linux-stable/drivers/md/bcache/super.c
Coly Li 9aaf516546 bcache: make cutoff_writeback and cutoff_writeback_sync tunable
Currently the cutoff writeback and cutoff writeback sync thresholds are
defined by CUTOFF_WRITEBACK (40) and CUTOFF_WRITEBACK_SYNC (70) as
static values. Most of time these they work fine, but when people want
to do research on bcache writeback mode performance tuning, there is no
chance to modify the soft and hard cutoff writeback values.

This patch introduces two module parameters bch_cutoff_writeback_sync
and bch_cutoff_writeback which permit people to tune the values when
loading bcache.ko. If they are not specified by module loading, current
values CUTOFF_WRITEBACK_SYNC and CUTOFF_WRITEBACK will be used as
default and nothing changes.

When people want to tune this two values,
- cutoff_writeback can be set in range [1, 70]
- cutoff_writeback_sync can be set in range [1, 90]
- cutoff_writeback always <= cutoff_writeback_sync

The default values are strongly recommended to most of users for most of
workloads. Anyway, if people wants to take their own risk to do research
on new writeback cutoff tuning for their own workload, now they can make
it.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00

2512 lines
61 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* bcache setup/teardown code, and some metadata io - read a superblock and
* figure out what to do with it.
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcache.h"
#include "btree.h"
#include "debug.h"
#include "extents.h"
#include "request.h"
#include "writeback.h"
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/debugfs.h>
#include <linux/genhd.h>
#include <linux/idr.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <linux/sysfs.h>
unsigned int bch_cutoff_writeback;
unsigned int bch_cutoff_writeback_sync;
static const char bcache_magic[] = {
0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
};
static const char invalid_uuid[] = {
0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
};
static struct kobject *bcache_kobj;
struct mutex bch_register_lock;
LIST_HEAD(bch_cache_sets);
static LIST_HEAD(uncached_devices);
static int bcache_major;
static DEFINE_IDA(bcache_device_idx);
static wait_queue_head_t unregister_wait;
struct workqueue_struct *bcache_wq;
struct workqueue_struct *bch_journal_wq;
#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
/* limitation of partitions number on single bcache device */
#define BCACHE_MINORS 128
/* limitation of bcache devices number on single system */
#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
/* Superblock */
static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
struct page **res)
{
const char *err;
struct cache_sb *s;
struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
unsigned int i;
if (!bh)
return "IO error";
s = (struct cache_sb *) bh->b_data;
sb->offset = le64_to_cpu(s->offset);
sb->version = le64_to_cpu(s->version);
memcpy(sb->magic, s->magic, 16);
memcpy(sb->uuid, s->uuid, 16);
memcpy(sb->set_uuid, s->set_uuid, 16);
memcpy(sb->label, s->label, SB_LABEL_SIZE);
sb->flags = le64_to_cpu(s->flags);
sb->seq = le64_to_cpu(s->seq);
sb->last_mount = le32_to_cpu(s->last_mount);
sb->first_bucket = le16_to_cpu(s->first_bucket);
sb->keys = le16_to_cpu(s->keys);
for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
sb->d[i] = le64_to_cpu(s->d[i]);
pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
sb->version, sb->flags, sb->seq, sb->keys);
err = "Not a bcache superblock";
if (sb->offset != SB_SECTOR)
goto err;
if (memcmp(sb->magic, bcache_magic, 16))
goto err;
err = "Too many journal buckets";
if (sb->keys > SB_JOURNAL_BUCKETS)
goto err;
err = "Bad checksum";
if (s->csum != csum_set(s))
goto err;
err = "Bad UUID";
if (bch_is_zero(sb->uuid, 16))
goto err;
sb->block_size = le16_to_cpu(s->block_size);
err = "Superblock block size smaller than device block size";
if (sb->block_size << 9 < bdev_logical_block_size(bdev))
goto err;
switch (sb->version) {
case BCACHE_SB_VERSION_BDEV:
sb->data_offset = BDEV_DATA_START_DEFAULT;
break;
case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
sb->data_offset = le64_to_cpu(s->data_offset);
err = "Bad data offset";
if (sb->data_offset < BDEV_DATA_START_DEFAULT)
goto err;
break;
case BCACHE_SB_VERSION_CDEV:
case BCACHE_SB_VERSION_CDEV_WITH_UUID:
sb->nbuckets = le64_to_cpu(s->nbuckets);
sb->bucket_size = le16_to_cpu(s->bucket_size);
sb->nr_in_set = le16_to_cpu(s->nr_in_set);
sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
err = "Too many buckets";
if (sb->nbuckets > LONG_MAX)
goto err;
err = "Not enough buckets";
if (sb->nbuckets < 1 << 7)
goto err;
err = "Bad block/bucket size";
if (!is_power_of_2(sb->block_size) ||
sb->block_size > PAGE_SECTORS ||
!is_power_of_2(sb->bucket_size) ||
sb->bucket_size < PAGE_SECTORS)
goto err;
err = "Invalid superblock: device too small";
if (get_capacity(bdev->bd_disk) <
sb->bucket_size * sb->nbuckets)
goto err;
err = "Bad UUID";
if (bch_is_zero(sb->set_uuid, 16))
goto err;
err = "Bad cache device number in set";
if (!sb->nr_in_set ||
sb->nr_in_set <= sb->nr_this_dev ||
sb->nr_in_set > MAX_CACHES_PER_SET)
goto err;
err = "Journal buckets not sequential";
for (i = 0; i < sb->keys; i++)
if (sb->d[i] != sb->first_bucket + i)
goto err;
err = "Too many journal buckets";
if (sb->first_bucket + sb->keys > sb->nbuckets)
goto err;
err = "Invalid superblock: first bucket comes before end of super";
if (sb->first_bucket * sb->bucket_size < 16)
goto err;
break;
default:
err = "Unsupported superblock version";
goto err;
}
sb->last_mount = (u32)ktime_get_real_seconds();
err = NULL;
get_page(bh->b_page);
*res = bh->b_page;
err:
put_bh(bh);
return err;
}
static void write_bdev_super_endio(struct bio *bio)
{
struct cached_dev *dc = bio->bi_private;
/* XXX: error checking */
closure_put(&dc->sb_write);
}
static void __write_super(struct cache_sb *sb, struct bio *bio)
{
struct cache_sb *out = page_address(bio_first_page_all(bio));
unsigned int i;
bio->bi_iter.bi_sector = SB_SECTOR;
bio->bi_iter.bi_size = SB_SIZE;
bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
bch_bio_map(bio, NULL);
out->offset = cpu_to_le64(sb->offset);
out->version = cpu_to_le64(sb->version);
memcpy(out->uuid, sb->uuid, 16);
memcpy(out->set_uuid, sb->set_uuid, 16);
memcpy(out->label, sb->label, SB_LABEL_SIZE);
out->flags = cpu_to_le64(sb->flags);
out->seq = cpu_to_le64(sb->seq);
out->last_mount = cpu_to_le32(sb->last_mount);
out->first_bucket = cpu_to_le16(sb->first_bucket);
out->keys = cpu_to_le16(sb->keys);
for (i = 0; i < sb->keys; i++)
out->d[i] = cpu_to_le64(sb->d[i]);
out->csum = csum_set(out);
pr_debug("ver %llu, flags %llu, seq %llu",
sb->version, sb->flags, sb->seq);
submit_bio(bio);
}
static void bch_write_bdev_super_unlock(struct closure *cl)
{
struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
up(&dc->sb_write_mutex);
}
void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
{
struct closure *cl = &dc->sb_write;
struct bio *bio = &dc->sb_bio;
down(&dc->sb_write_mutex);
closure_init(cl, parent);
bio_reset(bio);
bio_set_dev(bio, dc->bdev);
bio->bi_end_io = write_bdev_super_endio;
bio->bi_private = dc;
closure_get(cl);
/* I/O request sent to backing device */
__write_super(&dc->sb, bio);
closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
}
static void write_super_endio(struct bio *bio)
{
struct cache *ca = bio->bi_private;
/* is_read = 0 */
bch_count_io_errors(ca, bio->bi_status, 0,
"writing superblock");
closure_put(&ca->set->sb_write);
}
static void bcache_write_super_unlock(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, sb_write);
up(&c->sb_write_mutex);
}
void bcache_write_super(struct cache_set *c)
{
struct closure *cl = &c->sb_write;
struct cache *ca;
unsigned int i;
down(&c->sb_write_mutex);
closure_init(cl, &c->cl);
c->sb.seq++;
for_each_cache(ca, c, i) {
struct bio *bio = &ca->sb_bio;
ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
ca->sb.seq = c->sb.seq;
ca->sb.last_mount = c->sb.last_mount;
SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
bio_reset(bio);
bio_set_dev(bio, ca->bdev);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
closure_get(cl);
__write_super(&ca->sb, bio);
}
closure_return_with_destructor(cl, bcache_write_super_unlock);
}
/* UUID io */
static void uuid_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
cache_set_err_on(bio->bi_status, c, "accessing uuids");
bch_bbio_free(bio, c);
closure_put(cl);
}
static void uuid_io_unlock(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
up(&c->uuid_write_mutex);
}
static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
struct bkey *k, struct closure *parent)
{
struct closure *cl = &c->uuid_write;
struct uuid_entry *u;
unsigned int i;
char buf[80];
BUG_ON(!parent);
down(&c->uuid_write_mutex);
closure_init(cl, parent);
for (i = 0; i < KEY_PTRS(k); i++) {
struct bio *bio = bch_bbio_alloc(c);
bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
bio->bi_end_io = uuid_endio;
bio->bi_private = cl;
bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
bch_bio_map(bio, c->uuids);
bch_submit_bbio(bio, c, k, i);
if (op != REQ_OP_WRITE)
break;
}
bch_extent_to_text(buf, sizeof(buf), k);
pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
if (!bch_is_zero(u->uuid, 16))
pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
u - c->uuids, u->uuid, u->label,
u->first_reg, u->last_reg, u->invalidated);
closure_return_with_destructor(cl, uuid_io_unlock);
}
static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
{
struct bkey *k = &j->uuid_bucket;
if (__bch_btree_ptr_invalid(c, k))
return "bad uuid pointer";
bkey_copy(&c->uuid_bucket, k);
uuid_io(c, REQ_OP_READ, 0, k, cl);
if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
struct uuid_entry_v0 *u0 = (void *) c->uuids;
struct uuid_entry *u1 = (void *) c->uuids;
int i;
closure_sync(cl);
/*
* Since the new uuid entry is bigger than the old, we have to
* convert starting at the highest memory address and work down
* in order to do it in place
*/
for (i = c->nr_uuids - 1;
i >= 0;
--i) {
memcpy(u1[i].uuid, u0[i].uuid, 16);
memcpy(u1[i].label, u0[i].label, 32);
u1[i].first_reg = u0[i].first_reg;
u1[i].last_reg = u0[i].last_reg;
u1[i].invalidated = u0[i].invalidated;
u1[i].flags = 0;
u1[i].sectors = 0;
}
}
return NULL;
}
static int __uuid_write(struct cache_set *c)
{
BKEY_PADDED(key) k;
struct closure cl;
struct cache *ca;
closure_init_stack(&cl);
lockdep_assert_held(&bch_register_lock);
if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
return 1;
SET_KEY_SIZE(&k.key, c->sb.bucket_size);
uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
closure_sync(&cl);
/* Only one bucket used for uuid write */
ca = PTR_CACHE(c, &k.key, 0);
atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
bkey_copy(&c->uuid_bucket, &k.key);
bkey_put(c, &k.key);
return 0;
}
int bch_uuid_write(struct cache_set *c)
{
int ret = __uuid_write(c);
if (!ret)
bch_journal_meta(c, NULL);
return ret;
}
static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
{
struct uuid_entry *u;
for (u = c->uuids;
u < c->uuids + c->nr_uuids; u++)
if (!memcmp(u->uuid, uuid, 16))
return u;
return NULL;
}
static struct uuid_entry *uuid_find_empty(struct cache_set *c)
{
static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
return uuid_find(c, zero_uuid);
}
/*
* Bucket priorities/gens:
*
* For each bucket, we store on disk its
* 8 bit gen
* 16 bit priority
*
* See alloc.c for an explanation of the gen. The priority is used to implement
* lru (and in the future other) cache replacement policies; for most purposes
* it's just an opaque integer.
*
* The gens and the priorities don't have a whole lot to do with each other, and
* it's actually the gens that must be written out at specific times - it's no
* big deal if the priorities don't get written, if we lose them we just reuse
* buckets in suboptimal order.
*
* On disk they're stored in a packed array, and in as many buckets are required
* to fit them all. The buckets we use to store them form a list; the journal
* header points to the first bucket, the first bucket points to the second
* bucket, et cetera.
*
* This code is used by the allocation code; periodically (whenever it runs out
* of buckets to allocate from) the allocation code will invalidate some
* buckets, but it can't use those buckets until their new gens are safely on
* disk.
*/
static void prio_endio(struct bio *bio)
{
struct cache *ca = bio->bi_private;
cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
bch_bbio_free(bio, ca->set);
closure_put(&ca->prio);
}
static void prio_io(struct cache *ca, uint64_t bucket, int op,
unsigned long op_flags)
{
struct closure *cl = &ca->prio;
struct bio *bio = bch_bbio_alloc(ca->set);
closure_init_stack(cl);
bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
bio_set_dev(bio, ca->bdev);
bio->bi_iter.bi_size = bucket_bytes(ca);
bio->bi_end_io = prio_endio;
bio->bi_private = ca;
bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
bch_bio_map(bio, ca->disk_buckets);
closure_bio_submit(ca->set, bio, &ca->prio);
closure_sync(cl);
}
void bch_prio_write(struct cache *ca)
{
int i;
struct bucket *b;
struct closure cl;
closure_init_stack(&cl);
lockdep_assert_held(&ca->set->bucket_lock);
ca->disk_buckets->seq++;
atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
&ca->meta_sectors_written);
//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
// fifo_used(&ca->free_inc), fifo_used(&ca->unused));
for (i = prio_buckets(ca) - 1; i >= 0; --i) {
long bucket;
struct prio_set *p = ca->disk_buckets;
struct bucket_disk *d = p->data;
struct bucket_disk *end = d + prios_per_bucket(ca);
for (b = ca->buckets + i * prios_per_bucket(ca);
b < ca->buckets + ca->sb.nbuckets && d < end;
b++, d++) {
d->prio = cpu_to_le16(b->prio);
d->gen = b->gen;
}
p->next_bucket = ca->prio_buckets[i + 1];
p->magic = pset_magic(&ca->sb);
p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
BUG_ON(bucket == -1);
mutex_unlock(&ca->set->bucket_lock);
prio_io(ca, bucket, REQ_OP_WRITE, 0);
mutex_lock(&ca->set->bucket_lock);
ca->prio_buckets[i] = bucket;
atomic_dec_bug(&ca->buckets[bucket].pin);
}
mutex_unlock(&ca->set->bucket_lock);
bch_journal_meta(ca->set, &cl);
closure_sync(&cl);
mutex_lock(&ca->set->bucket_lock);
/*
* Don't want the old priorities to get garbage collected until after we
* finish writing the new ones, and they're journalled
*/
for (i = 0; i < prio_buckets(ca); i++) {
if (ca->prio_last_buckets[i])
__bch_bucket_free(ca,
&ca->buckets[ca->prio_last_buckets[i]]);
ca->prio_last_buckets[i] = ca->prio_buckets[i];
}
}
static void prio_read(struct cache *ca, uint64_t bucket)
{
struct prio_set *p = ca->disk_buckets;
struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
struct bucket *b;
unsigned int bucket_nr = 0;
for (b = ca->buckets;
b < ca->buckets + ca->sb.nbuckets;
b++, d++) {
if (d == end) {
ca->prio_buckets[bucket_nr] = bucket;
ca->prio_last_buckets[bucket_nr] = bucket;
bucket_nr++;
prio_io(ca, bucket, REQ_OP_READ, 0);
if (p->csum !=
bch_crc64(&p->magic, bucket_bytes(ca) - 8))
pr_warn("bad csum reading priorities");
if (p->magic != pset_magic(&ca->sb))
pr_warn("bad magic reading priorities");
bucket = p->next_bucket;
d = p->data;
}
b->prio = le16_to_cpu(d->prio);
b->gen = b->last_gc = d->gen;
}
}
/* Bcache device */
static int open_dev(struct block_device *b, fmode_t mode)
{
struct bcache_device *d = b->bd_disk->private_data;
if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
return -ENXIO;
closure_get(&d->cl);
return 0;
}
static void release_dev(struct gendisk *b, fmode_t mode)
{
struct bcache_device *d = b->private_data;
closure_put(&d->cl);
}
static int ioctl_dev(struct block_device *b, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct bcache_device *d = b->bd_disk->private_data;
return d->ioctl(d, mode, cmd, arg);
}
static const struct block_device_operations bcache_ops = {
.open = open_dev,
.release = release_dev,
.ioctl = ioctl_dev,
.owner = THIS_MODULE,
};
void bcache_device_stop(struct bcache_device *d)
{
if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
closure_queue(&d->cl);
}
static void bcache_device_unlink(struct bcache_device *d)
{
lockdep_assert_held(&bch_register_lock);
if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
unsigned int i;
struct cache *ca;
sysfs_remove_link(&d->c->kobj, d->name);
sysfs_remove_link(&d->kobj, "cache");
for_each_cache(ca, d->c, i)
bd_unlink_disk_holder(ca->bdev, d->disk);
}
}
static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
const char *name)
{
unsigned int i;
struct cache *ca;
for_each_cache(ca, d->c, i)
bd_link_disk_holder(ca->bdev, d->disk);
snprintf(d->name, BCACHEDEVNAME_SIZE,
"%s%u", name, d->id);
WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
sysfs_create_link(&c->kobj, &d->kobj, d->name),
"Couldn't create device <-> cache set symlinks");
clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
}
static void bcache_device_detach(struct bcache_device *d)
{
lockdep_assert_held(&bch_register_lock);
atomic_dec(&d->c->attached_dev_nr);
if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
struct uuid_entry *u = d->c->uuids + d->id;
SET_UUID_FLASH_ONLY(u, 0);
memcpy(u->uuid, invalid_uuid, 16);
u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
bch_uuid_write(d->c);
}
bcache_device_unlink(d);
d->c->devices[d->id] = NULL;
closure_put(&d->c->caching);
d->c = NULL;
}
static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
unsigned int id)
{
d->id = id;
d->c = c;
c->devices[id] = d;
if (id >= c->devices_max_used)
c->devices_max_used = id + 1;
closure_get(&c->caching);
}
static inline int first_minor_to_idx(int first_minor)
{
return (first_minor/BCACHE_MINORS);
}
static inline int idx_to_first_minor(int idx)
{
return (idx * BCACHE_MINORS);
}
static void bcache_device_free(struct bcache_device *d)
{
lockdep_assert_held(&bch_register_lock);
pr_info("%s stopped", d->disk->disk_name);
if (d->c)
bcache_device_detach(d);
if (d->disk && d->disk->flags & GENHD_FL_UP)
del_gendisk(d->disk);
if (d->disk && d->disk->queue)
blk_cleanup_queue(d->disk->queue);
if (d->disk) {
ida_simple_remove(&bcache_device_idx,
first_minor_to_idx(d->disk->first_minor));
put_disk(d->disk);
}
bioset_exit(&d->bio_split);
kvfree(d->full_dirty_stripes);
kvfree(d->stripe_sectors_dirty);
closure_debug_destroy(&d->cl);
}
static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
sector_t sectors)
{
struct request_queue *q;
const size_t max_stripes = min_t(size_t, INT_MAX,
SIZE_MAX / sizeof(atomic_t));
size_t n;
int idx;
if (!d->stripe_size)
d->stripe_size = 1 << 31;
d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
if (!d->nr_stripes || d->nr_stripes > max_stripes) {
pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
(unsigned int)d->nr_stripes);
return -ENOMEM;
}
n = d->nr_stripes * sizeof(atomic_t);
d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
if (!d->stripe_sectors_dirty)
return -ENOMEM;
n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
if (!d->full_dirty_stripes)
return -ENOMEM;
idx = ida_simple_get(&bcache_device_idx, 0,
BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
if (idx < 0)
return idx;
if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
goto err;
d->disk = alloc_disk(BCACHE_MINORS);
if (!d->disk)
goto err;
set_capacity(d->disk, sectors);
snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
d->disk->major = bcache_major;
d->disk->first_minor = idx_to_first_minor(idx);
d->disk->fops = &bcache_ops;
d->disk->private_data = d;
q = blk_alloc_queue(GFP_KERNEL);
if (!q)
return -ENOMEM;
blk_queue_make_request(q, NULL);
d->disk->queue = q;
q->queuedata = d;
q->backing_dev_info->congested_data = d;
q->limits.max_hw_sectors = UINT_MAX;
q->limits.max_sectors = UINT_MAX;
q->limits.max_segment_size = UINT_MAX;
q->limits.max_segments = BIO_MAX_PAGES;
blk_queue_max_discard_sectors(q, UINT_MAX);
q->limits.discard_granularity = 512;
q->limits.io_min = block_size;
q->limits.logical_block_size = block_size;
q->limits.physical_block_size = block_size;
blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
blk_queue_write_cache(q, true, true);
return 0;
err:
ida_simple_remove(&bcache_device_idx, idx);
return -ENOMEM;
}
/* Cached device */
static void calc_cached_dev_sectors(struct cache_set *c)
{
uint64_t sectors = 0;
struct cached_dev *dc;
list_for_each_entry(dc, &c->cached_devs, list)
sectors += bdev_sectors(dc->bdev);
c->cached_dev_sectors = sectors;
}
#define BACKING_DEV_OFFLINE_TIMEOUT 5
static int cached_dev_status_update(void *arg)
{
struct cached_dev *dc = arg;
struct request_queue *q;
/*
* If this delayed worker is stopping outside, directly quit here.
* dc->io_disable might be set via sysfs interface, so check it
* here too.
*/
while (!kthread_should_stop() && !dc->io_disable) {
q = bdev_get_queue(dc->bdev);
if (blk_queue_dying(q))
dc->offline_seconds++;
else
dc->offline_seconds = 0;
if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
pr_err("%s: device offline for %d seconds",
dc->backing_dev_name,
BACKING_DEV_OFFLINE_TIMEOUT);
pr_err("%s: disable I/O request due to backing "
"device offline", dc->disk.name);
dc->io_disable = true;
/* let others know earlier that io_disable is true */
smp_mb();
bcache_device_stop(&dc->disk);
break;
}
schedule_timeout_interruptible(HZ);
}
wait_for_kthread_stop();
return 0;
}
void bch_cached_dev_run(struct cached_dev *dc)
{
struct bcache_device *d = &dc->disk;
char buf[SB_LABEL_SIZE + 1];
char *env[] = {
"DRIVER=bcache",
kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
NULL,
NULL,
};
memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
buf[SB_LABEL_SIZE] = '\0';
env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
if (atomic_xchg(&dc->running, 1)) {
kfree(env[1]);
kfree(env[2]);
return;
}
if (!d->c &&
BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
struct closure cl;
closure_init_stack(&cl);
SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
bch_write_bdev_super(dc, &cl);
closure_sync(&cl);
}
add_disk(d->disk);
bd_link_disk_holder(dc->bdev, dc->disk.disk);
/*
* won't show up in the uevent file, use udevadm monitor -e instead
* only class / kset properties are persistent
*/
kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
kfree(env[1]);
kfree(env[2]);
if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
pr_debug("error creating sysfs link");
dc->status_update_thread = kthread_run(cached_dev_status_update,
dc, "bcache_status_update");
if (IS_ERR(dc->status_update_thread)) {
pr_warn("failed to create bcache_status_update kthread, "
"continue to run without monitoring backing "
"device status");
}
}
/*
* If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
* work dc->writeback_rate_update is running. Wait until the routine
* quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
* cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
* seconds, give up waiting here and continue to cancel it too.
*/
static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
{
int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
do {
if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
&dc->disk.flags))
break;
time_out--;
schedule_timeout_interruptible(1);
} while (time_out > 0);
if (time_out == 0)
pr_warn("give up waiting for dc->writeback_write_update to quit");
cancel_delayed_work_sync(&dc->writeback_rate_update);
}
static void cached_dev_detach_finish(struct work_struct *w)
{
struct cached_dev *dc = container_of(w, struct cached_dev, detach);
struct closure cl;
closure_init_stack(&cl);
BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
BUG_ON(refcount_read(&dc->count));
mutex_lock(&bch_register_lock);
if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
cancel_writeback_rate_update_dwork(dc);
if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
kthread_stop(dc->writeback_thread);
dc->writeback_thread = NULL;
}
memset(&dc->sb.set_uuid, 0, 16);
SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
bch_write_bdev_super(dc, &cl);
closure_sync(&cl);
calc_cached_dev_sectors(dc->disk.c);
bcache_device_detach(&dc->disk);
list_move(&dc->list, &uncached_devices);
clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
mutex_unlock(&bch_register_lock);
pr_info("Caching disabled for %s", dc->backing_dev_name);
/* Drop ref we took in cached_dev_detach() */
closure_put(&dc->disk.cl);
}
void bch_cached_dev_detach(struct cached_dev *dc)
{
lockdep_assert_held(&bch_register_lock);
if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
return;
if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
return;
/*
* Block the device from being closed and freed until we're finished
* detaching
*/
closure_get(&dc->disk.cl);
bch_writeback_queue(dc);
cached_dev_put(dc);
}
int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
uint8_t *set_uuid)
{
uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
struct uuid_entry *u;
struct cached_dev *exist_dc, *t;
if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
(!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
return -ENOENT;
if (dc->disk.c) {
pr_err("Can't attach %s: already attached",
dc->backing_dev_name);
return -EINVAL;
}
if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
pr_err("Can't attach %s: shutting down",
dc->backing_dev_name);
return -EINVAL;
}
if (dc->sb.block_size < c->sb.block_size) {
/* Will die */
pr_err("Couldn't attach %s: block size less than set's block size",
dc->backing_dev_name);
return -EINVAL;
}
/* Check whether already attached */
list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
pr_err("Tried to attach %s but duplicate UUID already attached",
dc->backing_dev_name);
return -EINVAL;
}
}
u = uuid_find(c, dc->sb.uuid);
if (u &&
(BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
memcpy(u->uuid, invalid_uuid, 16);
u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
u = NULL;
}
if (!u) {
if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
pr_err("Couldn't find uuid for %s in set",
dc->backing_dev_name);
return -ENOENT;
}
u = uuid_find_empty(c);
if (!u) {
pr_err("Not caching %s, no room for UUID",
dc->backing_dev_name);
return -EINVAL;
}
}
/*
* Deadlocks since we're called via sysfs...
* sysfs_remove_file(&dc->kobj, &sysfs_attach);
*/
if (bch_is_zero(u->uuid, 16)) {
struct closure cl;
closure_init_stack(&cl);
memcpy(u->uuid, dc->sb.uuid, 16);
memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
u->first_reg = u->last_reg = rtime;
bch_uuid_write(c);
memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
bch_write_bdev_super(dc, &cl);
closure_sync(&cl);
} else {
u->last_reg = rtime;
bch_uuid_write(c);
}
bcache_device_attach(&dc->disk, c, u - c->uuids);
list_move(&dc->list, &c->cached_devs);
calc_cached_dev_sectors(c);
/*
* dc->c must be set before dc->count != 0 - paired with the mb in
* cached_dev_get()
*/
smp_wmb();
refcount_set(&dc->count, 1);
/* Block writeback thread, but spawn it */
down_write(&dc->writeback_lock);
if (bch_cached_dev_writeback_start(dc)) {
up_write(&dc->writeback_lock);
return -ENOMEM;
}
if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
atomic_set(&dc->has_dirty, 1);
bch_writeback_queue(dc);
}
bch_sectors_dirty_init(&dc->disk);
bch_cached_dev_run(dc);
bcache_device_link(&dc->disk, c, "bdev");
atomic_inc(&c->attached_dev_nr);
/* Allow the writeback thread to proceed */
up_write(&dc->writeback_lock);
pr_info("Caching %s as %s on set %pU",
dc->backing_dev_name,
dc->disk.disk->disk_name,
dc->disk.c->sb.set_uuid);
return 0;
}
void bch_cached_dev_release(struct kobject *kobj)
{
struct cached_dev *dc = container_of(kobj, struct cached_dev,
disk.kobj);
kfree(dc);
module_put(THIS_MODULE);
}
static void cached_dev_free(struct closure *cl)
{
struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
mutex_lock(&bch_register_lock);
if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
cancel_writeback_rate_update_dwork(dc);
if (!IS_ERR_OR_NULL(dc->writeback_thread))
kthread_stop(dc->writeback_thread);
if (dc->writeback_write_wq)
destroy_workqueue(dc->writeback_write_wq);
if (!IS_ERR_OR_NULL(dc->status_update_thread))
kthread_stop(dc->status_update_thread);
if (atomic_read(&dc->running))
bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
bcache_device_free(&dc->disk);
list_del(&dc->list);
mutex_unlock(&bch_register_lock);
if (!IS_ERR_OR_NULL(dc->bdev))
blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
wake_up(&unregister_wait);
kobject_put(&dc->disk.kobj);
}
static void cached_dev_flush(struct closure *cl)
{
struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
struct bcache_device *d = &dc->disk;
mutex_lock(&bch_register_lock);
bcache_device_unlink(d);
mutex_unlock(&bch_register_lock);
bch_cache_accounting_destroy(&dc->accounting);
kobject_del(&d->kobj);
continue_at(cl, cached_dev_free, system_wq);
}
static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
{
int ret;
struct io *io;
struct request_queue *q = bdev_get_queue(dc->bdev);
__module_get(THIS_MODULE);
INIT_LIST_HEAD(&dc->list);
closure_init(&dc->disk.cl, NULL);
set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
INIT_WORK(&dc->detach, cached_dev_detach_finish);
sema_init(&dc->sb_write_mutex, 1);
INIT_LIST_HEAD(&dc->io_lru);
spin_lock_init(&dc->io_lock);
bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
dc->sequential_cutoff = 4 << 20;
for (io = dc->io; io < dc->io + RECENT_IO; io++) {
list_add(&io->lru, &dc->io_lru);
hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
}
dc->disk.stripe_size = q->limits.io_opt >> 9;
if (dc->disk.stripe_size)
dc->partial_stripes_expensive =
q->limits.raid_partial_stripes_expensive;
ret = bcache_device_init(&dc->disk, block_size,
dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
if (ret)
return ret;
dc->disk.disk->queue->backing_dev_info->ra_pages =
max(dc->disk.disk->queue->backing_dev_info->ra_pages,
q->backing_dev_info->ra_pages);
atomic_set(&dc->io_errors, 0);
dc->io_disable = false;
dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
/* default to auto */
dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
bch_cached_dev_request_init(dc);
bch_cached_dev_writeback_init(dc);
return 0;
}
/* Cached device - bcache superblock */
static void register_bdev(struct cache_sb *sb, struct page *sb_page,
struct block_device *bdev,
struct cached_dev *dc)
{
const char *err = "cannot allocate memory";
struct cache_set *c;
bdevname(bdev, dc->backing_dev_name);
memcpy(&dc->sb, sb, sizeof(struct cache_sb));
dc->bdev = bdev;
dc->bdev->bd_holder = dc;
bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
get_page(sb_page);
if (cached_dev_init(dc, sb->block_size << 9))
goto err;
err = "error creating kobject";
if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
"bcache"))
goto err;
if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
goto err;
pr_info("registered backing device %s", dc->backing_dev_name);
list_add(&dc->list, &uncached_devices);
/* attach to a matched cache set if it exists */
list_for_each_entry(c, &bch_cache_sets, list)
bch_cached_dev_attach(dc, c, NULL);
if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
bch_cached_dev_run(dc);
return;
err:
pr_notice("error %s: %s", dc->backing_dev_name, err);
bcache_device_stop(&dc->disk);
}
/* Flash only volumes */
void bch_flash_dev_release(struct kobject *kobj)
{
struct bcache_device *d = container_of(kobj, struct bcache_device,
kobj);
kfree(d);
}
static void flash_dev_free(struct closure *cl)
{
struct bcache_device *d = container_of(cl, struct bcache_device, cl);
mutex_lock(&bch_register_lock);
atomic_long_sub(bcache_dev_sectors_dirty(d),
&d->c->flash_dev_dirty_sectors);
bcache_device_free(d);
mutex_unlock(&bch_register_lock);
kobject_put(&d->kobj);
}
static void flash_dev_flush(struct closure *cl)
{
struct bcache_device *d = container_of(cl, struct bcache_device, cl);
mutex_lock(&bch_register_lock);
bcache_device_unlink(d);
mutex_unlock(&bch_register_lock);
kobject_del(&d->kobj);
continue_at(cl, flash_dev_free, system_wq);
}
static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
{
struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
GFP_KERNEL);
if (!d)
return -ENOMEM;
closure_init(&d->cl, NULL);
set_closure_fn(&d->cl, flash_dev_flush, system_wq);
kobject_init(&d->kobj, &bch_flash_dev_ktype);
if (bcache_device_init(d, block_bytes(c), u->sectors))
goto err;
bcache_device_attach(d, c, u - c->uuids);
bch_sectors_dirty_init(d);
bch_flash_dev_request_init(d);
add_disk(d->disk);
if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
goto err;
bcache_device_link(d, c, "volume");
return 0;
err:
kobject_put(&d->kobj);
return -ENOMEM;
}
static int flash_devs_run(struct cache_set *c)
{
int ret = 0;
struct uuid_entry *u;
for (u = c->uuids;
u < c->uuids + c->nr_uuids && !ret;
u++)
if (UUID_FLASH_ONLY(u))
ret = flash_dev_run(c, u);
return ret;
}
int bch_flash_dev_create(struct cache_set *c, uint64_t size)
{
struct uuid_entry *u;
if (test_bit(CACHE_SET_STOPPING, &c->flags))
return -EINTR;
if (!test_bit(CACHE_SET_RUNNING, &c->flags))
return -EPERM;
u = uuid_find_empty(c);
if (!u) {
pr_err("Can't create volume, no room for UUID");
return -EINVAL;
}
get_random_bytes(u->uuid, 16);
memset(u->label, 0, 32);
u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
SET_UUID_FLASH_ONLY(u, 1);
u->sectors = size >> 9;
bch_uuid_write(c);
return flash_dev_run(c, u);
}
bool bch_cached_dev_error(struct cached_dev *dc)
{
struct cache_set *c;
if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
return false;
dc->io_disable = true;
/* make others know io_disable is true earlier */
smp_mb();
pr_err("stop %s: too many IO errors on backing device %s\n",
dc->disk.disk->disk_name, dc->backing_dev_name);
/*
* If the cached device is still attached to a cache set,
* even dc->io_disable is true and no more I/O requests
* accepted, cache device internal I/O (writeback scan or
* garbage collection) may still prevent bcache device from
* being stopped. So here CACHE_SET_IO_DISABLE should be
* set to c->flags too, to make the internal I/O to cache
* device rejected and stopped immediately.
* If c is NULL, that means the bcache device is not attached
* to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
*/
c = dc->disk.c;
if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
pr_info("CACHE_SET_IO_DISABLE already set");
bcache_device_stop(&dc->disk);
return true;
}
/* Cache set */
__printf(2, 3)
bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
{
va_list args;
if (c->on_error != ON_ERROR_PANIC &&
test_bit(CACHE_SET_STOPPING, &c->flags))
return false;
if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
pr_info("CACHE_SET_IO_DISABLE already set");
/*
* XXX: we can be called from atomic context
* acquire_console_sem();
*/
pr_err("bcache: error on %pU: ", c->sb.set_uuid);
va_start(args, fmt);
vprintk(fmt, args);
va_end(args);
pr_err(", disabling caching\n");
if (c->on_error == ON_ERROR_PANIC)
panic("panic forced after error\n");
bch_cache_set_unregister(c);
return true;
}
void bch_cache_set_release(struct kobject *kobj)
{
struct cache_set *c = container_of(kobj, struct cache_set, kobj);
kfree(c);
module_put(THIS_MODULE);
}
static void cache_set_free(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, cl);
struct cache *ca;
unsigned int i;
debugfs_remove(c->debug);
bch_open_buckets_free(c);
bch_btree_cache_free(c);
bch_journal_free(c);
for_each_cache(ca, c, i)
if (ca) {
ca->set = NULL;
c->cache[ca->sb.nr_this_dev] = NULL;
kobject_put(&ca->kobj);
}
bch_bset_sort_state_free(&c->sort);
free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
if (c->moving_gc_wq)
destroy_workqueue(c->moving_gc_wq);
bioset_exit(&c->bio_split);
mempool_exit(&c->fill_iter);
mempool_exit(&c->bio_meta);
mempool_exit(&c->search);
kfree(c->devices);
mutex_lock(&bch_register_lock);
list_del(&c->list);
mutex_unlock(&bch_register_lock);
pr_info("Cache set %pU unregistered", c->sb.set_uuid);
wake_up(&unregister_wait);
closure_debug_destroy(&c->cl);
kobject_put(&c->kobj);
}
static void cache_set_flush(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, caching);
struct cache *ca;
struct btree *b;
unsigned int i;
bch_cache_accounting_destroy(&c->accounting);
kobject_put(&c->internal);
kobject_del(&c->kobj);
if (c->gc_thread)
kthread_stop(c->gc_thread);
if (!IS_ERR_OR_NULL(c->root))
list_add(&c->root->list, &c->btree_cache);
/* Should skip this if we're unregistering because of an error */
list_for_each_entry(b, &c->btree_cache, list) {
mutex_lock(&b->write_lock);
if (btree_node_dirty(b))
__bch_btree_node_write(b, NULL);
mutex_unlock(&b->write_lock);
}
for_each_cache(ca, c, i)
if (ca->alloc_thread)
kthread_stop(ca->alloc_thread);
if (c->journal.cur) {
cancel_delayed_work_sync(&c->journal.work);
/* flush last journal entry if needed */
c->journal.work.work.func(&c->journal.work.work);
}
closure_return(cl);
}
/*
* This function is only called when CACHE_SET_IO_DISABLE is set, which means
* cache set is unregistering due to too many I/O errors. In this condition,
* the bcache device might be stopped, it depends on stop_when_cache_set_failed
* value and whether the broken cache has dirty data:
*
* dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
* BCH_CACHED_STOP_AUTO 0 NO
* BCH_CACHED_STOP_AUTO 1 YES
* BCH_CACHED_DEV_STOP_ALWAYS 0 YES
* BCH_CACHED_DEV_STOP_ALWAYS 1 YES
*
* The expected behavior is, if stop_when_cache_set_failed is configured to
* "auto" via sysfs interface, the bcache device will not be stopped if the
* backing device is clean on the broken cache device.
*/
static void conditional_stop_bcache_device(struct cache_set *c,
struct bcache_device *d,
struct cached_dev *dc)
{
if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
d->disk->disk_name, c->sb.set_uuid);
bcache_device_stop(d);
} else if (atomic_read(&dc->has_dirty)) {
/*
* dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
* and dc->has_dirty == 1
*/
pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
d->disk->disk_name);
/*
* There might be a small time gap that cache set is
* released but bcache device is not. Inside this time
* gap, regular I/O requests will directly go into
* backing device as no cache set attached to. This
* behavior may also introduce potential inconsistence
* data in writeback mode while cache is dirty.
* Therefore before calling bcache_device_stop() due
* to a broken cache device, dc->io_disable should be
* explicitly set to true.
*/
dc->io_disable = true;
/* make others know io_disable is true earlier */
smp_mb();
bcache_device_stop(d);
} else {
/*
* dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
* and dc->has_dirty == 0
*/
pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
d->disk->disk_name);
}
}
static void __cache_set_unregister(struct closure *cl)
{
struct cache_set *c = container_of(cl, struct cache_set, caching);
struct cached_dev *dc;
struct bcache_device *d;
size_t i;
mutex_lock(&bch_register_lock);
for (i = 0; i < c->devices_max_used; i++) {
d = c->devices[i];
if (!d)
continue;
if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
dc = container_of(d, struct cached_dev, disk);
bch_cached_dev_detach(dc);
if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
conditional_stop_bcache_device(c, d, dc);
} else {
bcache_device_stop(d);
}
}
mutex_unlock(&bch_register_lock);
continue_at(cl, cache_set_flush, system_wq);
}
void bch_cache_set_stop(struct cache_set *c)
{
if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
closure_queue(&c->caching);
}
void bch_cache_set_unregister(struct cache_set *c)
{
set_bit(CACHE_SET_UNREGISTERING, &c->flags);
bch_cache_set_stop(c);
}
#define alloc_bucket_pages(gfp, c) \
((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
{
int iter_size;
struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
if (!c)
return NULL;
__module_get(THIS_MODULE);
closure_init(&c->cl, NULL);
set_closure_fn(&c->cl, cache_set_free, system_wq);
closure_init(&c->caching, &c->cl);
set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
/* Maybe create continue_at_noreturn() and use it here? */
closure_set_stopped(&c->cl);
closure_put(&c->cl);
kobject_init(&c->kobj, &bch_cache_set_ktype);
kobject_init(&c->internal, &bch_cache_set_internal_ktype);
bch_cache_accounting_init(&c->accounting, &c->cl);
memcpy(c->sb.set_uuid, sb->set_uuid, 16);
c->sb.block_size = sb->block_size;
c->sb.bucket_size = sb->bucket_size;
c->sb.nr_in_set = sb->nr_in_set;
c->sb.last_mount = sb->last_mount;
c->bucket_bits = ilog2(sb->bucket_size);
c->block_bits = ilog2(sb->block_size);
c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
c->devices_max_used = 0;
atomic_set(&c->attached_dev_nr, 0);
c->btree_pages = bucket_pages(c);
if (c->btree_pages > BTREE_MAX_PAGES)
c->btree_pages = max_t(int, c->btree_pages / 4,
BTREE_MAX_PAGES);
sema_init(&c->sb_write_mutex, 1);
mutex_init(&c->bucket_lock);
init_waitqueue_head(&c->btree_cache_wait);
init_waitqueue_head(&c->bucket_wait);
init_waitqueue_head(&c->gc_wait);
sema_init(&c->uuid_write_mutex, 1);
spin_lock_init(&c->btree_gc_time.lock);
spin_lock_init(&c->btree_split_time.lock);
spin_lock_init(&c->btree_read_time.lock);
bch_moving_init_cache_set(c);
INIT_LIST_HEAD(&c->list);
INIT_LIST_HEAD(&c->cached_devs);
INIT_LIST_HEAD(&c->btree_cache);
INIT_LIST_HEAD(&c->btree_cache_freeable);
INIT_LIST_HEAD(&c->btree_cache_freed);
INIT_LIST_HEAD(&c->data_buckets);
iter_size = (sb->bucket_size / sb->block_size + 1) *
sizeof(struct btree_iter_set);
if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
mempool_init_kmalloc_pool(&c->bio_meta, 2,
sizeof(struct bbio) + sizeof(struct bio_vec) *
bucket_pages(c)) ||
mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
!(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
!(c->moving_gc_wq = alloc_workqueue("bcache_gc",
WQ_MEM_RECLAIM, 0)) ||
bch_journal_alloc(c) ||
bch_btree_cache_alloc(c) ||
bch_open_buckets_alloc(c) ||
bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
goto err;
c->congested_read_threshold_us = 2000;
c->congested_write_threshold_us = 20000;
c->error_limit = DEFAULT_IO_ERROR_LIMIT;
WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
return c;
err:
bch_cache_set_unregister(c);
return NULL;
}
static void run_cache_set(struct cache_set *c)
{
const char *err = "cannot allocate memory";
struct cached_dev *dc, *t;
struct cache *ca;
struct closure cl;
unsigned int i;
closure_init_stack(&cl);
for_each_cache(ca, c, i)
c->nbuckets += ca->sb.nbuckets;
set_gc_sectors(c);
if (CACHE_SYNC(&c->sb)) {
LIST_HEAD(journal);
struct bkey *k;
struct jset *j;
err = "cannot allocate memory for journal";
if (bch_journal_read(c, &journal))
goto err;
pr_debug("btree_journal_read() done");
err = "no journal entries found";
if (list_empty(&journal))
goto err;
j = &list_entry(journal.prev, struct journal_replay, list)->j;
err = "IO error reading priorities";
for_each_cache(ca, c, i)
prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
/*
* If prio_read() fails it'll call cache_set_error and we'll
* tear everything down right away, but if we perhaps checked
* sooner we could avoid journal replay.
*/
k = &j->btree_root;
err = "bad btree root";
if (__bch_btree_ptr_invalid(c, k))
goto err;
err = "error reading btree root";
c->root = bch_btree_node_get(c, NULL, k,
j->btree_level,
true, NULL);
if (IS_ERR_OR_NULL(c->root))
goto err;
list_del_init(&c->root->list);
rw_unlock(true, c->root);
err = uuid_read(c, j, &cl);
if (err)
goto err;
err = "error in recovery";
if (bch_btree_check(c))
goto err;
bch_journal_mark(c, &journal);
bch_initial_gc_finish(c);
pr_debug("btree_check() done");
/*
* bcache_journal_next() can't happen sooner, or
* btree_gc_finish() will give spurious errors about last_gc >
* gc_gen - this is a hack but oh well.
*/
bch_journal_next(&c->journal);
err = "error starting allocator thread";
for_each_cache(ca, c, i)
if (bch_cache_allocator_start(ca))
goto err;
/*
* First place it's safe to allocate: btree_check() and
* btree_gc_finish() have to run before we have buckets to
* allocate, and bch_bucket_alloc_set() might cause a journal
* entry to be written so bcache_journal_next() has to be called
* first.
*
* If the uuids were in the old format we have to rewrite them
* before the next journal entry is written:
*/
if (j->version < BCACHE_JSET_VERSION_UUID)
__uuid_write(c);
bch_journal_replay(c, &journal);
} else {
pr_notice("invalidating existing data");
for_each_cache(ca, c, i) {
unsigned int j;
ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2, SB_JOURNAL_BUCKETS);
for (j = 0; j < ca->sb.keys; j++)
ca->sb.d[j] = ca->sb.first_bucket + j;
}
bch_initial_gc_finish(c);
err = "error starting allocator thread";
for_each_cache(ca, c, i)
if (bch_cache_allocator_start(ca))
goto err;
mutex_lock(&c->bucket_lock);
for_each_cache(ca, c, i)
bch_prio_write(ca);
mutex_unlock(&c->bucket_lock);
err = "cannot allocate new UUID bucket";
if (__uuid_write(c))
goto err;
err = "cannot allocate new btree root";
c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
if (IS_ERR_OR_NULL(c->root))
goto err;
mutex_lock(&c->root->write_lock);
bkey_copy_key(&c->root->key, &MAX_KEY);
bch_btree_node_write(c->root, &cl);
mutex_unlock(&c->root->write_lock);
bch_btree_set_root(c->root);
rw_unlock(true, c->root);
/*
* We don't want to write the first journal entry until
* everything is set up - fortunately journal entries won't be
* written until the SET_CACHE_SYNC() here:
*/
SET_CACHE_SYNC(&c->sb, true);
bch_journal_next(&c->journal);
bch_journal_meta(c, &cl);
}
err = "error starting gc thread";
if (bch_gc_thread_start(c))
goto err;
closure_sync(&cl);
c->sb.last_mount = (u32)ktime_get_real_seconds();
bcache_write_super(c);
list_for_each_entry_safe(dc, t, &uncached_devices, list)
bch_cached_dev_attach(dc, c, NULL);
flash_devs_run(c);
set_bit(CACHE_SET_RUNNING, &c->flags);
return;
err:
closure_sync(&cl);
/* XXX: test this, it's broken */
bch_cache_set_error(c, "%s", err);
}
static bool can_attach_cache(struct cache *ca, struct cache_set *c)
{
return ca->sb.block_size == c->sb.block_size &&
ca->sb.bucket_size == c->sb.bucket_size &&
ca->sb.nr_in_set == c->sb.nr_in_set;
}
static const char *register_cache_set(struct cache *ca)
{
char buf[12];
const char *err = "cannot allocate memory";
struct cache_set *c;
list_for_each_entry(c, &bch_cache_sets, list)
if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
if (c->cache[ca->sb.nr_this_dev])
return "duplicate cache set member";
if (!can_attach_cache(ca, c))
return "cache sb does not match set";
if (!CACHE_SYNC(&ca->sb))
SET_CACHE_SYNC(&c->sb, false);
goto found;
}
c = bch_cache_set_alloc(&ca->sb);
if (!c)
return err;
err = "error creating kobject";
if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
kobject_add(&c->internal, &c->kobj, "internal"))
goto err;
if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
goto err;
bch_debug_init_cache_set(c);
list_add(&c->list, &bch_cache_sets);
found:
sprintf(buf, "cache%i", ca->sb.nr_this_dev);
if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
sysfs_create_link(&c->kobj, &ca->kobj, buf))
goto err;
if (ca->sb.seq > c->sb.seq) {
c->sb.version = ca->sb.version;
memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
c->sb.flags = ca->sb.flags;
c->sb.seq = ca->sb.seq;
pr_debug("set version = %llu", c->sb.version);
}
kobject_get(&ca->kobj);
ca->set = c;
ca->set->cache[ca->sb.nr_this_dev] = ca;
c->cache_by_alloc[c->caches_loaded++] = ca;
if (c->caches_loaded == c->sb.nr_in_set)
run_cache_set(c);
return NULL;
err:
bch_cache_set_unregister(c);
return err;
}
/* Cache device */
void bch_cache_release(struct kobject *kobj)
{
struct cache *ca = container_of(kobj, struct cache, kobj);
unsigned int i;
if (ca->set) {
BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
ca->set->cache[ca->sb.nr_this_dev] = NULL;
}
free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
kfree(ca->prio_buckets);
vfree(ca->buckets);
free_heap(&ca->heap);
free_fifo(&ca->free_inc);
for (i = 0; i < RESERVE_NR; i++)
free_fifo(&ca->free[i]);
if (ca->sb_bio.bi_inline_vecs[0].bv_page)
put_page(bio_first_page_all(&ca->sb_bio));
if (!IS_ERR_OR_NULL(ca->bdev))
blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
kfree(ca);
module_put(THIS_MODULE);
}
static int cache_alloc(struct cache *ca)
{
size_t free;
size_t btree_buckets;
struct bucket *b;
int ret = -ENOMEM;
const char *err = NULL;
__module_get(THIS_MODULE);
kobject_init(&ca->kobj, &bch_cache_ktype);
bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
/*
* when ca->sb.njournal_buckets is not zero, journal exists,
* and in bch_journal_replay(), tree node may split,
* so bucket of RESERVE_BTREE type is needed,
* the worst situation is all journal buckets are valid journal,
* and all the keys need to replay,
* so the number of RESERVE_BTREE type buckets should be as much
* as journal buckets
*/
btree_buckets = ca->sb.njournal_buckets ?: 8;
free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
if (!free) {
ret = -EPERM;
err = "ca->sb.nbuckets is too small";
goto err_free;
}
if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
GFP_KERNEL)) {
err = "ca->free[RESERVE_BTREE] alloc failed";
goto err_btree_alloc;
}
if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
GFP_KERNEL)) {
err = "ca->free[RESERVE_PRIO] alloc failed";
goto err_prio_alloc;
}
if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
err = "ca->free[RESERVE_MOVINGGC] alloc failed";
goto err_movinggc_alloc;
}
if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
err = "ca->free[RESERVE_NONE] alloc failed";
goto err_none_alloc;
}
if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
err = "ca->free_inc alloc failed";
goto err_free_inc_alloc;
}
if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
err = "ca->heap alloc failed";
goto err_heap_alloc;
}
ca->buckets = vzalloc(array_size(sizeof(struct bucket),
ca->sb.nbuckets));
if (!ca->buckets) {
err = "ca->buckets alloc failed";
goto err_buckets_alloc;
}
ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
prio_buckets(ca), 2),
GFP_KERNEL);
if (!ca->prio_buckets) {
err = "ca->prio_buckets alloc failed";
goto err_prio_buckets_alloc;
}
ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
if (!ca->disk_buckets) {
err = "ca->disk_buckets alloc failed";
goto err_disk_buckets_alloc;
}
ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
for_each_bucket(b, ca)
atomic_set(&b->pin, 0);
return 0;
err_disk_buckets_alloc:
kfree(ca->prio_buckets);
err_prio_buckets_alloc:
vfree(ca->buckets);
err_buckets_alloc:
free_heap(&ca->heap);
err_heap_alloc:
free_fifo(&ca->free_inc);
err_free_inc_alloc:
free_fifo(&ca->free[RESERVE_NONE]);
err_none_alloc:
free_fifo(&ca->free[RESERVE_MOVINGGC]);
err_movinggc_alloc:
free_fifo(&ca->free[RESERVE_PRIO]);
err_prio_alloc:
free_fifo(&ca->free[RESERVE_BTREE]);
err_btree_alloc:
err_free:
module_put(THIS_MODULE);
if (err)
pr_notice("error %s: %s", ca->cache_dev_name, err);
return ret;
}
static int register_cache(struct cache_sb *sb, struct page *sb_page,
struct block_device *bdev, struct cache *ca)
{
const char *err = NULL; /* must be set for any error case */
int ret = 0;
bdevname(bdev, ca->cache_dev_name);
memcpy(&ca->sb, sb, sizeof(struct cache_sb));
ca->bdev = bdev;
ca->bdev->bd_holder = ca;
bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
get_page(sb_page);
if (blk_queue_discard(bdev_get_queue(bdev)))
ca->discard = CACHE_DISCARD(&ca->sb);
ret = cache_alloc(ca);
if (ret != 0) {
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
if (ret == -ENOMEM)
err = "cache_alloc(): -ENOMEM";
else if (ret == -EPERM)
err = "cache_alloc(): cache device is too small";
else
err = "cache_alloc(): unknown error";
goto err;
}
if (kobject_add(&ca->kobj,
&part_to_dev(bdev->bd_part)->kobj,
"bcache")) {
err = "error calling kobject_add";
ret = -ENOMEM;
goto out;
}
mutex_lock(&bch_register_lock);
err = register_cache_set(ca);
mutex_unlock(&bch_register_lock);
if (err) {
ret = -ENODEV;
goto out;
}
pr_info("registered cache device %s", ca->cache_dev_name);
out:
kobject_put(&ca->kobj);
err:
if (err)
pr_notice("error %s: %s", ca->cache_dev_name, err);
return ret;
}
/* Global interfaces/init */
static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
const char *buffer, size_t size);
kobj_attribute_write(register, register_bcache);
kobj_attribute_write(register_quiet, register_bcache);
static bool bch_is_open_backing(struct block_device *bdev)
{
struct cache_set *c, *tc;
struct cached_dev *dc, *t;
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
list_for_each_entry_safe(dc, t, &c->cached_devs, list)
if (dc->bdev == bdev)
return true;
list_for_each_entry_safe(dc, t, &uncached_devices, list)
if (dc->bdev == bdev)
return true;
return false;
}
static bool bch_is_open_cache(struct block_device *bdev)
{
struct cache_set *c, *tc;
struct cache *ca;
unsigned int i;
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
for_each_cache(ca, c, i)
if (ca->bdev == bdev)
return true;
return false;
}
static bool bch_is_open(struct block_device *bdev)
{
return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
}
static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
const char *buffer, size_t size)
{
ssize_t ret = size;
const char *err = "cannot allocate memory";
char *path = NULL;
struct cache_sb *sb = NULL;
struct block_device *bdev = NULL;
struct page *sb_page = NULL;
if (!try_module_get(THIS_MODULE))
return -EBUSY;
path = kstrndup(buffer, size, GFP_KERNEL);
if (!path)
goto err;
sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
if (!sb)
goto err;
err = "failed to open device";
bdev = blkdev_get_by_path(strim(path),
FMODE_READ|FMODE_WRITE|FMODE_EXCL,
sb);
if (IS_ERR(bdev)) {
if (bdev == ERR_PTR(-EBUSY)) {
bdev = lookup_bdev(strim(path));
mutex_lock(&bch_register_lock);
if (!IS_ERR(bdev) && bch_is_open(bdev))
err = "device already registered";
else
err = "device busy";
mutex_unlock(&bch_register_lock);
if (!IS_ERR(bdev))
bdput(bdev);
if (attr == &ksysfs_register_quiet)
goto out;
}
goto err;
}
err = "failed to set blocksize";
if (set_blocksize(bdev, 4096))
goto err_close;
err = read_super(sb, bdev, &sb_page);
if (err)
goto err_close;
err = "failed to register device";
if (SB_IS_BDEV(sb)) {
struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
if (!dc)
goto err_close;
mutex_lock(&bch_register_lock);
register_bdev(sb, sb_page, bdev, dc);
mutex_unlock(&bch_register_lock);
} else {
struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
goto err_close;
if (register_cache(sb, sb_page, bdev, ca) != 0)
goto err;
}
out:
if (sb_page)
put_page(sb_page);
kfree(sb);
kfree(path);
module_put(THIS_MODULE);
return ret;
err_close:
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
err:
pr_info("error %s: %s", path, err);
ret = -EINVAL;
goto out;
}
static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
{
if (code == SYS_DOWN ||
code == SYS_HALT ||
code == SYS_POWER_OFF) {
DEFINE_WAIT(wait);
unsigned long start = jiffies;
bool stopped = false;
struct cache_set *c, *tc;
struct cached_dev *dc, *tdc;
mutex_lock(&bch_register_lock);
if (list_empty(&bch_cache_sets) &&
list_empty(&uncached_devices))
goto out;
pr_info("Stopping all devices:");
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
bch_cache_set_stop(c);
list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
bcache_device_stop(&dc->disk);
/* What's a condition variable? */
while (1) {
long timeout = start + 2 * HZ - jiffies;
stopped = list_empty(&bch_cache_sets) &&
list_empty(&uncached_devices);
if (timeout < 0 || stopped)
break;
prepare_to_wait(&unregister_wait, &wait,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&bch_register_lock);
schedule_timeout(timeout);
mutex_lock(&bch_register_lock);
}
finish_wait(&unregister_wait, &wait);
if (stopped)
pr_info("All devices stopped");
else
pr_notice("Timeout waiting for devices to be closed");
out:
mutex_unlock(&bch_register_lock);
}
return NOTIFY_DONE;
}
static struct notifier_block reboot = {
.notifier_call = bcache_reboot,
.priority = INT_MAX, /* before any real devices */
};
static void bcache_exit(void)
{
bch_debug_exit();
bch_request_exit();
if (bcache_kobj)
kobject_put(bcache_kobj);
if (bcache_wq)
destroy_workqueue(bcache_wq);
if (bch_journal_wq)
destroy_workqueue(bch_journal_wq);
if (bcache_major)
unregister_blkdev(bcache_major, "bcache");
unregister_reboot_notifier(&reboot);
mutex_destroy(&bch_register_lock);
}
/* Check and fixup module parameters */
static void check_module_parameters(void)
{
if (bch_cutoff_writeback_sync == 0)
bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
}
if (bch_cutoff_writeback == 0)
bch_cutoff_writeback = CUTOFF_WRITEBACK;
else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
pr_warn("set bch_cutoff_writeback (%u) to max value %u",
bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
}
if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
pr_warn("set bch_cutoff_writeback (%u) to %u",
bch_cutoff_writeback, bch_cutoff_writeback_sync);
bch_cutoff_writeback = bch_cutoff_writeback_sync;
}
}
static int __init bcache_init(void)
{
static const struct attribute *files[] = {
&ksysfs_register.attr,
&ksysfs_register_quiet.attr,
NULL
};
check_module_parameters();
mutex_init(&bch_register_lock);
init_waitqueue_head(&unregister_wait);
register_reboot_notifier(&reboot);
bcache_major = register_blkdev(0, "bcache");
if (bcache_major < 0) {
unregister_reboot_notifier(&reboot);
mutex_destroy(&bch_register_lock);
return bcache_major;
}
bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
if (!bcache_wq)
goto err;
bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
if (!bch_journal_wq)
goto err;
bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
if (!bcache_kobj)
goto err;
if (bch_request_init() ||
sysfs_create_files(bcache_kobj, files))
goto err;
bch_debug_init();
closure_debug_init();
return 0;
err:
bcache_exit();
return -ENOMEM;
}
/*
* Module hooks
*/
module_exit(bcache_exit);
module_init(bcache_init);
module_param(bch_cutoff_writeback, uint, 0);
MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
module_param(bch_cutoff_writeback_sync, uint, 0);
MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
MODULE_LICENSE("GPL");