linux-stable/sound/firewire/amdtp.c
Clemens Ladisch 13882a82ee firewire: optimize iso queueing by setting wake only after the last packet
When queueing iso packets, the run time is dominated by the two
MMIO accesses that set the DMA context's wake bit.  Because most
drivers submit packets in batches, we can save much time by
removing all but the last wakeup.

The internal kernel API is changed to require a call to
fw_iso_context_queue_flush() after a batch of queued packets.
The user space API does not change, so one call to
FW_CDEV_IOC_QUEUE_ISO must specify multiple packets to take
advantage of this optimization.

In my measurements, this patch reduces the time needed to queue
fifty skip packets from userspace to one sixth on a 2.5 GHz CPU,
or to one third at 800 MHz.

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
2011-05-10 22:53:45 +02:00

563 lines
15 KiB
C

/*
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
* with Common Isochronous Packet (IEC 61883-1) headers
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
#include "amdtp.h"
#define TICKS_PER_CYCLE 3072
#define CYCLES_PER_SECOND 8000
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 µs */
#define TAG_CIP 1
#define CIP_EOH (1u << 31)
#define CIP_FMT_AM (0x10 << 24)
#define AMDTP_FDF_AM824 (0 << 19)
#define AMDTP_FDF_SFC_SHIFT 16
/* TODO: make these configurable */
#define INTERRUPT_INTERVAL 16
#define QUEUE_LENGTH 48
/**
* amdtp_out_stream_init - initialize an AMDTP output stream structure
* @s: the AMDTP output stream to initialize
* @unit: the target of the stream
* @flags: the packet transmission method to use
*/
int amdtp_out_stream_init(struct amdtp_out_stream *s, struct fw_unit *unit,
enum cip_out_flags flags)
{
if (flags != CIP_NONBLOCKING)
return -EINVAL;
s->unit = fw_unit_get(unit);
s->flags = flags;
s->context = ERR_PTR(-1);
mutex_init(&s->mutex);
s->packet_index = 0;
return 0;
}
EXPORT_SYMBOL(amdtp_out_stream_init);
/**
* amdtp_out_stream_destroy - free stream resources
* @s: the AMDTP output stream to destroy
*/
void amdtp_out_stream_destroy(struct amdtp_out_stream *s)
{
WARN_ON(!IS_ERR(s->context));
mutex_destroy(&s->mutex);
fw_unit_put(s->unit);
}
EXPORT_SYMBOL(amdtp_out_stream_destroy);
/**
* amdtp_out_stream_set_rate - set the sample rate
* @s: the AMDTP output stream to configure
* @rate: the sample rate
*
* The sample rate must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_out_stream_set_rate(struct amdtp_out_stream *s, unsigned int rate)
{
static const struct {
unsigned int rate;
unsigned int syt_interval;
} rate_info[] = {
[CIP_SFC_32000] = { 32000, 8, },
[CIP_SFC_44100] = { 44100, 8, },
[CIP_SFC_48000] = { 48000, 8, },
[CIP_SFC_88200] = { 88200, 16, },
[CIP_SFC_96000] = { 96000, 16, },
[CIP_SFC_176400] = { 176400, 32, },
[CIP_SFC_192000] = { 192000, 32, },
};
unsigned int sfc;
if (WARN_ON(!IS_ERR(s->context)))
return;
for (sfc = 0; sfc < ARRAY_SIZE(rate_info); ++sfc)
if (rate_info[sfc].rate == rate) {
s->sfc = sfc;
s->syt_interval = rate_info[sfc].syt_interval;
return;
}
WARN_ON(1);
}
EXPORT_SYMBOL(amdtp_out_stream_set_rate);
/**
* amdtp_out_stream_get_max_payload - get the stream's packet size
* @s: the AMDTP output stream
*
* This function must not be called before the stream has been configured
* with amdtp_out_stream_set_hw_params(), amdtp_out_stream_set_pcm(), and
* amdtp_out_stream_set_midi().
*/
unsigned int amdtp_out_stream_get_max_payload(struct amdtp_out_stream *s)
{
static const unsigned int max_data_blocks[] = {
[CIP_SFC_32000] = 4,
[CIP_SFC_44100] = 6,
[CIP_SFC_48000] = 6,
[CIP_SFC_88200] = 12,
[CIP_SFC_96000] = 12,
[CIP_SFC_176400] = 23,
[CIP_SFC_192000] = 24,
};
s->data_block_quadlets = s->pcm_channels;
s->data_block_quadlets += DIV_ROUND_UP(s->midi_ports, 8);
return 8 + max_data_blocks[s->sfc] * 4 * s->data_block_quadlets;
}
EXPORT_SYMBOL(amdtp_out_stream_get_max_payload);
static void amdtp_write_s16(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void amdtp_write_s32(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
/**
* amdtp_out_stream_set_pcm_format - set the PCM format
* @s: the AMDTP output stream to configure
* @format: the format of the ALSA PCM device
*
* The sample format must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_out_stream_set_pcm_format(struct amdtp_out_stream *s,
snd_pcm_format_t format)
{
if (WARN_ON(!IS_ERR(s->context)))
return;
switch (format) {
default:
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S16:
s->transfer_samples = amdtp_write_s16;
break;
case SNDRV_PCM_FORMAT_S32:
s->transfer_samples = amdtp_write_s32;
break;
}
}
EXPORT_SYMBOL(amdtp_out_stream_set_pcm_format);
static unsigned int calculate_data_blocks(struct amdtp_out_stream *s)
{
unsigned int phase, data_blocks;
if (!cip_sfc_is_base_44100(s->sfc)) {
/* Sample_rate / 8000 is an integer, and precomputed. */
data_blocks = s->data_block_state;
} else {
phase = s->data_block_state;
/*
* This calculates the number of data blocks per packet so that
* 1) the overall rate is correct and exactly synchronized to
* the bus clock, and
* 2) packets with a rounded-up number of blocks occur as early
* as possible in the sequence (to prevent underruns of the
* device's buffer).
*/
if (s->sfc == CIP_SFC_44100)
/* 6 6 5 6 5 6 5 ... */
data_blocks = 5 + ((phase & 1) ^
(phase == 0 || phase >= 40));
else
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
if (++phase >= (80 >> (s->sfc >> 1)))
phase = 0;
s->data_block_state = phase;
}
return data_blocks;
}
static unsigned int calculate_syt(struct amdtp_out_stream *s,
unsigned int cycle)
{
unsigned int syt_offset, phase, index, syt;
if (s->last_syt_offset < TICKS_PER_CYCLE) {
if (!cip_sfc_is_base_44100(s->sfc))
syt_offset = s->last_syt_offset + s->syt_offset_state;
else {
/*
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
* n * SYT_INTERVAL * 24576000 / sample_rate
* Modulo TICKS_PER_CYCLE, the difference between successive
* elements is about 1386.23. Rounding the results of this
* formula to the SYT precision results in a sequence of
* differences that begins with:
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
* This code generates _exactly_ the same sequence.
*/
phase = s->syt_offset_state;
index = phase % 13;
syt_offset = s->last_syt_offset;
syt_offset += 1386 + ((index && !(index & 3)) ||
phase == 146);
if (++phase >= 147)
phase = 0;
s->syt_offset_state = phase;
}
} else
syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
s->last_syt_offset = syt_offset;
if (syt_offset < TICKS_PER_CYCLE) {
syt_offset += TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
syt += syt_offset % TICKS_PER_CYCLE;
return syt & 0xffff;
} else {
return 0xffff; /* no info */
}
}
static void amdtp_write_s32(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, frame_step, i, c;
const u32 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
s->pcm_buffer_pointer * (runtime->frame_bits / 8);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
frame_step = s->data_block_quadlets - channels;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*buffer = cpu_to_be32((*src >> 8) | 0x40000000);
src++;
buffer++;
}
buffer += frame_step;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void amdtp_write_s16(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, frame_step, i, c;
const u16 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
s->pcm_buffer_pointer * (runtime->frame_bits / 8);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
frame_step = s->data_block_quadlets - channels;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*buffer = cpu_to_be32((*src << 8) | 0x40000000);
src++;
buffer++;
}
buffer += frame_step;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void amdtp_fill_pcm_silence(struct amdtp_out_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i, c;
for (i = 0; i < frames; ++i) {
for (c = 0; c < s->pcm_channels; ++c)
buffer[c] = cpu_to_be32(0x40000000);
buffer += s->data_block_quadlets;
}
}
static void amdtp_fill_midi(struct amdtp_out_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i;
for (i = 0; i < frames; ++i)
buffer[s->pcm_channels + i * s->data_block_quadlets] =
cpu_to_be32(0x80000000);
}
static void queue_out_packet(struct amdtp_out_stream *s, unsigned int cycle)
{
__be32 *buffer;
unsigned int index, data_blocks, syt, ptr;
struct snd_pcm_substream *pcm;
struct fw_iso_packet packet;
int err;
if (s->packet_index < 0)
return;
index = s->packet_index;
data_blocks = calculate_data_blocks(s);
syt = calculate_syt(s, cycle);
buffer = s->buffer.packets[index].buffer;
buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
(s->data_block_quadlets << 16) |
s->data_block_counter);
buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
(s->sfc << AMDTP_FDF_SFC_SHIFT) | syt);
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, data_blocks);
else
amdtp_fill_pcm_silence(s, buffer, data_blocks);
if (s->midi_ports)
amdtp_fill_midi(s, buffer, data_blocks);
s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
packet.payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
packet.interrupt = IS_ALIGNED(index + 1, INTERRUPT_INTERVAL);
packet.skip = 0;
packet.tag = TAG_CIP;
packet.sy = 0;
packet.header_length = 0;
err = fw_iso_context_queue(s->context, &packet, &s->buffer.iso_buffer,
s->buffer.packets[index].offset);
if (err < 0) {
dev_err(&s->unit->device, "queueing error: %d\n", err);
s->packet_index = -1;
amdtp_out_stream_pcm_abort(s);
return;
}
if (++index >= QUEUE_LENGTH)
index = 0;
s->packet_index = index;
if (pcm) {
ptr = s->pcm_buffer_pointer + data_blocks;
if (ptr >= pcm->runtime->buffer_size)
ptr -= pcm->runtime->buffer_size;
ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
s->pcm_period_pointer += data_blocks;
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
s->pcm_period_pointer -= pcm->runtime->period_size;
snd_pcm_period_elapsed(pcm);
}
}
}
static void out_packet_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header, void *data)
{
struct amdtp_out_stream *s = data;
unsigned int i, packets = header_length / 4;
/*
* Compute the cycle of the last queued packet.
* (We need only the four lowest bits for the SYT, so we can ignore
* that bits 0-11 must wrap around at 3072.)
*/
cycle += QUEUE_LENGTH - packets;
for (i = 0; i < packets; ++i)
queue_out_packet(s, ++cycle);
fw_iso_context_queue_flush(s->context);
}
static int queue_initial_skip_packets(struct amdtp_out_stream *s)
{
struct fw_iso_packet skip_packet = {
.skip = 1,
};
unsigned int i;
int err;
for (i = 0; i < QUEUE_LENGTH; ++i) {
skip_packet.interrupt = IS_ALIGNED(s->packet_index + 1,
INTERRUPT_INTERVAL);
err = fw_iso_context_queue(s->context, &skip_packet, NULL, 0);
if (err < 0)
return err;
if (++s->packet_index >= QUEUE_LENGTH)
s->packet_index = 0;
}
return 0;
}
/**
* amdtp_out_stream_start - start sending packets
* @s: the AMDTP output stream to start
* @channel: the isochronous channel on the bus
* @speed: firewire speed code
*
* The stream cannot be started until it has been configured with
* amdtp_out_stream_set_hw_params(), amdtp_out_stream_set_pcm(), and
* amdtp_out_stream_set_midi(); and it must be started before any
* PCM or MIDI device can be started.
*/
int amdtp_out_stream_start(struct amdtp_out_stream *s, int channel, int speed)
{
static const struct {
unsigned int data_block;
unsigned int syt_offset;
} initial_state[] = {
[CIP_SFC_32000] = { 4, 3072 },
[CIP_SFC_48000] = { 6, 1024 },
[CIP_SFC_96000] = { 12, 1024 },
[CIP_SFC_192000] = { 24, 1024 },
[CIP_SFC_44100] = { 0, 67 },
[CIP_SFC_88200] = { 0, 67 },
[CIP_SFC_176400] = { 0, 67 },
};
int err;
mutex_lock(&s->mutex);
if (WARN_ON(!IS_ERR(s->context) ||
(!s->pcm_channels && !s->midi_ports))) {
err = -EBADFD;
goto err_unlock;
}
s->data_block_state = initial_state[s->sfc].data_block;
s->syt_offset_state = initial_state[s->sfc].syt_offset;
s->last_syt_offset = TICKS_PER_CYCLE;
err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
amdtp_out_stream_get_max_payload(s),
DMA_TO_DEVICE);
if (err < 0)
goto err_unlock;
s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
FW_ISO_CONTEXT_TRANSMIT,
channel, speed, 0,
out_packet_callback, s);
if (IS_ERR(s->context)) {
err = PTR_ERR(s->context);
if (err == -EBUSY)
dev_err(&s->unit->device,
"no free output stream on this controller\n");
goto err_buffer;
}
amdtp_out_stream_update(s);
s->packet_index = 0;
s->data_block_counter = 0;
err = queue_initial_skip_packets(s);
if (err < 0)
goto err_context;
err = fw_iso_context_start(s->context, -1, 0, 0);
if (err < 0)
goto err_context;
mutex_unlock(&s->mutex);
return 0;
err_context:
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
err_buffer:
iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
mutex_unlock(&s->mutex);
return err;
}
EXPORT_SYMBOL(amdtp_out_stream_start);
/**
* amdtp_out_stream_update - update the stream after a bus reset
* @s: the AMDTP output stream
*/
void amdtp_out_stream_update(struct amdtp_out_stream *s)
{
ACCESS_ONCE(s->source_node_id_field) =
(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
EXPORT_SYMBOL(amdtp_out_stream_update);
/**
* amdtp_out_stream_stop - stop sending packets
* @s: the AMDTP output stream to stop
*
* All PCM and MIDI devices of the stream must be stopped before the stream
* itself can be stopped.
*/
void amdtp_out_stream_stop(struct amdtp_out_stream *s)
{
mutex_lock(&s->mutex);
if (IS_ERR(s->context)) {
mutex_unlock(&s->mutex);
return;
}
fw_iso_context_stop(s->context);
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
iso_packets_buffer_destroy(&s->buffer, s->unit);
mutex_unlock(&s->mutex);
}
EXPORT_SYMBOL(amdtp_out_stream_stop);
/**
* amdtp_out_stream_pcm_abort - abort the running PCM device
* @s: the AMDTP stream about to be stopped
*
* If the isochronous stream needs to be stopped asynchronously, call this
* function first to stop the PCM device.
*/
void amdtp_out_stream_pcm_abort(struct amdtp_out_stream *s)
{
struct snd_pcm_substream *pcm;
pcm = ACCESS_ONCE(s->pcm);
if (pcm) {
snd_pcm_stream_lock_irq(pcm);
if (snd_pcm_running(pcm))
snd_pcm_stop(pcm, SNDRV_PCM_STATE_XRUN);
snd_pcm_stream_unlock_irq(pcm);
}
}
EXPORT_SYMBOL(amdtp_out_stream_pcm_abort);