linux-stable/include/linux/kasan.h
Linus Torvalds 31a24ae89c arm64 updates for 5.13:
- MTE asynchronous support for KASan. Previously only synchronous
   (slower) mode was supported. Asynchronous is faster but does not allow
   precise identification of the illegal access.
 
 - Run kernel mode SIMD with softirqs disabled. This allows using NEON in
   softirq context for crypto performance improvements. The conditional
   yield support is modified to take softirqs into account and reduce the
   latency.
 
 - Preparatory patches for Apple M1: handle CPUs that only have the VHE
   mode available (host kernel running at EL2), add FIQ support.
 
 - arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers, new
   functions for the HiSilicon HHA and L3C PMU, cleanups.
 
 - Re-introduce support for execute-only user permissions but only when
   the EPAN (Enhanced Privileged Access Never) architecture feature is
   available.
 
 - Disable fine-grained traps at boot and improve the documented boot
   requirements.
 
 - Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
 
 - Add hierarchical eXecute Never permissions for all page tables.
 
 - Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
   to control which PAC keys are enabled in a particular task.
 
 - arm64 kselftests for BTI and some improvements to the MTE tests.
 
 - Minor improvements to the compat vdso and sigpage.
 
 - Miscellaneous cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmB5xkkACgkQa9axLQDI
 XvEBgRAAsr6r8gsBQJP3FDHmbtbVf2ej5QJTCOAQAGHbTt0JH7Pk03pWSBr7h5nF
 vsddRDxxeDgB6xd7jWP7EvDaPxHeB0CdSj5gG8EP/ZdOm8sFAwB1ZIHWikgUgSwW
 nu6R28yXTMSj+EkyFtahMhTMJ1EMF4sCPuIgAo59ST5w/UMMqLCJByOu4ej6RPKZ
 aeSJJWaDLBmbgnTKWxRvCc/MgIx4J/LAHWGkdpGjuMK6SLp38Kdf86XcrklXtzwf
 K30ZYeoKq8zZ+nFOsK9gBVlOlocZcbS1jEbN842jD6imb6vKLQtBWrKk9A6o4v5E
 XulORWcSBhkZb3ItIU9+6SmelUExf0VeVlSp657QXYPgquoIIGvFl6rCwhrdGMGO
 bi6NZKCfJvcFZJoIN1oyhuHejgZSBnzGEcvhvzNdg7ItvOCed7q3uXcGHz/OI6tL
 2TZKddzHSEMVfTo0D+RUsYfasZHI1qAiQ0mWVC31c+YHuRuW/K/jlc3a5TXlSBUa
 Dwu0/zzMLiqx65ISx9i7XNMrngk55uzrS6MnwSByPoz4M4xsElZxt3cbUxQ8YAQz
 jhxTHs1Pwes8i7f4n61ay/nHCFbmVvN/LlsPRpZdwd8JumThLrDolF3tc6aaY0xO
 hOssKtnGY4Xvh/WitfJ5uvDb1vMObJKTXQEoZEJh4hlNQDxdeUE=
 =6NGI
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - MTE asynchronous support for KASan. Previously only synchronous
   (slower) mode was supported. Asynchronous is faster but does not
   allow precise identification of the illegal access.

 - Run kernel mode SIMD with softirqs disabled. This allows using NEON
   in softirq context for crypto performance improvements. The
   conditional yield support is modified to take softirqs into account
   and reduce the latency.

 - Preparatory patches for Apple M1: handle CPUs that only have the VHE
   mode available (host kernel running at EL2), add FIQ support.

 - arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers,
   new functions for the HiSilicon HHA and L3C PMU, cleanups.

 - Re-introduce support for execute-only user permissions but only when
   the EPAN (Enhanced Privileged Access Never) architecture feature is
   available.

 - Disable fine-grained traps at boot and improve the documented boot
   requirements.

 - Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).

 - Add hierarchical eXecute Never permissions for all page tables.

 - Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
   to control which PAC keys are enabled in a particular task.

 - arm64 kselftests for BTI and some improvements to the MTE tests.

 - Minor improvements to the compat vdso and sigpage.

 - Miscellaneous cleanups.

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (86 commits)
  arm64/sve: Add compile time checks for SVE hooks in generic functions
  arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
  arm64: pac: Optimize kernel entry/exit key installation code paths
  arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS)
  arm64: mte: make the per-task SCTLR_EL1 field usable elsewhere
  arm64/sve: Remove redundant system_supports_sve() tests
  arm64: fpsimd: run kernel mode NEON with softirqs disabled
  arm64: assembler: introduce wxN aliases for wN registers
  arm64: assembler: remove conditional NEON yield macros
  kasan, arm64: tests supports for HW_TAGS async mode
  arm64: mte: Report async tag faults before suspend
  arm64: mte: Enable async tag check fault
  arm64: mte: Conditionally compile mte_enable_kernel_*()
  arm64: mte: Enable TCO in functions that can read beyond buffer limits
  kasan: Add report for async mode
  arm64: mte: Drop arch_enable_tagging()
  kasan: Add KASAN mode kernel parameter
  arm64: mte: Add asynchronous mode support
  arm64: Get rid of CONFIG_ARM64_VHE
  arm64: Cope with CPUs stuck in VHE mode
  ...
2021-04-26 10:25:03 -07:00

451 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_KASAN_H
#define _LINUX_KASAN_H
#include <linux/static_key.h>
#include <linux/types.h>
struct kmem_cache;
struct page;
struct vm_struct;
struct task_struct;
#ifdef CONFIG_KASAN
#include <linux/linkage.h>
#include <asm/kasan.h>
/* kasan_data struct is used in KUnit tests for KASAN expected failures */
struct kunit_kasan_expectation {
bool report_expected;
bool report_found;
};
#endif
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
#include <linux/pgtable.h>
/* Software KASAN implementations use shadow memory. */
#ifdef CONFIG_KASAN_SW_TAGS
#define KASAN_SHADOW_INIT 0xFF
#else
#define KASAN_SHADOW_INIT 0
#endif
#ifndef PTE_HWTABLE_PTRS
#define PTE_HWTABLE_PTRS 0
#endif
extern unsigned char kasan_early_shadow_page[PAGE_SIZE];
extern pte_t kasan_early_shadow_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS];
extern pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD];
extern pud_t kasan_early_shadow_pud[PTRS_PER_PUD];
extern p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D];
int kasan_populate_early_shadow(const void *shadow_start,
const void *shadow_end);
static inline void *kasan_mem_to_shadow(const void *addr)
{
return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
+ KASAN_SHADOW_OFFSET;
}
int kasan_add_zero_shadow(void *start, unsigned long size);
void kasan_remove_zero_shadow(void *start, unsigned long size);
/* Enable reporting bugs after kasan_disable_current() */
extern void kasan_enable_current(void);
/* Disable reporting bugs for current task */
extern void kasan_disable_current(void);
#else /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
static inline int kasan_add_zero_shadow(void *start, unsigned long size)
{
return 0;
}
static inline void kasan_remove_zero_shadow(void *start,
unsigned long size)
{}
static inline void kasan_enable_current(void) {}
static inline void kasan_disable_current(void) {}
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
#ifdef CONFIG_KASAN
struct kasan_cache {
int alloc_meta_offset;
int free_meta_offset;
bool is_kmalloc;
};
#ifdef CONFIG_KASAN_HW_TAGS
DECLARE_STATIC_KEY_FALSE(kasan_flag_enabled);
static __always_inline bool kasan_enabled(void)
{
return static_branch_likely(&kasan_flag_enabled);
}
#else /* CONFIG_KASAN_HW_TAGS */
static inline bool kasan_enabled(void)
{
return true;
}
#endif /* CONFIG_KASAN_HW_TAGS */
slab_flags_t __kasan_never_merge(void);
static __always_inline slab_flags_t kasan_never_merge(void)
{
if (kasan_enabled())
return __kasan_never_merge();
return 0;
}
void __kasan_unpoison_range(const void *addr, size_t size);
static __always_inline void kasan_unpoison_range(const void *addr, size_t size)
{
if (kasan_enabled())
__kasan_unpoison_range(addr, size);
}
void __kasan_alloc_pages(struct page *page, unsigned int order);
static __always_inline void kasan_alloc_pages(struct page *page,
unsigned int order)
{
if (kasan_enabled())
__kasan_alloc_pages(page, order);
}
void __kasan_free_pages(struct page *page, unsigned int order);
static __always_inline void kasan_free_pages(struct page *page,
unsigned int order)
{
if (kasan_enabled())
__kasan_free_pages(page, order);
}
void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
slab_flags_t *flags);
static __always_inline void kasan_cache_create(struct kmem_cache *cache,
unsigned int *size, slab_flags_t *flags)
{
if (kasan_enabled())
__kasan_cache_create(cache, size, flags);
}
void __kasan_cache_create_kmalloc(struct kmem_cache *cache);
static __always_inline void kasan_cache_create_kmalloc(struct kmem_cache *cache)
{
if (kasan_enabled())
__kasan_cache_create_kmalloc(cache);
}
size_t __kasan_metadata_size(struct kmem_cache *cache);
static __always_inline size_t kasan_metadata_size(struct kmem_cache *cache)
{
if (kasan_enabled())
return __kasan_metadata_size(cache);
return 0;
}
void __kasan_poison_slab(struct page *page);
static __always_inline void kasan_poison_slab(struct page *page)
{
if (kasan_enabled())
__kasan_poison_slab(page);
}
void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object);
static __always_inline void kasan_unpoison_object_data(struct kmem_cache *cache,
void *object)
{
if (kasan_enabled())
__kasan_unpoison_object_data(cache, object);
}
void __kasan_poison_object_data(struct kmem_cache *cache, void *object);
static __always_inline void kasan_poison_object_data(struct kmem_cache *cache,
void *object)
{
if (kasan_enabled())
__kasan_poison_object_data(cache, object);
}
void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
const void *object);
static __always_inline void * __must_check kasan_init_slab_obj(
struct kmem_cache *cache, const void *object)
{
if (kasan_enabled())
return __kasan_init_slab_obj(cache, object);
return (void *)object;
}
bool __kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip);
static __always_inline bool kasan_slab_free(struct kmem_cache *s, void *object)
{
if (kasan_enabled())
return __kasan_slab_free(s, object, _RET_IP_);
return false;
}
void __kasan_kfree_large(void *ptr, unsigned long ip);
static __always_inline void kasan_kfree_large(void *ptr)
{
if (kasan_enabled())
__kasan_kfree_large(ptr, _RET_IP_);
}
void __kasan_slab_free_mempool(void *ptr, unsigned long ip);
static __always_inline void kasan_slab_free_mempool(void *ptr)
{
if (kasan_enabled())
__kasan_slab_free_mempool(ptr, _RET_IP_);
}
void * __must_check __kasan_slab_alloc(struct kmem_cache *s,
void *object, gfp_t flags);
static __always_inline void * __must_check kasan_slab_alloc(
struct kmem_cache *s, void *object, gfp_t flags)
{
if (kasan_enabled())
return __kasan_slab_alloc(s, object, flags);
return object;
}
void * __must_check __kasan_kmalloc(struct kmem_cache *s, const void *object,
size_t size, gfp_t flags);
static __always_inline void * __must_check kasan_kmalloc(struct kmem_cache *s,
const void *object, size_t size, gfp_t flags)
{
if (kasan_enabled())
return __kasan_kmalloc(s, object, size, flags);
return (void *)object;
}
void * __must_check __kasan_kmalloc_large(const void *ptr,
size_t size, gfp_t flags);
static __always_inline void * __must_check kasan_kmalloc_large(const void *ptr,
size_t size, gfp_t flags)
{
if (kasan_enabled())
return __kasan_kmalloc_large(ptr, size, flags);
return (void *)ptr;
}
void * __must_check __kasan_krealloc(const void *object,
size_t new_size, gfp_t flags);
static __always_inline void * __must_check kasan_krealloc(const void *object,
size_t new_size, gfp_t flags)
{
if (kasan_enabled())
return __kasan_krealloc(object, new_size, flags);
return (void *)object;
}
/*
* Unlike kasan_check_read/write(), kasan_check_byte() is performed even for
* the hardware tag-based mode that doesn't rely on compiler instrumentation.
*/
bool __kasan_check_byte(const void *addr, unsigned long ip);
static __always_inline bool kasan_check_byte(const void *addr)
{
if (kasan_enabled())
return __kasan_check_byte(addr, _RET_IP_);
return true;
}
bool kasan_save_enable_multi_shot(void);
void kasan_restore_multi_shot(bool enabled);
#else /* CONFIG_KASAN */
static inline bool kasan_enabled(void)
{
return false;
}
static inline slab_flags_t kasan_never_merge(void)
{
return 0;
}
static inline void kasan_unpoison_range(const void *address, size_t size) {}
static inline void kasan_alloc_pages(struct page *page, unsigned int order) {}
static inline void kasan_free_pages(struct page *page, unsigned int order) {}
static inline void kasan_cache_create(struct kmem_cache *cache,
unsigned int *size,
slab_flags_t *flags) {}
static inline void kasan_cache_create_kmalloc(struct kmem_cache *cache) {}
static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; }
static inline void kasan_poison_slab(struct page *page) {}
static inline void kasan_unpoison_object_data(struct kmem_cache *cache,
void *object) {}
static inline void kasan_poison_object_data(struct kmem_cache *cache,
void *object) {}
static inline void *kasan_init_slab_obj(struct kmem_cache *cache,
const void *object)
{
return (void *)object;
}
static inline bool kasan_slab_free(struct kmem_cache *s, void *object)
{
return false;
}
static inline void kasan_kfree_large(void *ptr) {}
static inline void kasan_slab_free_mempool(void *ptr) {}
static inline void *kasan_slab_alloc(struct kmem_cache *s, void *object,
gfp_t flags)
{
return object;
}
static inline void *kasan_kmalloc(struct kmem_cache *s, const void *object,
size_t size, gfp_t flags)
{
return (void *)object;
}
static inline void *kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
{
return (void *)ptr;
}
static inline void *kasan_krealloc(const void *object, size_t new_size,
gfp_t flags)
{
return (void *)object;
}
static inline bool kasan_check_byte(const void *address)
{
return true;
}
#endif /* CONFIG_KASAN */
#if defined(CONFIG_KASAN) && defined(CONFIG_KASAN_STACK)
void kasan_unpoison_task_stack(struct task_struct *task);
#else
static inline void kasan_unpoison_task_stack(struct task_struct *task) {}
#endif
#ifdef CONFIG_KASAN_GENERIC
void kasan_cache_shrink(struct kmem_cache *cache);
void kasan_cache_shutdown(struct kmem_cache *cache);
void kasan_record_aux_stack(void *ptr);
#else /* CONFIG_KASAN_GENERIC */
static inline void kasan_cache_shrink(struct kmem_cache *cache) {}
static inline void kasan_cache_shutdown(struct kmem_cache *cache) {}
static inline void kasan_record_aux_stack(void *ptr) {}
#endif /* CONFIG_KASAN_GENERIC */
#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
static inline void *kasan_reset_tag(const void *addr)
{
return (void *)arch_kasan_reset_tag(addr);
}
/**
* kasan_report - print a report about a bad memory access detected by KASAN
* @addr: address of the bad access
* @size: size of the bad access
* @is_write: whether the bad access is a write or a read
* @ip: instruction pointer for the accessibility check or the bad access itself
*/
bool kasan_report(unsigned long addr, size_t size,
bool is_write, unsigned long ip);
#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
static inline void *kasan_reset_tag(const void *addr)
{
return (void *)addr;
}
#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS*/
#ifdef CONFIG_KASAN_HW_TAGS
void kasan_report_async(void);
#endif /* CONFIG_KASAN_HW_TAGS */
#ifdef CONFIG_KASAN_SW_TAGS
void __init kasan_init_sw_tags(void);
#else
static inline void kasan_init_sw_tags(void) { }
#endif
#ifdef CONFIG_KASAN_HW_TAGS
void kasan_init_hw_tags_cpu(void);
void __init kasan_init_hw_tags(void);
#else
static inline void kasan_init_hw_tags_cpu(void) { }
static inline void kasan_init_hw_tags(void) { }
#endif
#ifdef CONFIG_KASAN_VMALLOC
int kasan_populate_vmalloc(unsigned long addr, unsigned long size);
void kasan_poison_vmalloc(const void *start, unsigned long size);
void kasan_unpoison_vmalloc(const void *start, unsigned long size);
void kasan_release_vmalloc(unsigned long start, unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end);
#else /* CONFIG_KASAN_VMALLOC */
static inline int kasan_populate_vmalloc(unsigned long start,
unsigned long size)
{
return 0;
}
static inline void kasan_poison_vmalloc(const void *start, unsigned long size)
{ }
static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size)
{ }
static inline void kasan_release_vmalloc(unsigned long start,
unsigned long end,
unsigned long free_region_start,
unsigned long free_region_end) {}
#endif /* CONFIG_KASAN_VMALLOC */
#if (defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)) && \
!defined(CONFIG_KASAN_VMALLOC)
/*
* These functions provide a special case to support backing module
* allocations with real shadow memory. With KASAN vmalloc, the special
* case is unnecessary, as the work is handled in the generic case.
*/
int kasan_module_alloc(void *addr, size_t size);
void kasan_free_shadow(const struct vm_struct *vm);
#else /* (CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS) && !CONFIG_KASAN_VMALLOC */
static inline int kasan_module_alloc(void *addr, size_t size) { return 0; }
static inline void kasan_free_shadow(const struct vm_struct *vm) {}
#endif /* (CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS) && !CONFIG_KASAN_VMALLOC */
#ifdef CONFIG_KASAN_INLINE
void kasan_non_canonical_hook(unsigned long addr);
#else /* CONFIG_KASAN_INLINE */
static inline void kasan_non_canonical_hook(unsigned long addr) { }
#endif /* CONFIG_KASAN_INLINE */
#endif /* LINUX_KASAN_H */