs_report_zones_args rep_zone_arg;
u64 zone_sectors;
int ret;
if (!f2fs_sb_has_blkzoned(sbi))
return 0;
zone_sectors = bdev_zone_sectors(bdev);
if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
SECTOR_TO_BLOCK(zone_sectors))
return -EINVAL;
sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
sbi->blocks_per_blkz);
if (nr_sectors & (zone_sectors - 1))
FDEV(devi).nr_blkz++;
FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
BITS_TO_LONGS(FDEV(devi).nr_blkz)
* sizeof(unsigned long),
GFP_KERNEL);
if (!FDEV(devi).blkz_seq)
return -ENOMEM;
rep_zone_arg.sbi = sbi;
rep_zone_arg.dev = &FDEV(devi);
ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
&rep_zone_arg);
if (ret < 0)
return ret;
return 0;
}
#endif
/*
* Read f2fs raw super block.
* Because we have two copies of super block, so read both of them
* to get the first valid one. If any one of them is broken, we pass
* them recovery flag back to the caller.
*/
static int read_raw_super_block(struct f2fs_sb_info *sbi,
struct f2fs_super_block **raw_super,
int *valid_super_block, int *recovery)
{
struct super_block *sb = sbi->sb;
int block;
struct buffer_head *bh;
struct f2fs_super_block *super;
int err = 0;
super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
if (!super)
return -ENOMEM;
for (block = 0; block < 2; block++) {
bh = sb_bread(sb, block);
if (!bh) {
f2fs_err(sbi, "Unable to read %dth superblock",
block + 1);
err = -EIO;
*recovery = 1;
continue;
}
/* sanity checking of raw super */
err = sanity_check_raw_super(sbi, bh);
if (err) {
f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
block + 1);
brelse(bh);
*recovery = 1;
continue;
}
if (!*raw_super) {
memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
sizeof(*super));
*valid_super_block = block;
*raw_super = super;
}
brelse(bh);
}
/* No valid superblock */
if (!*raw_super)
kfree(super);
else
err = 0;
return err;
}
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
{
struct buffer_head *bh;
__u32 crc = 0;
int err;
if ((recover && f2fs_readonly(sbi->sb)) ||
f2fs_hw_is_readonly(sbi)) {
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
return -EROFS;
}
/* we should update superblock crc here */
if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
offsetof(struct f2fs_super_block, crc));
F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
}
/* write back-up superblock first */
bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
if (!bh)
return -EIO;
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
brelse(bh);
/* if we are in recovery path, skip writing valid superblock */
if (recover || err)
return err;
/* write current valid superblock */
bh = sb_bread(sbi->sb, sbi->valid_super_block);
if (!bh)
return -EIO;
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
brelse(bh);
return err;
}
static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
{
unsigned long flags;
spin_lock_irqsave(&sbi->error_lock, flags);
if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
sbi->stop_reason[reason]++;
spin_unlock_irqrestore(&sbi->error_lock, flags);
}
static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
unsigned long flags;
int err;
f2fs_down_write(&sbi->sb_lock);
spin_lock_irqsave(&sbi->error_lock, flags);
if (sbi->error_dirty) {
memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
MAX_F2FS_ERRORS);
sbi->error_dirty = false;
}
memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
spin_unlock_irqrestore(&sbi->error_lock, flags);
err = f2fs_commit_super(sbi, false);
f2fs_up_write(&sbi->sb_lock);
if (err)
f2fs_err_ratelimited(sbi,
"f2fs_commit_super fails to record stop_reason, err:%d",
err);
}
void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
{
unsigned long flags;
spin_lock_irqsave(&sbi->error_lock, flags);
if (!test_bit(flag, (unsigned long *)sbi->errors)) {
set_bit(flag, (unsigned long *)sbi->errors);
sbi->error_dirty = true;
}
spin_unlock_irqrestore(&sbi->error_lock, flags);
}
static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
{
unsigned long flags;
bool need_update = false;
spin_lock_irqsave(&sbi->error_lock, flags);
if (sbi->error_dirty) {
memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
MAX_F2FS_ERRORS);
sbi->error_dirty = false;
need_update = true;
}
spin_unlock_irqrestore(&sbi->error_lock, flags);
return need_update;
}
static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
{
int err;
f2fs_down_write(&sbi->sb_lock);
if (!f2fs_update_errors(sbi))
goto out_unlock;
err = f2fs_commit_super(sbi, false);
if (err)
f2fs_err_ratelimited(sbi,
"f2fs_commit_super fails to record errors:%u, err:%d",
error, err);
out_unlock:
f2fs_up_write(&sbi->sb_lock);
}
void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
{
f2fs_save_errors(sbi, error);
f2fs_record_errors(sbi, error);
}
void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
{
f2fs_save_errors(sbi, error);
if (!sbi->error_dirty)
return;
if (!test_bit(error, (unsigned long *)sbi->errors))
return;
schedule_work(&sbi->s_error_work);
}
static bool system_going_down(void)
{
return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
|| system_state == SYSTEM_RESTART;
}
void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
bool irq_context)
{
struct super_block *sb = sbi->sb;
bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
bool continue_fs = !shutdown &&
F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
set_ckpt_flags(sbi, CP_ERROR_FLAG);
if (!f2fs_hw_is_readonly(sbi)) {
save_stop_reason(sbi, reason);
if (irq_context && !shutdown)
schedule_work(&sbi->s_error_work);
else
f2fs_record_stop_reason(sbi);
}
/*
* We force ERRORS_RO behavior when system is rebooting. Otherwise we
* could panic during 'reboot -f' as the underlying device got already
* disabled.
*/
if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
!shutdown && !system_going_down() &&
!is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
panic("F2FS-fs (device %s): panic forced after error\n",
sb->s_id);
if (shutdown)
set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
/* continue filesystem operators if errors=continue */
if (continue_fs || f2fs_readonly(sb))
return;
f2fs_warn(sbi, "Remounting filesystem read-only");
/*
* Make sure updated value of ->s_mount_flags will be visible before
* ->s_flags update
*/
smp_wmb();
sb->s_flags |= SB_RDONLY;
}
static void f2fs_record_error_work(struct work_struct *work)
{
struct f2fs_sb_info *sbi = container_of(work,
struct f2fs_sb_info, s_error_work);
f2fs_record_stop_reason(sbi);
}
static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
unsigned int max_devices = MAX_DEVICES;
unsigned int logical_blksize;
blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
int i;
/* Initialize single device information */
if (!RDEV(0).path[0]) {
if (!bdev_is_zoned(sbi->sb->s_bdev))
return 0;
max_devices = 1;
}
/*
* Initialize multiple devices information, or single
* zoned block device information.
*/
sbi->devs = f2fs_kzalloc(sbi,
array_size(max_devices,
sizeof(struct f2fs_dev_info)),
GFP_KERNEL);
if (!sbi->devs)
return -ENOMEM;
logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
sbi->aligned_blksize = true;
for (i = 0; i < max_devices; i++) {
if (i == 0)
FDEV(0).bdev_file = sbi->sb->s_bdev_file;
else if (!RDEV(i).path[0])
break;
if (max_devices > 1) {
/* Multi-device mount */
memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
FDEV(i).total_segments =
le32_to_cpu(RDEV(i).total_segments);
if (i == 0) {
FDEV(i).start_blk = 0;
FDEV(i).end_blk = FDEV(i).start_blk +
SEGS_TO_BLKS(sbi,
FDEV(i).total_segments) - 1 +
le32_to_cpu(raw_super->segment0_blkaddr);
} else {
FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
FDEV(i).end_blk = FDEV(i).start_blk +
SEGS_TO_BLKS(sbi,
FDEV(i).total_segments) - 1;
FDEV(i).bdev_file = bdev_file_open_by_path(
FDEV(i).path, mode, sbi->sb, NULL);
}
}
if (IS_ERR(FDEV(i).bdev_file))
return PTR_ERR(FDEV(i).bdev_file);
FDEV(i).bdev = file_bdev(FDEV(i).bdev_file);
/* to release errored devices */
sbi->s_ndevs = i + 1;
if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
sbi->aligned_blksize = false;
#ifdef CONFIG_BLK_DEV_ZONED
if (bdev_is_zoned(FDEV(i).bdev)) {
if (!f2fs_sb_has_blkzoned(sbi)) {
f2fs_err(sbi, "Zoned block device feature not enabled");
return -EINVAL;
}
if (init_blkz_info(sbi, i)) {
f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
return -EINVAL;
}
if (max_devices == 1)
break;
f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)",
i, FDEV(i).path,
FDEV(i).total_segments,
FDEV(i).start_blk, FDEV(i).end_blk);
continue;
}
#endif
f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
i, FDEV(i).path,
FDEV(i).total_segments,
FDEV(i).start_blk, FDEV(i).end_blk);
}
return 0;
}
static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
{
#if IS_ENABLED(CONFIG_UNICODE)
if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
const struct f2fs_sb_encodings *encoding_info;
struct unicode_map *encoding;
__u16 encoding_flags;
encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
if (!encoding_info) {
f2fs_err(sbi,
"Encoding requested by superblock is unknown");
return -EINVAL;
}
encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
encoding = utf8_load(encoding_info->version);
if (IS_ERR(encoding)) {
f2fs_err(sbi,
"can't mount with superblock charset: %s-%u.%u.%u "
"not supported by the kernel. flags: 0x%x.",
encoding_info->name,
unicode_major(encoding_info->version),
unicode_minor(encoding_info->version),
unicode_rev(encoding_info->version),
encoding_flags);
return PTR_ERR(encoding);
}
f2fs_info(sbi, "Using encoding defined by superblock: "
"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
unicode_major(encoding_info->version),
unicode_minor(encoding_info->version),
unicode_rev(encoding_info->version),
encoding_flags);
sbi->sb->s_encoding = encoding;
sbi->sb->s_encoding_flags = encoding_flags;
}
#else
if (f2fs_sb_has_casefold(sbi)) {
f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
return -EINVAL;
}
#endif
return 0;
}
static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
{
/* adjust parameters according to the volume size */
if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
if (f2fs_block_unit_discard(sbi))
SM_I(sbi)->dcc_info->discard_granularity =
MIN_DISCARD_GRANULARITY;
if (!f2fs_lfs_mode(sbi))
SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
BIT(F2FS_IPU_HONOR_OPU_WRITE);
}
sbi->readdir_ra = true;
}
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
{
struct f2fs_sb_info *sbi;
struct f2fs_super_block *raw_super;
struct inode *root;
int err;
bool skip_recovery = false, need_fsck = false;
char *options = NULL;
int recovery, i, valid_super_block;
struct curseg_info *seg_i;
int retry_cnt = 1;
#ifdef CONFIG_QUOTA
bool quota_enabled = false;
#endif
try_onemore:
err = -EINVAL;
raw_super = NULL;
valid_super_block = -1;
recovery = 0;
/* allocate memory for f2fs-specific super block info */
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sbi->sb = sb;
/* initialize locks within allocated memory */
init_f2fs_rwsem(&sbi->gc_lock);
mutex_init(&sbi->writepages);
init_f2fs_rwsem(&sbi->cp_global_sem);
init_f2fs_rwsem(&sbi->node_write);
init_f2fs_rwsem(&sbi->node_change);
spin_lock_init(&sbi->stat_lock);
init_f2fs_rwsem(&sbi->cp_rwsem);
init_f2fs_rwsem(&sbi->quota_sem);
init_waitqueue_head(&sbi->cp_wait);
spin_lock_init(&sbi->error_lock);
for (i = 0; i < NR_INODE_TYPE; i++) {
INIT_LIST_HEAD(&sbi->inode_list[i]);
spin_lock_init(&sbi->inode_lock[i]);
}
mutex_init(&sbi->flush_lock);
/* Load the checksum driver */
sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
if (IS_ERR(sbi->s_chksum_driver)) {
f2fs_err(sbi, "Cannot load crc32 driver.");
err = PTR_ERR(sbi->s_chksum_driver);
sbi->s_chksum_driver = NULL;
goto free_sbi;
}
/* set a block size */
if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
f2fs_err(sbi, "unable to set blocksize");
goto free_sbi;
}
err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
&recovery);
if (err)
goto free_sbi;
sb->s_fs_info = sbi;
sbi->raw_super = raw_super;
INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
/* precompute checksum seed for metadata */
if (f2fs_sb_has_inode_chksum(sbi))
sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
sizeof(raw_super->uuid));
default_options(sbi, false);
/* parse mount options */
options = kstrdup((const char *)data, GFP_KERNEL);
if (data && !options) {
err = -ENOMEM;
goto free_sb_buf;
}
err = parse_options(sb, options, false);
if (err)
goto free_options;
sb->s_maxbytes = max_file_blocks(NULL) <<
le32_to_cpu(raw_super->log_blocksize);
sb->s_max_links = F2FS_LINK_MAX;
err = f2fs_setup_casefold(sbi);
if (err)
goto free_options;
#ifdef CONFIG_QUOTA
sb->dq_op = &f2fs_quota_operations;
sb->s_qcop = &f2fs_quotactl_ops;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
if (f2fs_sb_has_quota_ino(sbi)) {
for (i = 0; i < MAXQUOTAS; i++) {
if (f2fs_qf_ino(sbi->sb, i))
sbi->nquota_files++;
}
}
#endif
sb->s_op = &f2fs_sops;
#ifdef CONFIG_FS_ENCRYPTION
sb->s_cop = &f2fs_cryptops;
#endif
#ifdef CONFIG_FS_VERITY
sb->s_vop = &f2fs_verityops;
#endif
sb->s_xattr = f2fs_xattr_handlers;
sb->s_export_op = &f2fs_export_ops;
sb->s_magic = F2FS_SUPER_MAGIC;
sb->s_time_gran = 1;
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid));
sb->s_iflags |= SB_I_CGROUPWB;
/* init f2fs-specific super block info */
sbi->valid_super_block = valid_super_block;
/* disallow all the data/node/meta page writes */
set_sbi_flag(sbi, SBI_POR_DOING);
err = f2fs_init_write_merge_io(sbi);
if (err)
goto free_bio_info;
init_sb_info(sbi);
err = f2fs_init_iostat(sbi);
if (err)
goto free_bio_info;
err = init_percpu_info(sbi);
if (err)
goto free_iostat;
/* init per sbi slab cache */
err = f2fs_init_xattr_caches(sbi);
if (err)
goto free_percpu;
err = f2fs_init_page_array_cache(sbi);
if (err)
goto free_xattr_cache;
/* get an inode for meta space */
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
if (IS_ERR(sbi->meta_inode)) {
f2fs_err(sbi, "Failed to read F2FS meta data inode");
err = PTR_ERR(sbi->meta_inode);
goto free_page_array_cache;
}
err = f2fs_get_valid_checkpoint(sbi);
if (err) {
f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
goto free_meta_inode;
}
if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
}
if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
set_sbi_flag(sbi, SBI_NEED_FSCK);
/* Initialize device list */
err = f2fs_scan_devices(sbi);
if (err) {
f2fs_err(sbi, "Failed to find devices");
goto free_devices;
}
err = f2fs_init_post_read_wq(sbi);
if (err) {
f2fs_err(sbi, "Failed to initialize post read workqueue");
goto free_devices;
}
sbi->total_valid_node_count =
le32_to_cpu(sbi->ckpt->valid_node_count);
percpu_counter_set(&sbi->total_valid_inode_count,
le32_to_cpu(sbi->ckpt->valid_inode_count));
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
sbi->total_valid_block_count =
le64_to_cpu(sbi->ckpt->valid_block_count);
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->reserved_blocks = 0;
sbi->current_reserved_blocks = 0;
limit_reserve_root(sbi);
adjust_unusable_cap_perc(sbi);
f2fs_init_extent_cache_info(sbi);
f2fs_init_ino_entry_info(sbi);
f2fs_init_fsync_node_info(sbi);
/* setup checkpoint request control and start checkpoint issue thread */
f2fs_init_ckpt_req_control(sbi);
if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
test_opt(sbi, MERGE_CHECKPOINT)) {
err = f2fs_start_ckpt_thread(sbi);
if (err) {
f2fs_err(sbi,
"Failed to start F2FS issue_checkpoint_thread (%d)",
err);
goto stop_ckpt_thread;
}
}
/* setup f2fs internal modules */
err = f2fs_build_segment_manager(sbi);
if (err) {
f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
err);
goto free_sm;
}
err = f2fs_build_node_manager(sbi);
if (err) {
f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
err);
goto free_nm;
}
/* For write statistics */
sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
/* Read accumulated write IO statistics if exists */
seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
if (__exist_node_summaries(sbi))
sbi->kbytes_written =
le64_to_cpu(seg_i->journal->info.kbytes_written);
f2fs_build_gc_manager(sbi);
err = f2fs_build_stats(sbi);
if (err)
goto free_nm;
/* get an inode for node space */
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
if (IS_ERR(sbi->node_inode)) {
f2fs_err(sbi, "Failed to read node inode");
err = PTR_ERR(sbi->node_inode);
goto free_stats;
}
/* read root inode and dentry */
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
if (IS_ERR(root)) {
f2fs_err(sbi, "Failed to read root inode");
err = PTR_ERR(root);
goto free_node_inode;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
!root->i_size || !root->i_nlink) {
iput(root);
err = -EINVAL;
goto free_node_inode;
}
generic_set_sb_d_ops(sb);
sb->s_root = d_make_root(root); /* allocate root dentry */
if (!sb->s_root) {
err = -ENOMEM;
goto free_node_inode;
}
err = f2fs_init_compress_inode(sbi);
if (err)
goto free_root_inode;
err = f2fs_register_sysfs(sbi);
if (err)
goto free_compress_inode;
#ifdef CONFIG_QUOTA
/* Enable quota usage during mount */
if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
err = f2fs_enable_quotas(sb);
if (err)
f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
}
quota_enabled = f2fs_recover_quota_begin(sbi);
#endif
/* if there are any orphan inodes, free them */
err = f2fs_recover_orphan_inodes(sbi);
if (err)
goto free_meta;
if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
goto reset_checkpoint;
/* recover fsynced data */
if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
!test_opt(sbi, NORECOVERY)) {
/*
* mount should be failed, when device has readonly mode, and
* previous checkpoint was not done by clean system shutdown.
*/
if (f2fs_hw_is_readonly(sbi)) {
if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
err = f2fs_recover_fsync_data(sbi, true);
if (err > 0) {
err = -EROFS;
f2fs_err(sbi, "Need to recover fsync data, but "
"write access unavailable, please try "
"mount w/ disable_roll_forward or norecovery");
}
if (err < 0)
goto free_meta;
}
f2fs_info(sbi, "write access unavailable, skipping recovery");
goto reset_checkpoint;
}
if (need_fsck)
set_sbi_flag(sbi, SBI_NEED_FSCK);
if (skip_recovery)
goto reset_checkpoint;
err = f2fs_recover_fsync_data(sbi, false);
if (err < 0) {
if (err != -ENOMEM)
skip_recovery = true;
need_fsck = true;
f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
err);
goto free_meta;
}
} else {
err = f2fs_recover_fsync_data(sbi, true);
if (!f2fs_readonly(sb) && err > 0) {
err = -EINVAL;
f2fs_err(sbi, "Need to recover fsync data");
goto free_meta;
}
}
#ifdef CONFIG_QUOTA
f2fs_recover_quota_end(sbi, quota_enabled);
#endif
reset_checkpoint:
/*
* If the f2fs is not readonly and fsync data recovery succeeds,
* check zoned block devices' write pointer consistency.
*/
if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sb)) {
int err2;
f2fs_notice(sbi, "Checking entire write pointers");
err2 = f2fs_check_write_pointer(sbi);
if (err2)
err = err2;
}
if (err)
goto free_meta;
err = f2fs_init_inmem_curseg(sbi);
if (err)
goto sync_free_meta;
/* f2fs_recover_fsync_data() cleared this already */
clear_sbi_flag(sbi, SBI_POR_DOING);
if (test_opt(sbi, DISABLE_CHECKPOINT)) {
err = f2fs_disable_checkpoint(sbi);
if (err)
goto sync_free_meta;
} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
f2fs_enable_checkpoint(sbi);
}
/*
* If filesystem is not mounted as read-only then
* do start the gc_thread.
*/
if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
/* After POR, we can run background GC thread.*/
err = f2fs_start_gc_thread(sbi);
if (err)
goto sync_free_meta;
}
kvfree(options);
/* recover broken superblock */
if (recovery) {
err = f2fs_commit_super(sbi, true);
f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
sbi->valid_super_block ? 1 : 2, err);
}
f2fs_join_shrinker(sbi);
f2fs_tuning_parameters(sbi);
f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
cur_cp_version(F2FS_CKPT(sbi)));
f2fs_update_time(sbi, CP_TIME);
f2fs_update_time(sbi, REQ_TIME);
clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
return 0;
sync_free_meta:
/* safe to flush all the data */
sync_filesystem(sbi->sb);
retry_cnt = 0;
free_meta:
#ifdef CONFIG_QUOTA
f2fs_truncate_quota_inode_pages(sb);
if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
f2fs_quota_off_umount(sbi->sb);
#endif
/*
* Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
* failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
* followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
* falls into an infinite loop in f2fs_sync_meta_pages().
*/
truncate_inode_pages_final(META_MAPPING(sbi));
/* evict some inodes being cached by GC */
evict_inodes(sb);
f2fs_unregister_sysfs(sbi);
free_compress_inode:
f2fs_destroy_compress_inode(sbi);
free_root_inode:
dput(sb->s_root);
sb->s_root = NULL;
free_node_inode:
f2fs_release_ino_entry(sbi, true);
truncate_inode_pages_final(NODE_MAPPING(sbi));
iput(sbi->node_inode);
sbi->node_inode = NULL;
free_stats:
f2fs_destroy_stats(sbi);
free_nm:
/* stop discard thread before destroying node manager */
f2fs_stop_discard_thread(sbi);
f2fs_destroy_node_manager(sbi);
free_sm:
f2fs_destroy_segment_manager(sbi);
stop_ckpt_thread:
f2fs_stop_ckpt_thread(sbi);
/* flush s_error_work before sbi destroy */
flush_work(&sbi->s_error_work);
f2fs_destroy_post_read_wq(sbi);
free_devices:
destroy_device_list(sbi);
kvfree(sbi->ckpt);
free_meta_inode:
make_bad_inode(sbi->meta_inode);
iput(sbi->meta_inode);
sbi->meta_inode = NULL;
free_page_array_cache:
f2fs_destroy_page_array_cache(sbi);
free_xattr_cache:
f2fs_destroy_xattr_caches(sbi);
free_percpu:
destroy_percpu_info(sbi);
free_iostat:
f2fs_destroy_iostat(sbi);
free_bio_info:
for (i = 0; i < NR_PAGE_TYPE; i++)
kvfree(sbi->write_io[i]);
#if IS_ENABLED(CONFIG_UNICODE)
utf8_unload(sb->s_encoding);
sb->s_encoding = NULL;
#endif
free_options:
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(F2FS_OPTION(sbi).s_qf_names[i]);
#endif
fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
kvfree(options);
free_sb_buf:
kfree(raw_super);
free_sbi:
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
kfree(sbi);
sb->s_fs_info = NULL;
/* give only one another chance */
if (retry_cnt > 0 && skip_recovery) {
retry_cnt--;
shrink_dcache_sb(sb);
goto try_onemore;
}
return err;
}
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
}
static void kill_f2fs_super(struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (sb->s_root) {
set_sbi_flag(sbi, SBI_IS_CLOSE);
f2fs_stop_gc_thread(sbi);
f2fs_stop_discard_thread(sbi);
#ifdef CONFIG_F2FS_FS_COMPRESSION
/*
* latter evict_inode() can bypass checking and invalidating
* compress inode cache.
*/
if (test_opt(sbi, COMPRESS_CACHE))
truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
#endif
if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
struct cp_control cpc = {
.reason = CP_UMOUNT,
};
stat_inc_cp_call_count(sbi, TOTAL_CALL);
f2fs_write_checkpoint(sbi, &cpc);
}
if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
sb->s_flags &= ~SB_RDONLY;
}
kill_block_super(sb);
/* Release block devices last, after fscrypt_destroy_keyring(). */
if (sbi) {
destroy_device_list(sbi);
kfree(sbi);
sb->s_fs_info = NULL;
}
}
static struct file_system_type f2fs_fs_type = {
.owner = THIS_MODULE,
.name = "f2fs",
.mount = f2fs_mount,
.kill_sb = kill_f2fs_super,
.fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
};
MODULE_ALIAS_FS("f2fs");
static int __init init_inodecache(void)
{
f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
sizeof(struct f2fs_inode_info), 0,
SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
return f2fs_inode_cachep ? 0 : -ENOMEM;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(f2fs_inode_cachep);
}
static int __init init_f2fs_fs(void)
{
int err;
if (PAGE_SIZE != F2FS_BLKSIZE) {
printk("F2FS not supported on PAGE_SIZE(%lu) != BLOCK_SIZE(%lu)\n",
PAGE_SIZE, F2FS_BLKSIZE);
return -EINVAL;
}
err = init_inodecache();
if (err)
goto fail;
err = f2fs_create_node_manager_caches();
if (err)
goto free_inodecache;
err = f2fs_create_segment_manager_caches();
if (err)
goto free_node_manager_caches;
err = f2fs_create_checkpoint_caches();
if (err)
goto free_segment_manager_caches;
err = f2fs_create_recovery_cache();
if (err)
goto free_checkpoint_caches;
err = f2fs_create_extent_cache();
if (err)
goto free_recovery_cache;
err = f2fs_create_garbage_collection_cache();
if (err)
goto free_extent_cache;
err = f2fs_init_sysfs();
if (err)
goto free_garbage_collection_cache;
err = f2fs_init_shrinker();
if (err)
goto free_sysfs;
err = register_filesystem(&f2fs_fs_type);
if (err)
goto free_shrinker;
f2fs_create_root_stats();
err = f2fs_init_post_read_processing();
if (err)
goto free_root_stats;
err = f2fs_init_iostat_processing();
if (err)
goto free_post_read;
err = f2fs_init_bio_entry_cache();
if (err)
goto free_iostat;
err = f2fs_init_bioset();
if (err)
goto free_bio_entry_cache;
err = f2fs_init_compress_mempool();
if (err)
goto free_bioset;
err = f2fs_init_compress_cache();
if (err)
goto free_compress_mempool;
err = f2fs_create_casefold_cache();
if (err)
goto free_compress_cache;
return 0;
free_compress_cache:
f2fs_destroy_compress_cache();
free_compress_mempool:
f2fs_destroy_compress_mempool();
free_bioset:
f2fs_destroy_bioset();
free_bio_entry_cache:
f2fs_destroy_bio_entry_cache();
free_iostat:
f2fs_destroy_iostat_processing();
free_post_read:
f2fs_destroy_post_read_processing();
free_root_stats:
f2fs_destroy_root_stats();
unregister_filesystem(&f2fs_fs_type);
free_shrinker:
f2fs_exit_shrinker();
free_sysfs:
f2fs_exit_sysfs();
free_garbage_collection_cache:
f2fs_destroy_garbage_collection_cache();
free_extent_cache:
f2fs_destroy_extent_cache();
free_recovery_cache:
f2fs_destroy_recovery_cache();
free_checkpoint_caches:
f2fs_destroy_checkpoint_caches();
free_segment_manager_caches:
f2fs_destroy_segment_manager_caches();
free_node_manager_caches:
f2fs_destroy_node_manager_caches();
free_inodecache:
destroy_inodecache();
fail:
return err;
}
static void __exit exit_f2fs_fs(void)
{
f2fs_destroy_casefold_cache();
f2fs_destroy_compress_cache();
f2fs_destroy_compress_mempool();
f2fs_destroy_bioset();
f2fs_destroy_bio_entry_cache();
f2fs_destroy_iostat_processing();
f2fs_destroy_post_read_processing();
f2fs_destroy_root_stats();
unregister_filesystem(&f2fs_fs_type);
f2fs_exit_shrinker();
f2fs_exit_sysfs();
f2fs_destroy_garbage_collection_cache();
f2fs_destroy_extent_cache();
f2fs_destroy_recovery_cache();
f2fs_destroy_checkpoint_caches();
f2fs_destroy_segment_manager_caches();
f2fs_destroy_node_manager_caches();
destroy_inodecache();
}
module_init(init_f2fs_fs)
module_exit(exit_f2fs_fs)
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
MODULE_DESCRIPTION("Flash Friendly File System");
MODULE_LICENSE("GPL");
MODULE_SOFTDEP("pre: crc32");