linux-stable/drivers/net/dsa/lan9303-core.c
Vladimir Oltean 0650bf52b3 net: dsa: be compatible with masters which unregister on shutdown
Lino reports that on his system with bcmgenet as DSA master and KSZ9897
as a switch, rebooting or shutting down never works properly.

What does the bcmgenet driver have special to trigger this, that other
DSA masters do not? It has an implementation of ->shutdown which simply
calls its ->remove implementation. Otherwise said, it unregisters its
network interface on shutdown.

This message can be seen in a loop, and it hangs the reboot process there:

unregister_netdevice: waiting for eth0 to become free. Usage count = 3

So why 3?

A usage count of 1 is normal for a registered network interface, and any
virtual interface which links itself as an upper of that will increment
it via dev_hold. In the case of DSA, this is the call path:

dsa_slave_create
-> netdev_upper_dev_link
   -> __netdev_upper_dev_link
      -> __netdev_adjacent_dev_insert
         -> dev_hold

So a DSA switch with 3 interfaces will result in a usage count elevated
by two, and netdev_wait_allrefs will wait until they have gone away.

Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and
delete themselves, but DSA cannot just vanish and go poof, at most it
can unbind itself from the switch devices, but that must happen strictly
earlier compared to when the DSA master unregisters its net_device, so
reacting on the NETDEV_UNREGISTER event is way too late.

It seems that it is a pretty established pattern to have a driver's
->shutdown hook redirect to its ->remove hook, so the same code is
executed regardless of whether the driver is unbound from the device, or
the system is just shutting down. As Florian puts it, it is quite a big
hammer for bcmgenet to unregister its net_device during shutdown, but
having a common code path with the driver unbind helps ensure it is well
tested.

So DSA, for better or for worse, has to live with that and engage in an
arms race of implementing the ->shutdown hook too, from all individual
drivers, and do something sane when paired with masters that unregister
their net_device there. The only sane thing to do, of course, is to
unlink from the master.

However, complications arise really quickly.

The pattern of redirecting ->shutdown to ->remove is not unique to
bcmgenet or even to net_device drivers. In fact, SPI controllers do it
too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers
and MDIO controllers do it too (this is something I have not researched
too deeply, but even if this is not the case today, it is certainly
plausible to happen in the future, and must be taken into consideration).

Since DSA switches might be SPI devices, I2C devices, MDIO devices, the
insane implication is that for the exact same DSA switch device, we
might have both ->shutdown and ->remove getting called.

So we need to do something with that insane environment. The pattern
I've come up with is "if this, then not that", so if either ->shutdown
or ->remove gets called, we set the device's drvdata to NULL, and in the
other hook, we check whether the drvdata is NULL and just do nothing.
This is probably not necessary for platform devices, just for devices on
buses, but I would really insist for consistency among drivers, because
when code is copy-pasted, it is not always copy-pasted from the best
sources.

So depending on whether the DSA switch's ->remove or ->shutdown will get
called first, we cannot really guarantee even for the same driver if
rebooting will result in the same code path on all platforms. But
nonetheless, we need to do something minimally reasonable on ->shutdown
too to fix the bug. Of course, the ->remove will do more (a full
teardown of the tree, with all data structures freed, and this is why
the bug was not caught for so long). The new ->shutdown method is kept
separate from dsa_unregister_switch not because we couldn't have
unregistered the switch, but simply in the interest of doing something
quick and to the point.

The big question is: does the DSA switch's ->shutdown get called earlier
than the DSA master's ->shutdown? If not, there is still a risk that we
might still trigger the WARN_ON in unregister_netdevice that says we are
attempting to unregister a net_device which has uppers. That's no good.
Although the reference to the master net_device won't physically go away
even if DSA's ->shutdown comes afterwards, remember we have a dev_hold
on it.

The answer to that question lies in this comment above device_link_add:

 * A side effect of the link creation is re-ordering of dpm_list and the
 * devices_kset list by moving the consumer device and all devices depending
 * on it to the ends of these lists (that does not happen to devices that have
 * not been registered when this function is called).

so the fact that DSA uses device_link_add towards its master is not
exactly for nothing. device_shutdown() walks devices_kset from the back,
so this is our guarantee that DSA's shutdown happens before the master's
shutdown.

Fixes: 2f1e8ea726 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings")
Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/
Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-19 12:08:37 +01:00

1390 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 Pengutronix, Juergen Borleis <kernel@pengutronix.de>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio/consumer.h>
#include <linux/regmap.h>
#include <linux/mutex.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
#include <linux/etherdevice.h>
#include "lan9303.h"
#define LAN9303_NUM_PORTS 3
/* 13.2 System Control and Status Registers
* Multiply register number by 4 to get address offset.
*/
#define LAN9303_CHIP_REV 0x14
# define LAN9303_CHIP_ID 0x9303
#define LAN9303_IRQ_CFG 0x15
# define LAN9303_IRQ_CFG_IRQ_ENABLE BIT(8)
# define LAN9303_IRQ_CFG_IRQ_POL BIT(4)
# define LAN9303_IRQ_CFG_IRQ_TYPE BIT(0)
#define LAN9303_INT_STS 0x16
# define LAN9303_INT_STS_PHY_INT2 BIT(27)
# define LAN9303_INT_STS_PHY_INT1 BIT(26)
#define LAN9303_INT_EN 0x17
# define LAN9303_INT_EN_PHY_INT2_EN BIT(27)
# define LAN9303_INT_EN_PHY_INT1_EN BIT(26)
#define LAN9303_HW_CFG 0x1D
# define LAN9303_HW_CFG_READY BIT(27)
# define LAN9303_HW_CFG_AMDX_EN_PORT2 BIT(26)
# define LAN9303_HW_CFG_AMDX_EN_PORT1 BIT(25)
#define LAN9303_PMI_DATA 0x29
#define LAN9303_PMI_ACCESS 0x2A
# define LAN9303_PMI_ACCESS_PHY_ADDR(x) (((x) & 0x1f) << 11)
# define LAN9303_PMI_ACCESS_MIIRINDA(x) (((x) & 0x1f) << 6)
# define LAN9303_PMI_ACCESS_MII_BUSY BIT(0)
# define LAN9303_PMI_ACCESS_MII_WRITE BIT(1)
#define LAN9303_MANUAL_FC_1 0x68
#define LAN9303_MANUAL_FC_2 0x69
#define LAN9303_MANUAL_FC_0 0x6a
#define LAN9303_SWITCH_CSR_DATA 0x6b
#define LAN9303_SWITCH_CSR_CMD 0x6c
#define LAN9303_SWITCH_CSR_CMD_BUSY BIT(31)
#define LAN9303_SWITCH_CSR_CMD_RW BIT(30)
#define LAN9303_SWITCH_CSR_CMD_LANES (BIT(19) | BIT(18) | BIT(17) | BIT(16))
#define LAN9303_VIRT_PHY_BASE 0x70
#define LAN9303_VIRT_SPECIAL_CTRL 0x77
#define LAN9303_VIRT_SPECIAL_TURBO BIT(10) /*Turbo MII Enable*/
/*13.4 Switch Fabric Control and Status Registers
* Accessed indirectly via SWITCH_CSR_CMD, SWITCH_CSR_DATA.
*/
#define LAN9303_SW_DEV_ID 0x0000
#define LAN9303_SW_RESET 0x0001
#define LAN9303_SW_RESET_RESET BIT(0)
#define LAN9303_SW_IMR 0x0004
#define LAN9303_SW_IPR 0x0005
#define LAN9303_MAC_VER_ID_0 0x0400
#define LAN9303_MAC_RX_CFG_0 0x0401
# define LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES BIT(1)
# define LAN9303_MAC_RX_CFG_X_RX_ENABLE BIT(0)
#define LAN9303_MAC_RX_UNDSZE_CNT_0 0x0410
#define LAN9303_MAC_RX_64_CNT_0 0x0411
#define LAN9303_MAC_RX_127_CNT_0 0x0412
#define LAN9303_MAC_RX_255_CNT_0 0x413
#define LAN9303_MAC_RX_511_CNT_0 0x0414
#define LAN9303_MAC_RX_1023_CNT_0 0x0415
#define LAN9303_MAC_RX_MAX_CNT_0 0x0416
#define LAN9303_MAC_RX_OVRSZE_CNT_0 0x0417
#define LAN9303_MAC_RX_PKTOK_CNT_0 0x0418
#define LAN9303_MAC_RX_CRCERR_CNT_0 0x0419
#define LAN9303_MAC_RX_MULCST_CNT_0 0x041a
#define LAN9303_MAC_RX_BRDCST_CNT_0 0x041b
#define LAN9303_MAC_RX_PAUSE_CNT_0 0x041c
#define LAN9303_MAC_RX_FRAG_CNT_0 0x041d
#define LAN9303_MAC_RX_JABB_CNT_0 0x041e
#define LAN9303_MAC_RX_ALIGN_CNT_0 0x041f
#define LAN9303_MAC_RX_PKTLEN_CNT_0 0x0420
#define LAN9303_MAC_RX_GOODPKTLEN_CNT_0 0x0421
#define LAN9303_MAC_RX_SYMBL_CNT_0 0x0422
#define LAN9303_MAC_RX_CTLFRM_CNT_0 0x0423
#define LAN9303_MAC_TX_CFG_0 0x0440
# define LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT (21 << 2)
# define LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE BIT(1)
# define LAN9303_MAC_TX_CFG_X_TX_ENABLE BIT(0)
#define LAN9303_MAC_TX_DEFER_CNT_0 0x0451
#define LAN9303_MAC_TX_PAUSE_CNT_0 0x0452
#define LAN9303_MAC_TX_PKTOK_CNT_0 0x0453
#define LAN9303_MAC_TX_64_CNT_0 0x0454
#define LAN9303_MAC_TX_127_CNT_0 0x0455
#define LAN9303_MAC_TX_255_CNT_0 0x0456
#define LAN9303_MAC_TX_511_CNT_0 0x0457
#define LAN9303_MAC_TX_1023_CNT_0 0x0458
#define LAN9303_MAC_TX_MAX_CNT_0 0x0459
#define LAN9303_MAC_TX_UNDSZE_CNT_0 0x045a
#define LAN9303_MAC_TX_PKTLEN_CNT_0 0x045c
#define LAN9303_MAC_TX_BRDCST_CNT_0 0x045d
#define LAN9303_MAC_TX_MULCST_CNT_0 0x045e
#define LAN9303_MAC_TX_LATECOL_0 0x045f
#define LAN9303_MAC_TX_EXCOL_CNT_0 0x0460
#define LAN9303_MAC_TX_SNGLECOL_CNT_0 0x0461
#define LAN9303_MAC_TX_MULTICOL_CNT_0 0x0462
#define LAN9303_MAC_TX_TOTALCOL_CNT_0 0x0463
#define LAN9303_MAC_VER_ID_1 0x0800
#define LAN9303_MAC_RX_CFG_1 0x0801
#define LAN9303_MAC_TX_CFG_1 0x0840
#define LAN9303_MAC_VER_ID_2 0x0c00
#define LAN9303_MAC_RX_CFG_2 0x0c01
#define LAN9303_MAC_TX_CFG_2 0x0c40
#define LAN9303_SWE_ALR_CMD 0x1800
# define LAN9303_ALR_CMD_MAKE_ENTRY BIT(2)
# define LAN9303_ALR_CMD_GET_FIRST BIT(1)
# define LAN9303_ALR_CMD_GET_NEXT BIT(0)
#define LAN9303_SWE_ALR_WR_DAT_0 0x1801
#define LAN9303_SWE_ALR_WR_DAT_1 0x1802
# define LAN9303_ALR_DAT1_VALID BIT(26)
# define LAN9303_ALR_DAT1_END_OF_TABL BIT(25)
# define LAN9303_ALR_DAT1_AGE_OVERRID BIT(25)
# define LAN9303_ALR_DAT1_STATIC BIT(24)
# define LAN9303_ALR_DAT1_PORT_BITOFFS 16
# define LAN9303_ALR_DAT1_PORT_MASK (7 << LAN9303_ALR_DAT1_PORT_BITOFFS)
#define LAN9303_SWE_ALR_RD_DAT_0 0x1805
#define LAN9303_SWE_ALR_RD_DAT_1 0x1806
#define LAN9303_SWE_ALR_CMD_STS 0x1808
# define ALR_STS_MAKE_PEND BIT(0)
#define LAN9303_SWE_VLAN_CMD 0x180b
# define LAN9303_SWE_VLAN_CMD_RNW BIT(5)
# define LAN9303_SWE_VLAN_CMD_PVIDNVLAN BIT(4)
#define LAN9303_SWE_VLAN_WR_DATA 0x180c
#define LAN9303_SWE_VLAN_RD_DATA 0x180e
# define LAN9303_SWE_VLAN_MEMBER_PORT2 BIT(17)
# define LAN9303_SWE_VLAN_UNTAG_PORT2 BIT(16)
# define LAN9303_SWE_VLAN_MEMBER_PORT1 BIT(15)
# define LAN9303_SWE_VLAN_UNTAG_PORT1 BIT(14)
# define LAN9303_SWE_VLAN_MEMBER_PORT0 BIT(13)
# define LAN9303_SWE_VLAN_UNTAG_PORT0 BIT(12)
#define LAN9303_SWE_VLAN_CMD_STS 0x1810
#define LAN9303_SWE_GLB_INGRESS_CFG 0x1840
# define LAN9303_SWE_GLB_INGR_IGMP_TRAP BIT(7)
# define LAN9303_SWE_GLB_INGR_IGMP_PORT(p) BIT(10 + p)
#define LAN9303_SWE_PORT_STATE 0x1843
# define LAN9303_SWE_PORT_STATE_FORWARDING_PORT2 (0)
# define LAN9303_SWE_PORT_STATE_LEARNING_PORT2 BIT(5)
# define LAN9303_SWE_PORT_STATE_BLOCKING_PORT2 BIT(4)
# define LAN9303_SWE_PORT_STATE_FORWARDING_PORT1 (0)
# define LAN9303_SWE_PORT_STATE_LEARNING_PORT1 BIT(3)
# define LAN9303_SWE_PORT_STATE_BLOCKING_PORT1 BIT(2)
# define LAN9303_SWE_PORT_STATE_FORWARDING_PORT0 (0)
# define LAN9303_SWE_PORT_STATE_LEARNING_PORT0 BIT(1)
# define LAN9303_SWE_PORT_STATE_BLOCKING_PORT0 BIT(0)
# define LAN9303_SWE_PORT_STATE_DISABLED_PORT0 (3)
#define LAN9303_SWE_PORT_MIRROR 0x1846
# define LAN9303_SWE_PORT_MIRROR_SNIFF_ALL BIT(8)
# define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT2 BIT(7)
# define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT1 BIT(6)
# define LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT0 BIT(5)
# define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT2 BIT(4)
# define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT1 BIT(3)
# define LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT0 BIT(2)
# define LAN9303_SWE_PORT_MIRROR_ENABLE_RX_MIRRORING BIT(1)
# define LAN9303_SWE_PORT_MIRROR_ENABLE_TX_MIRRORING BIT(0)
# define LAN9303_SWE_PORT_MIRROR_DISABLED 0
#define LAN9303_SWE_INGRESS_PORT_TYPE 0x1847
#define LAN9303_SWE_INGRESS_PORT_TYPE_VLAN 3
#define LAN9303_BM_CFG 0x1c00
#define LAN9303_BM_EGRSS_PORT_TYPE 0x1c0c
# define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT2 (BIT(17) | BIT(16))
# define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT1 (BIT(9) | BIT(8))
# define LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT0 (BIT(1) | BIT(0))
#define LAN9303_SWITCH_PORT_REG(port, reg0) (0x400 * (port) + (reg0))
/* the built-in PHYs are of type LAN911X */
#define MII_LAN911X_SPECIAL_MODES 0x12
#define MII_LAN911X_SPECIAL_CONTROL_STATUS 0x1f
static const struct regmap_range lan9303_valid_regs[] = {
regmap_reg_range(0x14, 0x17), /* misc, interrupt */
regmap_reg_range(0x19, 0x19), /* endian test */
regmap_reg_range(0x1d, 0x1d), /* hardware config */
regmap_reg_range(0x23, 0x24), /* general purpose timer */
regmap_reg_range(0x27, 0x27), /* counter */
regmap_reg_range(0x29, 0x2a), /* PMI index regs */
regmap_reg_range(0x68, 0x6a), /* flow control */
regmap_reg_range(0x6b, 0x6c), /* switch fabric indirect regs */
regmap_reg_range(0x6d, 0x6f), /* misc */
regmap_reg_range(0x70, 0x77), /* virtual phy */
regmap_reg_range(0x78, 0x7a), /* GPIO */
regmap_reg_range(0x7c, 0x7e), /* MAC & reset */
regmap_reg_range(0x80, 0xb7), /* switch fabric direct regs (wr only) */
};
static const struct regmap_range lan9303_reserved_ranges[] = {
regmap_reg_range(0x00, 0x13),
regmap_reg_range(0x18, 0x18),
regmap_reg_range(0x1a, 0x1c),
regmap_reg_range(0x1e, 0x22),
regmap_reg_range(0x25, 0x26),
regmap_reg_range(0x28, 0x28),
regmap_reg_range(0x2b, 0x67),
regmap_reg_range(0x7b, 0x7b),
regmap_reg_range(0x7f, 0x7f),
regmap_reg_range(0xb8, 0xff),
};
const struct regmap_access_table lan9303_register_set = {
.yes_ranges = lan9303_valid_regs,
.n_yes_ranges = ARRAY_SIZE(lan9303_valid_regs),
.no_ranges = lan9303_reserved_ranges,
.n_no_ranges = ARRAY_SIZE(lan9303_reserved_ranges),
};
EXPORT_SYMBOL(lan9303_register_set);
static int lan9303_read(struct regmap *regmap, unsigned int offset, u32 *reg)
{
int ret, i;
/* we can lose arbitration for the I2C case, because the device
* tries to detect and read an external EEPROM after reset and acts as
* a master on the shared I2C bus itself. This conflicts with our
* attempts to access the device as a slave at the same moment.
*/
for (i = 0; i < 5; i++) {
ret = regmap_read(regmap, offset, reg);
if (!ret)
return 0;
if (ret != -EAGAIN)
break;
msleep(500);
}
return -EIO;
}
static int lan9303_read_wait(struct lan9303 *chip, int offset, u32 mask)
{
int i;
for (i = 0; i < 25; i++) {
u32 reg;
int ret;
ret = lan9303_read(chip->regmap, offset, &reg);
if (ret) {
dev_err(chip->dev, "%s failed to read offset %d: %d\n",
__func__, offset, ret);
return ret;
}
if (!(reg & mask))
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int lan9303_virt_phy_reg_read(struct lan9303 *chip, int regnum)
{
int ret;
u32 val;
if (regnum > MII_EXPANSION)
return -EINVAL;
ret = lan9303_read(chip->regmap, LAN9303_VIRT_PHY_BASE + regnum, &val);
if (ret)
return ret;
return val & 0xffff;
}
static int lan9303_virt_phy_reg_write(struct lan9303 *chip, int regnum, u16 val)
{
if (regnum > MII_EXPANSION)
return -EINVAL;
return regmap_write(chip->regmap, LAN9303_VIRT_PHY_BASE + regnum, val);
}
static int lan9303_indirect_phy_wait_for_completion(struct lan9303 *chip)
{
return lan9303_read_wait(chip, LAN9303_PMI_ACCESS,
LAN9303_PMI_ACCESS_MII_BUSY);
}
static int lan9303_indirect_phy_read(struct lan9303 *chip, int addr, int regnum)
{
int ret;
u32 val;
val = LAN9303_PMI_ACCESS_PHY_ADDR(addr);
val |= LAN9303_PMI_ACCESS_MIIRINDA(regnum);
mutex_lock(&chip->indirect_mutex);
ret = lan9303_indirect_phy_wait_for_completion(chip);
if (ret)
goto on_error;
/* start the MII read cycle */
ret = regmap_write(chip->regmap, LAN9303_PMI_ACCESS, val);
if (ret)
goto on_error;
ret = lan9303_indirect_phy_wait_for_completion(chip);
if (ret)
goto on_error;
/* read the result of this operation */
ret = lan9303_read(chip->regmap, LAN9303_PMI_DATA, &val);
if (ret)
goto on_error;
mutex_unlock(&chip->indirect_mutex);
return val & 0xffff;
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
static int lan9303_indirect_phy_write(struct lan9303 *chip, int addr,
int regnum, u16 val)
{
int ret;
u32 reg;
reg = LAN9303_PMI_ACCESS_PHY_ADDR(addr);
reg |= LAN9303_PMI_ACCESS_MIIRINDA(regnum);
reg |= LAN9303_PMI_ACCESS_MII_WRITE;
mutex_lock(&chip->indirect_mutex);
ret = lan9303_indirect_phy_wait_for_completion(chip);
if (ret)
goto on_error;
/* write the data first... */
ret = regmap_write(chip->regmap, LAN9303_PMI_DATA, val);
if (ret)
goto on_error;
/* ...then start the MII write cycle */
ret = regmap_write(chip->regmap, LAN9303_PMI_ACCESS, reg);
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
const struct lan9303_phy_ops lan9303_indirect_phy_ops = {
.phy_read = lan9303_indirect_phy_read,
.phy_write = lan9303_indirect_phy_write,
};
EXPORT_SYMBOL_GPL(lan9303_indirect_phy_ops);
static int lan9303_switch_wait_for_completion(struct lan9303 *chip)
{
return lan9303_read_wait(chip, LAN9303_SWITCH_CSR_CMD,
LAN9303_SWITCH_CSR_CMD_BUSY);
}
static int lan9303_write_switch_reg(struct lan9303 *chip, u16 regnum, u32 val)
{
u32 reg;
int ret;
reg = regnum;
reg |= LAN9303_SWITCH_CSR_CMD_LANES;
reg |= LAN9303_SWITCH_CSR_CMD_BUSY;
mutex_lock(&chip->indirect_mutex);
ret = lan9303_switch_wait_for_completion(chip);
if (ret)
goto on_error;
ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_DATA, val);
if (ret) {
dev_err(chip->dev, "Failed to write csr data reg: %d\n", ret);
goto on_error;
}
/* trigger write */
ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_CMD, reg);
if (ret)
dev_err(chip->dev, "Failed to write csr command reg: %d\n",
ret);
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
static int lan9303_read_switch_reg(struct lan9303 *chip, u16 regnum, u32 *val)
{
u32 reg;
int ret;
reg = regnum;
reg |= LAN9303_SWITCH_CSR_CMD_LANES;
reg |= LAN9303_SWITCH_CSR_CMD_RW;
reg |= LAN9303_SWITCH_CSR_CMD_BUSY;
mutex_lock(&chip->indirect_mutex);
ret = lan9303_switch_wait_for_completion(chip);
if (ret)
goto on_error;
/* trigger read */
ret = regmap_write(chip->regmap, LAN9303_SWITCH_CSR_CMD, reg);
if (ret) {
dev_err(chip->dev, "Failed to write csr command reg: %d\n",
ret);
goto on_error;
}
ret = lan9303_switch_wait_for_completion(chip);
if (ret)
goto on_error;
ret = lan9303_read(chip->regmap, LAN9303_SWITCH_CSR_DATA, val);
if (ret)
dev_err(chip->dev, "Failed to read csr data reg: %d\n", ret);
on_error:
mutex_unlock(&chip->indirect_mutex);
return ret;
}
static int lan9303_write_switch_reg_mask(struct lan9303 *chip, u16 regnum,
u32 val, u32 mask)
{
int ret;
u32 reg;
ret = lan9303_read_switch_reg(chip, regnum, &reg);
if (ret)
return ret;
reg = (reg & ~mask) | val;
return lan9303_write_switch_reg(chip, regnum, reg);
}
static int lan9303_write_switch_port(struct lan9303 *chip, int port,
u16 regnum, u32 val)
{
return lan9303_write_switch_reg(
chip, LAN9303_SWITCH_PORT_REG(port, regnum), val);
}
static int lan9303_read_switch_port(struct lan9303 *chip, int port,
u16 regnum, u32 *val)
{
return lan9303_read_switch_reg(
chip, LAN9303_SWITCH_PORT_REG(port, regnum), val);
}
static int lan9303_detect_phy_setup(struct lan9303 *chip)
{
int reg;
/* Calculate chip->phy_addr_base:
* Depending on the 'phy_addr_sel_strap' setting, the three phys are
* using IDs 0-1-2 or IDs 1-2-3. We cannot read back the
* 'phy_addr_sel_strap' setting directly, so we need a test, which
* configuration is active:
* Special reg 18 of phy 3 reads as 0x0000, if 'phy_addr_sel_strap' is 0
* and the IDs are 0-1-2, else it contains something different from
* 0x0000, which means 'phy_addr_sel_strap' is 1 and the IDs are 1-2-3.
* 0xffff is returned on MDIO read with no response.
*/
reg = chip->ops->phy_read(chip, 3, MII_LAN911X_SPECIAL_MODES);
if (reg < 0) {
dev_err(chip->dev, "Failed to detect phy config: %d\n", reg);
return reg;
}
chip->phy_addr_base = reg != 0 && reg != 0xffff;
dev_dbg(chip->dev, "Phy setup '%s' detected\n",
chip->phy_addr_base ? "1-2-3" : "0-1-2");
return 0;
}
/* Map ALR-port bits to port bitmap, and back */
static const int alrport_2_portmap[] = {1, 2, 4, 0, 3, 5, 6, 7 };
static const int portmap_2_alrport[] = {3, 0, 1, 4, 2, 5, 6, 7 };
/* Return pointer to first free ALR cache entry, return NULL if none */
static struct lan9303_alr_cache_entry *
lan9303_alr_cache_find_free(struct lan9303 *chip)
{
int i;
struct lan9303_alr_cache_entry *entr = chip->alr_cache;
for (i = 0; i < LAN9303_NUM_ALR_RECORDS; i++, entr++)
if (entr->port_map == 0)
return entr;
return NULL;
}
/* Return pointer to ALR cache entry matching MAC address */
static struct lan9303_alr_cache_entry *
lan9303_alr_cache_find_mac(struct lan9303 *chip, const u8 *mac_addr)
{
int i;
struct lan9303_alr_cache_entry *entr = chip->alr_cache;
BUILD_BUG_ON_MSG(sizeof(struct lan9303_alr_cache_entry) & 1,
"ether_addr_equal require u16 alignment");
for (i = 0; i < LAN9303_NUM_ALR_RECORDS; i++, entr++)
if (ether_addr_equal(entr->mac_addr, mac_addr))
return entr;
return NULL;
}
static int lan9303_csr_reg_wait(struct lan9303 *chip, int regno, u32 mask)
{
int i;
for (i = 0; i < 25; i++) {
u32 reg;
lan9303_read_switch_reg(chip, regno, &reg);
if (!(reg & mask))
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int lan9303_alr_make_entry_raw(struct lan9303 *chip, u32 dat0, u32 dat1)
{
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_WR_DAT_0, dat0);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_WR_DAT_1, dat1);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD,
LAN9303_ALR_CMD_MAKE_ENTRY);
lan9303_csr_reg_wait(chip, LAN9303_SWE_ALR_CMD_STS, ALR_STS_MAKE_PEND);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0);
return 0;
}
typedef int alr_loop_cb_t(struct lan9303 *chip, u32 dat0, u32 dat1,
int portmap, void *ctx);
static int lan9303_alr_loop(struct lan9303 *chip, alr_loop_cb_t *cb, void *ctx)
{
int ret = 0, i;
mutex_lock(&chip->alr_mutex);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD,
LAN9303_ALR_CMD_GET_FIRST);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0);
for (i = 1; i < LAN9303_NUM_ALR_RECORDS; i++) {
u32 dat0, dat1;
int alrport, portmap;
lan9303_read_switch_reg(chip, LAN9303_SWE_ALR_RD_DAT_0, &dat0);
lan9303_read_switch_reg(chip, LAN9303_SWE_ALR_RD_DAT_1, &dat1);
if (dat1 & LAN9303_ALR_DAT1_END_OF_TABL)
break;
alrport = (dat1 & LAN9303_ALR_DAT1_PORT_MASK) >>
LAN9303_ALR_DAT1_PORT_BITOFFS;
portmap = alrport_2_portmap[alrport];
ret = cb(chip, dat0, dat1, portmap, ctx);
if (ret)
break;
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD,
LAN9303_ALR_CMD_GET_NEXT);
lan9303_write_switch_reg(chip, LAN9303_SWE_ALR_CMD, 0);
}
mutex_unlock(&chip->alr_mutex);
return ret;
}
static void alr_reg_to_mac(u32 dat0, u32 dat1, u8 mac[6])
{
mac[0] = (dat0 >> 0) & 0xff;
mac[1] = (dat0 >> 8) & 0xff;
mac[2] = (dat0 >> 16) & 0xff;
mac[3] = (dat0 >> 24) & 0xff;
mac[4] = (dat1 >> 0) & 0xff;
mac[5] = (dat1 >> 8) & 0xff;
}
struct del_port_learned_ctx {
int port;
};
/* Clear learned (non-static) entry on given port */
static int alr_loop_cb_del_port_learned(struct lan9303 *chip, u32 dat0,
u32 dat1, int portmap, void *ctx)
{
struct del_port_learned_ctx *del_ctx = ctx;
int port = del_ctx->port;
if (((BIT(port) & portmap) == 0) || (dat1 & LAN9303_ALR_DAT1_STATIC))
return 0;
/* learned entries has only one port, we can just delete */
dat1 &= ~LAN9303_ALR_DAT1_VALID; /* delete entry */
lan9303_alr_make_entry_raw(chip, dat0, dat1);
return 0;
}
struct port_fdb_dump_ctx {
int port;
void *data;
dsa_fdb_dump_cb_t *cb;
};
static int alr_loop_cb_fdb_port_dump(struct lan9303 *chip, u32 dat0,
u32 dat1, int portmap, void *ctx)
{
struct port_fdb_dump_ctx *dump_ctx = ctx;
u8 mac[ETH_ALEN];
bool is_static;
if ((BIT(dump_ctx->port) & portmap) == 0)
return 0;
alr_reg_to_mac(dat0, dat1, mac);
is_static = !!(dat1 & LAN9303_ALR_DAT1_STATIC);
return dump_ctx->cb(mac, 0, is_static, dump_ctx->data);
}
/* Set a static ALR entry. Delete entry if port_map is zero */
static void lan9303_alr_set_entry(struct lan9303 *chip, const u8 *mac,
u8 port_map, bool stp_override)
{
u32 dat0, dat1, alr_port;
dev_dbg(chip->dev, "%s(%pM, %d)\n", __func__, mac, port_map);
dat1 = LAN9303_ALR_DAT1_STATIC;
if (port_map)
dat1 |= LAN9303_ALR_DAT1_VALID;
/* otherwise no ports: delete entry */
if (stp_override)
dat1 |= LAN9303_ALR_DAT1_AGE_OVERRID;
alr_port = portmap_2_alrport[port_map & 7];
dat1 &= ~LAN9303_ALR_DAT1_PORT_MASK;
dat1 |= alr_port << LAN9303_ALR_DAT1_PORT_BITOFFS;
dat0 = 0;
dat0 |= (mac[0] << 0);
dat0 |= (mac[1] << 8);
dat0 |= (mac[2] << 16);
dat0 |= (mac[3] << 24);
dat1 |= (mac[4] << 0);
dat1 |= (mac[5] << 8);
lan9303_alr_make_entry_raw(chip, dat0, dat1);
}
/* Add port to static ALR entry, create new static entry if needed */
static int lan9303_alr_add_port(struct lan9303 *chip, const u8 *mac, int port,
bool stp_override)
{
struct lan9303_alr_cache_entry *entr;
mutex_lock(&chip->alr_mutex);
entr = lan9303_alr_cache_find_mac(chip, mac);
if (!entr) { /*New entry */
entr = lan9303_alr_cache_find_free(chip);
if (!entr) {
mutex_unlock(&chip->alr_mutex);
return -ENOSPC;
}
ether_addr_copy(entr->mac_addr, mac);
}
entr->port_map |= BIT(port);
entr->stp_override = stp_override;
lan9303_alr_set_entry(chip, mac, entr->port_map, stp_override);
mutex_unlock(&chip->alr_mutex);
return 0;
}
/* Delete static port from ALR entry, delete entry if last port */
static int lan9303_alr_del_port(struct lan9303 *chip, const u8 *mac, int port)
{
struct lan9303_alr_cache_entry *entr;
mutex_lock(&chip->alr_mutex);
entr = lan9303_alr_cache_find_mac(chip, mac);
if (!entr)
goto out; /* no static entry found */
entr->port_map &= ~BIT(port);
if (entr->port_map == 0) /* zero means its free again */
eth_zero_addr(entr->mac_addr);
lan9303_alr_set_entry(chip, mac, entr->port_map, entr->stp_override);
out:
mutex_unlock(&chip->alr_mutex);
return 0;
}
static int lan9303_disable_processing_port(struct lan9303 *chip,
unsigned int port)
{
int ret;
/* disable RX, but keep register reset default values else */
ret = lan9303_write_switch_port(chip, port, LAN9303_MAC_RX_CFG_0,
LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES);
if (ret)
return ret;
/* disable TX, but keep register reset default values else */
return lan9303_write_switch_port(chip, port, LAN9303_MAC_TX_CFG_0,
LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT |
LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE);
}
static int lan9303_enable_processing_port(struct lan9303 *chip,
unsigned int port)
{
int ret;
/* enable RX and keep register reset default values else */
ret = lan9303_write_switch_port(chip, port, LAN9303_MAC_RX_CFG_0,
LAN9303_MAC_RX_CFG_X_REJECT_MAC_TYPES |
LAN9303_MAC_RX_CFG_X_RX_ENABLE);
if (ret)
return ret;
/* enable TX and keep register reset default values else */
return lan9303_write_switch_port(chip, port, LAN9303_MAC_TX_CFG_0,
LAN9303_MAC_TX_CFG_X_TX_IFG_CONFIG_DEFAULT |
LAN9303_MAC_TX_CFG_X_TX_PAD_ENABLE |
LAN9303_MAC_TX_CFG_X_TX_ENABLE);
}
/* forward special tagged packets from port 0 to port 1 *or* port 2 */
static int lan9303_setup_tagging(struct lan9303 *chip)
{
int ret;
u32 val;
/* enable defining the destination port via special VLAN tagging
* for port 0
*/
ret = lan9303_write_switch_reg(chip, LAN9303_SWE_INGRESS_PORT_TYPE,
LAN9303_SWE_INGRESS_PORT_TYPE_VLAN);
if (ret)
return ret;
/* tag incoming packets at port 1 and 2 on their way to port 0 to be
* able to discover their source port
*/
val = LAN9303_BM_EGRSS_PORT_TYPE_SPECIAL_TAG_PORT0;
return lan9303_write_switch_reg(chip, LAN9303_BM_EGRSS_PORT_TYPE, val);
}
/* We want a special working switch:
* - do not forward packets between port 1 and 2
* - forward everything from port 1 to port 0
* - forward everything from port 2 to port 0
*/
static int lan9303_separate_ports(struct lan9303 *chip)
{
int ret;
lan9303_alr_del_port(chip, eth_stp_addr, 0);
ret = lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_MIRROR,
LAN9303_SWE_PORT_MIRROR_SNIFFER_PORT0 |
LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT1 |
LAN9303_SWE_PORT_MIRROR_MIRRORED_PORT2 |
LAN9303_SWE_PORT_MIRROR_ENABLE_RX_MIRRORING |
LAN9303_SWE_PORT_MIRROR_SNIFF_ALL);
if (ret)
return ret;
/* prevent port 1 and 2 from forwarding packets by their own */
return lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE,
LAN9303_SWE_PORT_STATE_FORWARDING_PORT0 |
LAN9303_SWE_PORT_STATE_BLOCKING_PORT1 |
LAN9303_SWE_PORT_STATE_BLOCKING_PORT2);
}
static void lan9303_bridge_ports(struct lan9303 *chip)
{
/* ports bridged: remove mirroring */
lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_MIRROR,
LAN9303_SWE_PORT_MIRROR_DISABLED);
lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE,
chip->swe_port_state);
lan9303_alr_add_port(chip, eth_stp_addr, 0, true);
}
static void lan9303_handle_reset(struct lan9303 *chip)
{
if (!chip->reset_gpio)
return;
if (chip->reset_duration != 0)
msleep(chip->reset_duration);
/* release (deassert) reset and activate the device */
gpiod_set_value_cansleep(chip->reset_gpio, 0);
}
/* stop processing packets for all ports */
static int lan9303_disable_processing(struct lan9303 *chip)
{
int p;
for (p = 1; p < LAN9303_NUM_PORTS; p++) {
int ret = lan9303_disable_processing_port(chip, p);
if (ret)
return ret;
}
return 0;
}
static int lan9303_check_device(struct lan9303 *chip)
{
int ret;
u32 reg;
ret = lan9303_read(chip->regmap, LAN9303_CHIP_REV, &reg);
if (ret) {
dev_err(chip->dev, "failed to read chip revision register: %d\n",
ret);
if (!chip->reset_gpio) {
dev_dbg(chip->dev,
"hint: maybe failed due to missing reset GPIO\n");
}
return ret;
}
if ((reg >> 16) != LAN9303_CHIP_ID) {
dev_err(chip->dev, "expecting LAN9303 chip, but found: %X\n",
reg >> 16);
return -ENODEV;
}
/* The default state of the LAN9303 device is to forward packets between
* all ports (if not configured differently by an external EEPROM).
* The initial state of a DSA device must be forwarding packets only
* between the external and the internal ports and no forwarding
* between the external ports. In preparation we stop packet handling
* at all for now until the LAN9303 device is re-programmed accordingly.
*/
ret = lan9303_disable_processing(chip);
if (ret)
dev_warn(chip->dev, "failed to disable switching %d\n", ret);
dev_info(chip->dev, "Found LAN9303 rev. %u\n", reg & 0xffff);
ret = lan9303_detect_phy_setup(chip);
if (ret) {
dev_err(chip->dev,
"failed to discover phy bootstrap setup: %d\n", ret);
return ret;
}
return 0;
}
/* ---------------------------- DSA -----------------------------------*/
static enum dsa_tag_protocol lan9303_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_LAN9303;
}
static int lan9303_setup(struct dsa_switch *ds)
{
struct lan9303 *chip = ds->priv;
int ret;
/* Make sure that port 0 is the cpu port */
if (!dsa_is_cpu_port(ds, 0)) {
dev_err(chip->dev, "port 0 is not the CPU port\n");
return -EINVAL;
}
ret = lan9303_setup_tagging(chip);
if (ret)
dev_err(chip->dev, "failed to setup port tagging %d\n", ret);
ret = lan9303_separate_ports(chip);
if (ret)
dev_err(chip->dev, "failed to separate ports %d\n", ret);
ret = lan9303_enable_processing_port(chip, 0);
if (ret)
dev_err(chip->dev, "failed to re-enable switching %d\n", ret);
/* Trap IGMP to port 0 */
ret = lan9303_write_switch_reg_mask(chip, LAN9303_SWE_GLB_INGRESS_CFG,
LAN9303_SWE_GLB_INGR_IGMP_TRAP |
LAN9303_SWE_GLB_INGR_IGMP_PORT(0),
LAN9303_SWE_GLB_INGR_IGMP_PORT(1) |
LAN9303_SWE_GLB_INGR_IGMP_PORT(2));
if (ret)
dev_err(chip->dev, "failed to setup IGMP trap %d\n", ret);
return 0;
}
struct lan9303_mib_desc {
unsigned int offset; /* offset of first MAC */
const char *name;
};
static const struct lan9303_mib_desc lan9303_mib[] = {
{ .offset = LAN9303_MAC_RX_BRDCST_CNT_0, .name = "RxBroad", },
{ .offset = LAN9303_MAC_RX_PAUSE_CNT_0, .name = "RxPause", },
{ .offset = LAN9303_MAC_RX_MULCST_CNT_0, .name = "RxMulti", },
{ .offset = LAN9303_MAC_RX_PKTOK_CNT_0, .name = "RxOk", },
{ .offset = LAN9303_MAC_RX_CRCERR_CNT_0, .name = "RxCrcErr", },
{ .offset = LAN9303_MAC_RX_ALIGN_CNT_0, .name = "RxAlignErr", },
{ .offset = LAN9303_MAC_RX_JABB_CNT_0, .name = "RxJabber", },
{ .offset = LAN9303_MAC_RX_FRAG_CNT_0, .name = "RxFragment", },
{ .offset = LAN9303_MAC_RX_64_CNT_0, .name = "Rx64Byte", },
{ .offset = LAN9303_MAC_RX_127_CNT_0, .name = "Rx128Byte", },
{ .offset = LAN9303_MAC_RX_255_CNT_0, .name = "Rx256Byte", },
{ .offset = LAN9303_MAC_RX_511_CNT_0, .name = "Rx512Byte", },
{ .offset = LAN9303_MAC_RX_1023_CNT_0, .name = "Rx1024Byte", },
{ .offset = LAN9303_MAC_RX_MAX_CNT_0, .name = "RxMaxByte", },
{ .offset = LAN9303_MAC_RX_PKTLEN_CNT_0, .name = "RxByteCnt", },
{ .offset = LAN9303_MAC_RX_SYMBL_CNT_0, .name = "RxSymbolCnt", },
{ .offset = LAN9303_MAC_RX_CTLFRM_CNT_0, .name = "RxCfs", },
{ .offset = LAN9303_MAC_RX_OVRSZE_CNT_0, .name = "RxOverFlow", },
{ .offset = LAN9303_MAC_TX_UNDSZE_CNT_0, .name = "TxShort", },
{ .offset = LAN9303_MAC_TX_BRDCST_CNT_0, .name = "TxBroad", },
{ .offset = LAN9303_MAC_TX_PAUSE_CNT_0, .name = "TxPause", },
{ .offset = LAN9303_MAC_TX_MULCST_CNT_0, .name = "TxMulti", },
{ .offset = LAN9303_MAC_RX_UNDSZE_CNT_0, .name = "TxUnderRun", },
{ .offset = LAN9303_MAC_TX_64_CNT_0, .name = "Tx64Byte", },
{ .offset = LAN9303_MAC_TX_127_CNT_0, .name = "Tx128Byte", },
{ .offset = LAN9303_MAC_TX_255_CNT_0, .name = "Tx256Byte", },
{ .offset = LAN9303_MAC_TX_511_CNT_0, .name = "Tx512Byte", },
{ .offset = LAN9303_MAC_TX_1023_CNT_0, .name = "Tx1024Byte", },
{ .offset = LAN9303_MAC_TX_MAX_CNT_0, .name = "TxMaxByte", },
{ .offset = LAN9303_MAC_TX_PKTLEN_CNT_0, .name = "TxByteCnt", },
{ .offset = LAN9303_MAC_TX_PKTOK_CNT_0, .name = "TxOk", },
{ .offset = LAN9303_MAC_TX_TOTALCOL_CNT_0, .name = "TxCollision", },
{ .offset = LAN9303_MAC_TX_MULTICOL_CNT_0, .name = "TxMultiCol", },
{ .offset = LAN9303_MAC_TX_SNGLECOL_CNT_0, .name = "TxSingleCol", },
{ .offset = LAN9303_MAC_TX_EXCOL_CNT_0, .name = "TxExcCol", },
{ .offset = LAN9303_MAC_TX_DEFER_CNT_0, .name = "TxDefer", },
{ .offset = LAN9303_MAC_TX_LATECOL_0, .name = "TxLateCol", },
};
static void lan9303_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *data)
{
unsigned int u;
if (stringset != ETH_SS_STATS)
return;
for (u = 0; u < ARRAY_SIZE(lan9303_mib); u++) {
strncpy(data + u * ETH_GSTRING_LEN, lan9303_mib[u].name,
ETH_GSTRING_LEN);
}
}
static void lan9303_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct lan9303 *chip = ds->priv;
unsigned int u;
for (u = 0; u < ARRAY_SIZE(lan9303_mib); u++) {
u32 reg;
int ret;
ret = lan9303_read_switch_port(
chip, port, lan9303_mib[u].offset, &reg);
if (ret)
dev_warn(chip->dev, "Reading status port %d reg %u failed\n",
port, lan9303_mib[u].offset);
data[u] = reg;
}
}
static int lan9303_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(lan9303_mib);
}
static int lan9303_phy_read(struct dsa_switch *ds, int phy, int regnum)
{
struct lan9303 *chip = ds->priv;
int phy_base = chip->phy_addr_base;
if (phy == phy_base)
return lan9303_virt_phy_reg_read(chip, regnum);
if (phy > phy_base + 2)
return -ENODEV;
return chip->ops->phy_read(chip, phy, regnum);
}
static int lan9303_phy_write(struct dsa_switch *ds, int phy, int regnum,
u16 val)
{
struct lan9303 *chip = ds->priv;
int phy_base = chip->phy_addr_base;
if (phy == phy_base)
return lan9303_virt_phy_reg_write(chip, regnum, val);
if (phy > phy_base + 2)
return -ENODEV;
return chip->ops->phy_write(chip, phy, regnum, val);
}
static void lan9303_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct lan9303 *chip = ds->priv;
int ctl;
if (!phy_is_pseudo_fixed_link(phydev))
return;
ctl = lan9303_phy_read(ds, port, MII_BMCR);
ctl &= ~BMCR_ANENABLE;
if (phydev->speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (phydev->speed == SPEED_10)
ctl &= ~BMCR_SPEED100;
else
dev_err(ds->dev, "unsupported speed: %d\n", phydev->speed);
if (phydev->duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
else
ctl &= ~BMCR_FULLDPLX;
lan9303_phy_write(ds, port, MII_BMCR, ctl);
if (port == chip->phy_addr_base) {
/* Virtual Phy: Remove Turbo 200Mbit mode */
lan9303_read(chip->regmap, LAN9303_VIRT_SPECIAL_CTRL, &ctl);
ctl &= ~LAN9303_VIRT_SPECIAL_TURBO;
regmap_write(chip->regmap, LAN9303_VIRT_SPECIAL_CTRL, ctl);
}
}
static int lan9303_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct lan9303 *chip = ds->priv;
if (!dsa_is_user_port(ds, port))
return 0;
return lan9303_enable_processing_port(chip, port);
}
static void lan9303_port_disable(struct dsa_switch *ds, int port)
{
struct lan9303 *chip = ds->priv;
if (!dsa_is_user_port(ds, port))
return;
lan9303_disable_processing_port(chip, port);
lan9303_phy_write(ds, chip->phy_addr_base + port, MII_BMCR, BMCR_PDOWN);
}
static int lan9303_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *br)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(port %d)\n", __func__, port);
if (dsa_to_port(ds, 1)->bridge_dev == dsa_to_port(ds, 2)->bridge_dev) {
lan9303_bridge_ports(chip);
chip->is_bridged = true; /* unleash stp_state_set() */
}
return 0;
}
static void lan9303_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *br)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(port %d)\n", __func__, port);
if (chip->is_bridged) {
lan9303_separate_ports(chip);
chip->is_bridged = false;
}
}
static void lan9303_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
int portmask, portstate;
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(port %d, state %d)\n",
__func__, port, state);
switch (state) {
case BR_STATE_DISABLED:
portstate = LAN9303_SWE_PORT_STATE_DISABLED_PORT0;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
portstate = LAN9303_SWE_PORT_STATE_BLOCKING_PORT0;
break;
case BR_STATE_LEARNING:
portstate = LAN9303_SWE_PORT_STATE_LEARNING_PORT0;
break;
case BR_STATE_FORWARDING:
portstate = LAN9303_SWE_PORT_STATE_FORWARDING_PORT0;
break;
default:
portstate = LAN9303_SWE_PORT_STATE_DISABLED_PORT0;
dev_err(chip->dev, "unknown stp state: port %d, state %d\n",
port, state);
}
portmask = 0x3 << (port * 2);
portstate <<= (port * 2);
chip->swe_port_state = (chip->swe_port_state & ~portmask) | portstate;
if (chip->is_bridged)
lan9303_write_switch_reg(chip, LAN9303_SWE_PORT_STATE,
chip->swe_port_state);
/* else: touching SWE_PORT_STATE would break port separation */
}
static void lan9303_port_fast_age(struct dsa_switch *ds, int port)
{
struct lan9303 *chip = ds->priv;
struct del_port_learned_ctx del_ctx = {
.port = port,
};
dev_dbg(chip->dev, "%s(%d)\n", __func__, port);
lan9303_alr_loop(chip, alr_loop_cb_del_port_learned, &del_ctx);
}
static int lan9303_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, addr, vid);
if (vid)
return -EOPNOTSUPP;
return lan9303_alr_add_port(chip, addr, port, false);
}
static int lan9303_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, addr, vid);
if (vid)
return -EOPNOTSUPP;
lan9303_alr_del_port(chip, addr, port);
return 0;
}
static int lan9303_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct lan9303 *chip = ds->priv;
struct port_fdb_dump_ctx dump_ctx = {
.port = port,
.data = data,
.cb = cb,
};
dev_dbg(chip->dev, "%s(%d)\n", __func__, port);
return lan9303_alr_loop(chip, alr_loop_cb_fdb_port_dump, &dump_ctx);
}
static int lan9303_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr,
mdb->vid);
if (mdb->vid)
return -EOPNOTSUPP;
if (lan9303_alr_cache_find_mac(chip, mdb->addr))
return 0;
if (!lan9303_alr_cache_find_free(chip))
return -ENOSPC;
return 0;
}
static int lan9303_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct lan9303 *chip = ds->priv;
int err;
err = lan9303_port_mdb_prepare(ds, port, mdb);
if (err)
return err;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr,
mdb->vid);
return lan9303_alr_add_port(chip, mdb->addr, port, false);
}
static int lan9303_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct lan9303 *chip = ds->priv;
dev_dbg(chip->dev, "%s(%d, %pM, %d)\n", __func__, port, mdb->addr,
mdb->vid);
if (mdb->vid)
return -EOPNOTSUPP;
lan9303_alr_del_port(chip, mdb->addr, port);
return 0;
}
static const struct dsa_switch_ops lan9303_switch_ops = {
.get_tag_protocol = lan9303_get_tag_protocol,
.setup = lan9303_setup,
.get_strings = lan9303_get_strings,
.phy_read = lan9303_phy_read,
.phy_write = lan9303_phy_write,
.adjust_link = lan9303_adjust_link,
.get_ethtool_stats = lan9303_get_ethtool_stats,
.get_sset_count = lan9303_get_sset_count,
.port_enable = lan9303_port_enable,
.port_disable = lan9303_port_disable,
.port_bridge_join = lan9303_port_bridge_join,
.port_bridge_leave = lan9303_port_bridge_leave,
.port_stp_state_set = lan9303_port_stp_state_set,
.port_fast_age = lan9303_port_fast_age,
.port_fdb_add = lan9303_port_fdb_add,
.port_fdb_del = lan9303_port_fdb_del,
.port_fdb_dump = lan9303_port_fdb_dump,
.port_mdb_add = lan9303_port_mdb_add,
.port_mdb_del = lan9303_port_mdb_del,
};
static int lan9303_register_switch(struct lan9303 *chip)
{
int base;
chip->ds = devm_kzalloc(chip->dev, sizeof(*chip->ds), GFP_KERNEL);
if (!chip->ds)
return -ENOMEM;
chip->ds->dev = chip->dev;
chip->ds->num_ports = LAN9303_NUM_PORTS;
chip->ds->priv = chip;
chip->ds->ops = &lan9303_switch_ops;
base = chip->phy_addr_base;
chip->ds->phys_mii_mask = GENMASK(LAN9303_NUM_PORTS - 1 + base, base);
return dsa_register_switch(chip->ds);
}
static int lan9303_probe_reset_gpio(struct lan9303 *chip,
struct device_node *np)
{
chip->reset_gpio = devm_gpiod_get_optional(chip->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(chip->reset_gpio))
return PTR_ERR(chip->reset_gpio);
if (!chip->reset_gpio) {
dev_dbg(chip->dev, "No reset GPIO defined\n");
return 0;
}
chip->reset_duration = 200;
if (np) {
of_property_read_u32(np, "reset-duration",
&chip->reset_duration);
} else {
dev_dbg(chip->dev, "reset duration defaults to 200 ms\n");
}
/* A sane reset duration should not be longer than 1s */
if (chip->reset_duration > 1000)
chip->reset_duration = 1000;
return 0;
}
int lan9303_probe(struct lan9303 *chip, struct device_node *np)
{
int ret;
mutex_init(&chip->indirect_mutex);
mutex_init(&chip->alr_mutex);
ret = lan9303_probe_reset_gpio(chip, np);
if (ret)
return ret;
lan9303_handle_reset(chip);
ret = lan9303_check_device(chip);
if (ret)
return ret;
ret = lan9303_register_switch(chip);
if (ret) {
dev_dbg(chip->dev, "Failed to register switch: %d\n", ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL(lan9303_probe);
int lan9303_remove(struct lan9303 *chip)
{
int rc;
rc = lan9303_disable_processing(chip);
if (rc != 0)
dev_warn(chip->dev, "shutting down failed\n");
dsa_unregister_switch(chip->ds);
/* assert reset to the whole device to prevent it from doing anything */
gpiod_set_value_cansleep(chip->reset_gpio, 1);
gpiod_unexport(chip->reset_gpio);
return 0;
}
EXPORT_SYMBOL(lan9303_remove);
void lan9303_shutdown(struct lan9303 *chip)
{
dsa_switch_shutdown(chip->ds);
}
EXPORT_SYMBOL(lan9303_shutdown);
MODULE_AUTHOR("Juergen Borleis <kernel@pengutronix.de>");
MODULE_DESCRIPTION("Core driver for SMSC/Microchip LAN9303 three port ethernet switch");
MODULE_LICENSE("GPL v2");