linux-stable/drivers/staging/greybus/es2.c

816 lines
20 KiB
C

/*
* Greybus "AP" USB driver for "ES2" controller chips
*
* Copyright 2014-2015 Google Inc.
* Copyright 2014-2015 Linaro Ltd.
*
* Released under the GPLv2 only.
*/
#include <linux/kthread.h>
#include <linux/sizes.h>
#include <linux/usb.h>
#include <linux/kfifo.h>
#include <linux/debugfs.h>
#include <asm/unaligned.h>
#include "greybus.h"
#include "kernel_ver.h"
#include "connection.h"
#include "greybus_trace.h"
/* Memory sizes for the buffers sent to/from the ES1 controller */
#define ES1_GBUF_MSG_SIZE_MAX 2048
static const struct usb_device_id id_table[] = {
/* Made up numbers for the SVC USB Bridge in ES2 */
{ USB_DEVICE(0xffff, 0x0002) },
{ },
};
MODULE_DEVICE_TABLE(usb, id_table);
#define APB1_LOG_SIZE SZ_16K
static struct dentry *apb1_log_dentry;
static struct dentry *apb1_log_enable_dentry;
static struct task_struct *apb1_log_task;
static DEFINE_KFIFO(apb1_log_fifo, char, APB1_LOG_SIZE);
/* Number of bulk in and bulk out couple */
#define NUM_BULKS 7
/*
* Number of CPort IN urbs in flight at any point in time.
* Adjust if we are having stalls in the USB buffer due to not enough urbs in
* flight.
*/
#define NUM_CPORT_IN_URB 4
/* Number of CPort OUT urbs in flight at any point in time.
* Adjust if we get messages saying we are out of urbs in the system log.
*/
#define NUM_CPORT_OUT_URB (8 * NUM_BULKS)
/* vendor request APB1 log */
#define REQUEST_LOG 0x02
/* vendor request to map a cport to bulk in and bulk out endpoints */
#define REQUEST_EP_MAPPING 0x03
/* vendor request to get the number of cports available */
#define REQUEST_CPORT_COUNT 0x04
/*
* @endpoint: bulk in endpoint for CPort data
* @urb: array of urbs for the CPort in messages
* @buffer: array of buffers for the @cport_in_urb urbs
*/
struct es1_cport_in {
__u8 endpoint;
struct urb *urb[NUM_CPORT_IN_URB];
u8 *buffer[NUM_CPORT_IN_URB];
};
/*
* @endpoint: bulk out endpoint for CPort data
*/
struct es1_cport_out {
__u8 endpoint;
};
/**
* es1_ap_dev - ES1 USB Bridge to AP structure
* @usb_dev: pointer to the USB device we are.
* @usb_intf: pointer to the USB interface we are bound to.
* @hd: pointer to our greybus_host_device structure
* @cport_in: endpoint, urbs and buffer for cport in messages
* @cport_out: endpoint for for cport out messages
* @cport_out_urb: array of urbs for the CPort out messages
* @cport_out_urb_busy: array of flags to see if the @cport_out_urb is busy or
* not.
* @cport_out_urb_cancelled: array of flags indicating whether the
* corresponding @cport_out_urb is being cancelled
* @cport_out_urb_lock: locks the @cport_out_urb_busy "list"
*/
struct es1_ap_dev {
struct usb_device *usb_dev;
struct usb_interface *usb_intf;
struct greybus_host_device *hd;
struct es1_cport_in cport_in[NUM_BULKS];
struct es1_cport_out cport_out[NUM_BULKS];
struct urb *cport_out_urb[NUM_CPORT_OUT_URB];
bool cport_out_urb_busy[NUM_CPORT_OUT_URB];
bool cport_out_urb_cancelled[NUM_CPORT_OUT_URB];
spinlock_t cport_out_urb_lock;
int *cport_to_ep;
};
/**
* cport_to_ep - information about cport to endpoints mapping
* @cport_id: the id of cport to map to endpoints
* @endpoint_in: the endpoint number to use for in transfer
* @endpoint_out: he endpoint number to use for out transfer
*/
struct cport_to_ep {
__le16 cport_id;
__u8 endpoint_in;
__u8 endpoint_out;
};
static inline struct es1_ap_dev *hd_to_es1(struct greybus_host_device *hd)
{
return (struct es1_ap_dev *)&hd->hd_priv;
}
static void cport_out_callback(struct urb *urb);
static void usb_log_enable(struct es1_ap_dev *es1);
static void usb_log_disable(struct es1_ap_dev *es1);
/* Get the endpoints pair mapped to the cport */
static int cport_to_ep_pair(struct es1_ap_dev *es1, u16 cport_id)
{
if (cport_id >= es1->hd->num_cports)
return 0;
return es1->cport_to_ep[cport_id];
}
#define ES1_TIMEOUT 500 /* 500 ms for the SVC to do something */
/* Disable for now until we work all of this out to keep a warning-free build */
#if 0
/* Test if the endpoints pair is already mapped to a cport */
static int ep_pair_in_use(struct es1_ap_dev *es1, int ep_pair)
{
int i;
for (i = 0; i < es1->hd->num_cports; i++) {
if (es1->cport_to_ep[i] == ep_pair)
return 1;
}
return 0;
}
/* Configure the endpoint mapping and send the request to APBridge */
static int map_cport_to_ep(struct es1_ap_dev *es1,
u16 cport_id, int ep_pair)
{
int retval;
struct cport_to_ep *cport_to_ep;
if (ep_pair < 0 || ep_pair >= NUM_BULKS)
return -EINVAL;
if (cport_id >= es1->hd->num_cports)
return -EINVAL;
if (ep_pair && ep_pair_in_use(es1, ep_pair))
return -EINVAL;
cport_to_ep = kmalloc(sizeof(*cport_to_ep), GFP_KERNEL);
if (!cport_to_ep)
return -ENOMEM;
es1->cport_to_ep[cport_id] = ep_pair;
cport_to_ep->cport_id = cpu_to_le16(cport_id);
cport_to_ep->endpoint_in = es1->cport_in[ep_pair].endpoint;
cport_to_ep->endpoint_out = es1->cport_out[ep_pair].endpoint;
retval = usb_control_msg(es1->usb_dev,
usb_sndctrlpipe(es1->usb_dev, 0),
REQUEST_EP_MAPPING,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
0x00, 0x00,
(char *)cport_to_ep,
sizeof(*cport_to_ep),
ES1_TIMEOUT);
if (retval == sizeof(*cport_to_ep))
retval = 0;
kfree(cport_to_ep);
return retval;
}
/* Unmap a cport: use the muxed endpoints pair */
static int unmap_cport(struct es1_ap_dev *es1, u16 cport_id)
{
return map_cport_to_ep(es1, cport_id, 0);
}
#endif
static struct urb *next_free_urb(struct es1_ap_dev *es1, gfp_t gfp_mask)
{
struct urb *urb = NULL;
unsigned long flags;
int i;
spin_lock_irqsave(&es1->cport_out_urb_lock, flags);
/* Look in our pool of allocated urbs first, as that's the "fastest" */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (es1->cport_out_urb_busy[i] == false &&
es1->cport_out_urb_cancelled[i] == false) {
es1->cport_out_urb_busy[i] = true;
urb = es1->cport_out_urb[i];
break;
}
}
spin_unlock_irqrestore(&es1->cport_out_urb_lock, flags);
if (urb)
return urb;
/*
* Crap, pool is empty, complain to the syslog and go allocate one
* dynamically as we have to succeed.
*/
dev_err(&es1->usb_dev->dev,
"No free CPort OUT urbs, having to dynamically allocate one!\n");
return usb_alloc_urb(0, gfp_mask);
}
static void free_urb(struct es1_ap_dev *es1, struct urb *urb)
{
unsigned long flags;
int i;
/*
* See if this was an urb in our pool, if so mark it "free", otherwise
* we need to free it ourselves.
*/
spin_lock_irqsave(&es1->cport_out_urb_lock, flags);
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (urb == es1->cport_out_urb[i]) {
es1->cport_out_urb_busy[i] = false;
urb = NULL;
break;
}
}
spin_unlock_irqrestore(&es1->cport_out_urb_lock, flags);
/* If urb is not NULL, then we need to free this urb */
usb_free_urb(urb);
}
/*
* We (ab)use the operation-message header pad bytes to transfer the
* cport id in order to minimise overhead.
*/
static void
gb_message_cport_pack(struct gb_operation_msg_hdr *header, u16 cport_id)
{
header->pad[0] = cport_id;
}
/* Clear the pad bytes used for the CPort id */
static void gb_message_cport_clear(struct gb_operation_msg_hdr *header)
{
header->pad[0] = 0;
}
/* Extract the CPort id packed into the header, and clear it */
static u16 gb_message_cport_unpack(struct gb_operation_msg_hdr *header)
{
u16 cport_id = header->pad[0];
gb_message_cport_clear(header);
return cport_id;
}
/*
* Returns zero if the message was successfully queued, or a negative errno
* otherwise.
*/
static int message_send(struct greybus_host_device *hd, u16 cport_id,
struct gb_message *message, gfp_t gfp_mask)
{
struct es1_ap_dev *es1 = hd_to_es1(hd);
struct usb_device *udev = es1->usb_dev;
size_t buffer_size;
int retval;
struct urb *urb;
int ep_pair;
unsigned long flags;
/*
* The data actually transferred will include an indication
* of where the data should be sent. Do one last check of
* the target CPort id before filling it in.
*/
if (!cport_id_valid(hd, cport_id)) {
pr_err("invalid destination cport 0x%02x\n", cport_id);
return -EINVAL;
}
/* Find a free urb */
urb = next_free_urb(es1, gfp_mask);
if (!urb)
return -ENOMEM;
spin_lock_irqsave(&es1->cport_out_urb_lock, flags);
message->hcpriv = urb;
spin_unlock_irqrestore(&es1->cport_out_urb_lock, flags);
/* Pack the cport id into the message header */
gb_message_cport_pack(message->header, cport_id);
buffer_size = sizeof(*message->header) + message->payload_size;
ep_pair = cport_to_ep_pair(es1, cport_id);
usb_fill_bulk_urb(urb, udev,
usb_sndbulkpipe(udev,
es1->cport_out[ep_pair].endpoint),
message->buffer, buffer_size,
cport_out_callback, message);
urb->transfer_flags |= URB_ZERO_PACKET;
trace_gb_host_device_send(hd, cport_id, buffer_size);
retval = usb_submit_urb(urb, gfp_mask);
if (retval) {
pr_err("error %d submitting URB\n", retval);
spin_lock_irqsave(&es1->cport_out_urb_lock, flags);
message->hcpriv = NULL;
spin_unlock_irqrestore(&es1->cport_out_urb_lock, flags);
free_urb(es1, urb);
gb_message_cport_clear(message->header);
return retval;
}
return 0;
}
/*
* Can not be called in atomic context.
*/
static void message_cancel(struct gb_message *message)
{
struct greybus_host_device *hd = message->operation->connection->hd;
struct es1_ap_dev *es1 = hd_to_es1(hd);
struct urb *urb;
int i;
might_sleep();
spin_lock_irq(&es1->cport_out_urb_lock);
urb = message->hcpriv;
/* Prevent dynamically allocated urb from being deallocated. */
usb_get_urb(urb);
/* Prevent pre-allocated urb from being reused. */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (urb == es1->cport_out_urb[i]) {
es1->cport_out_urb_cancelled[i] = true;
break;
}
}
spin_unlock_irq(&es1->cport_out_urb_lock);
usb_kill_urb(urb);
if (i < NUM_CPORT_OUT_URB) {
spin_lock_irq(&es1->cport_out_urb_lock);
es1->cport_out_urb_cancelled[i] = false;
spin_unlock_irq(&es1->cport_out_urb_lock);
}
usb_free_urb(urb);
}
static struct greybus_host_driver es1_driver = {
.hd_priv_size = sizeof(struct es1_ap_dev),
.message_send = message_send,
.message_cancel = message_cancel,
};
/* Common function to report consistent warnings based on URB status */
static int check_urb_status(struct urb *urb)
{
struct device *dev = &urb->dev->dev;
int status = urb->status;
switch (status) {
case 0:
return 0;
case -EOVERFLOW:
dev_err(dev, "%s: overflow actual length is %d\n",
__func__, urb->actual_length);
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
case -EILSEQ:
case -EPROTO:
/* device is gone, stop sending */
return status;
}
dev_err(dev, "%s: unknown status %d\n", __func__, status);
return -EAGAIN;
}
static void ap_disconnect(struct usb_interface *interface)
{
struct es1_ap_dev *es1;
struct usb_device *udev;
int bulk_in;
int i;
es1 = usb_get_intfdata(interface);
if (!es1)
return;
usb_log_disable(es1);
/* Tear down everything! */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
struct urb *urb = es1->cport_out_urb[i];
if (!urb)
break;
usb_kill_urb(urb);
usb_free_urb(urb);
es1->cport_out_urb[i] = NULL;
es1->cport_out_urb_busy[i] = false; /* just to be anal */
}
for (bulk_in = 0; bulk_in < NUM_BULKS; bulk_in++) {
struct es1_cport_in *cport_in = &es1->cport_in[bulk_in];
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
struct urb *urb = cport_in->urb[i];
if (!urb)
break;
usb_kill_urb(urb);
usb_free_urb(urb);
kfree(cport_in->buffer[i]);
cport_in->buffer[i] = NULL;
}
}
usb_set_intfdata(interface, NULL);
udev = es1->usb_dev;
greybus_remove_hd(es1->hd);
kfree(es1->cport_to_ep);
usb_put_dev(udev);
}
static void cport_in_callback(struct urb *urb)
{
struct greybus_host_device *hd = urb->context;
struct device *dev = &urb->dev->dev;
struct gb_operation_msg_hdr *header;
int status = check_urb_status(urb);
int retval;
u16 cport_id;
if (status) {
if ((status == -EAGAIN) || (status == -EPROTO))
goto exit;
dev_err(dev, "urb cport in error %d (dropped)\n", status);
return;
}
if (urb->actual_length < sizeof(*header)) {
dev_err(dev, "%s: short message received\n", __func__);
goto exit;
}
/* Extract the CPort id, which is packed in the message header */
header = urb->transfer_buffer;
cport_id = gb_message_cport_unpack(header);
if (cport_id_valid(hd, cport_id)) {
trace_gb_host_device_recv(hd, cport_id, urb->actual_length);
greybus_data_rcvd(hd, cport_id, urb->transfer_buffer,
urb->actual_length);
} else {
dev_err(dev, "%s: invalid cport id 0x%02x received\n",
__func__, cport_id);
}
exit:
/* put our urb back in the request pool */
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(dev, "%s: error %d in submitting urb.\n",
__func__, retval);
}
static void cport_out_callback(struct urb *urb)
{
struct gb_message *message = urb->context;
struct greybus_host_device *hd = message->operation->connection->hd;
struct es1_ap_dev *es1 = hd_to_es1(hd);
int status = check_urb_status(urb);
unsigned long flags;
gb_message_cport_clear(message->header);
/*
* Tell the submitter that the message send (attempt) is
* complete, and report the status.
*/
greybus_message_sent(hd, message, status);
spin_lock_irqsave(&es1->cport_out_urb_lock, flags);
message->hcpriv = NULL;
spin_unlock_irqrestore(&es1->cport_out_urb_lock, flags);
free_urb(es1, urb);
}
#define APB1_LOG_MSG_SIZE 64
static void apb1_log_get(struct es1_ap_dev *es1, char *buf)
{
int retval;
/* SVC messages go down our control pipe */
do {
retval = usb_control_msg(es1->usb_dev,
usb_rcvctrlpipe(es1->usb_dev, 0),
REQUEST_LOG,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
0x00, 0x00,
buf,
APB1_LOG_MSG_SIZE,
ES1_TIMEOUT);
if (retval > 0)
kfifo_in(&apb1_log_fifo, buf, retval);
} while (retval > 0);
}
static int apb1_log_poll(void *data)
{
struct es1_ap_dev *es1 = data;
char *buf;
buf = kmalloc(APB1_LOG_MSG_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
while (!kthread_should_stop()) {
msleep(1000);
apb1_log_get(es1, buf);
}
kfree(buf);
return 0;
}
static ssize_t apb1_log_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
ssize_t ret;
size_t copied;
char *tmp_buf;
if (count > APB1_LOG_SIZE)
count = APB1_LOG_SIZE;
tmp_buf = kmalloc(count, GFP_KERNEL);
if (!tmp_buf)
return -ENOMEM;
copied = kfifo_out(&apb1_log_fifo, tmp_buf, count);
ret = simple_read_from_buffer(buf, count, ppos, tmp_buf, copied);
kfree(tmp_buf);
return ret;
}
static const struct file_operations apb1_log_fops = {
.read = apb1_log_read,
};
static void usb_log_enable(struct es1_ap_dev *es1)
{
if (!IS_ERR_OR_NULL(apb1_log_task))
return;
/* get log from APB1 */
apb1_log_task = kthread_run(apb1_log_poll, es1, "apb1_log");
if (IS_ERR(apb1_log_task))
return;
apb1_log_dentry = debugfs_create_file("apb1_log", S_IRUGO,
gb_debugfs_get(), NULL,
&apb1_log_fops);
}
static void usb_log_disable(struct es1_ap_dev *es1)
{
if (IS_ERR_OR_NULL(apb1_log_task))
return;
debugfs_remove(apb1_log_dentry);
apb1_log_dentry = NULL;
kthread_stop(apb1_log_task);
apb1_log_task = NULL;
}
static ssize_t apb1_log_enable_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
char tmp_buf[3];
int enable = !IS_ERR_OR_NULL(apb1_log_task);
sprintf(tmp_buf, "%d\n", enable);
return simple_read_from_buffer(buf, count, ppos, tmp_buf, 3);
}
static ssize_t apb1_log_enable_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
int enable;
ssize_t retval;
struct es1_ap_dev *es1 = (struct es1_ap_dev *)f->f_inode->i_private;
retval = kstrtoint_from_user(buf, count, 10, &enable);
if (retval)
return retval;
if (enable)
usb_log_enable(es1);
else
usb_log_disable(es1);
return count;
}
static const struct file_operations apb1_log_enable_fops = {
.read = apb1_log_enable_read,
.write = apb1_log_enable_write,
};
static int apb1_get_cport_count(struct usb_device *udev)
{
int retval;
__le16 *cport_count;
cport_count = kmalloc(sizeof(*cport_count), GFP_KERNEL);
if (!cport_count)
return -ENOMEM;
retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
REQUEST_CPORT_COUNT,
USB_DIR_IN | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, 0, 0, cport_count,
sizeof(*cport_count), ES1_TIMEOUT);
if (retval < 0) {
dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n",
retval);
goto out;
}
retval = le16_to_cpu(*cport_count);
/* We need to fit a CPort ID in one byte of a message header */
if (retval > U8_MAX) {
retval = U8_MAX;
dev_warn(&udev->dev, "Limiting number of CPorts to U8_MAX\n");
}
out:
kfree(cport_count);
return retval;
}
/*
* The ES1 USB Bridge device contains 4 endpoints
* 1 Control - usual USB stuff + AP -> SVC messages
* 1 Interrupt IN - SVC -> AP messages
* 1 Bulk IN - CPort data in
* 1 Bulk OUT - CPort data out
*/
static int ap_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct es1_ap_dev *es1;
struct greybus_host_device *hd;
struct usb_device *udev;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
int bulk_in = 0;
int bulk_out = 0;
int retval = -ENOMEM;
int i;
int num_cports;
udev = usb_get_dev(interface_to_usbdev(interface));
num_cports = apb1_get_cport_count(udev);
if (num_cports < 0) {
usb_put_dev(udev);
dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n",
num_cports);
return num_cports;
}
hd = greybus_create_hd(&es1_driver, &udev->dev, ES1_GBUF_MSG_SIZE_MAX,
num_cports);
if (IS_ERR(hd)) {
usb_put_dev(udev);
return PTR_ERR(hd);
}
es1 = hd_to_es1(hd);
es1->hd = hd;
es1->usb_intf = interface;
es1->usb_dev = udev;
spin_lock_init(&es1->cport_out_urb_lock);
usb_set_intfdata(interface, es1);
es1->cport_to_ep = kcalloc(hd->num_cports, sizeof(*es1->cport_to_ep),
GFP_KERNEL);
if (!es1->cport_to_ep) {
retval = -ENOMEM;
goto error;
}
/* find all 3 of our endpoints */
iface_desc = interface->cur_altsetting;
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
if (usb_endpoint_is_bulk_in(endpoint)) {
es1->cport_in[bulk_in++].endpoint =
endpoint->bEndpointAddress;
} else if (usb_endpoint_is_bulk_out(endpoint)) {
es1->cport_out[bulk_out++].endpoint =
endpoint->bEndpointAddress;
} else {
dev_err(&udev->dev,
"Unknown endpoint type found, address %x\n",
endpoint->bEndpointAddress);
}
}
if ((bulk_in == 0) ||
(bulk_out == 0)) {
dev_err(&udev->dev, "Not enough endpoints found in device, aborting!\n");
goto error;
}
/* Allocate buffers for our cport in messages and start them up */
for (bulk_in = 0; bulk_in < NUM_BULKS; bulk_in++) {
struct es1_cport_in *cport_in = &es1->cport_in[bulk_in];
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
struct urb *urb;
u8 *buffer;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
goto error;
buffer = kmalloc(ES1_GBUF_MSG_SIZE_MAX, GFP_KERNEL);
if (!buffer)
goto error;
usb_fill_bulk_urb(urb, udev,
usb_rcvbulkpipe(udev,
cport_in->endpoint),
buffer, ES1_GBUF_MSG_SIZE_MAX,
cport_in_callback, hd);
cport_in->urb[i] = urb;
cport_in->buffer[i] = buffer;
retval = usb_submit_urb(urb, GFP_KERNEL);
if (retval)
goto error;
}
}
/* Allocate urbs for our CPort OUT messages */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
struct urb *urb;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
goto error;
es1->cport_out_urb[i] = urb;
es1->cport_out_urb_busy[i] = false; /* just to be anal */
}
apb1_log_enable_dentry = debugfs_create_file("apb1_log_enable",
(S_IWUSR | S_IRUGO),
gb_debugfs_get(), es1,
&apb1_log_enable_fops);
return 0;
error:
ap_disconnect(interface);
return retval;
}
static struct usb_driver es1_ap_driver = {
.name = "es2_ap_driver",
.probe = ap_probe,
.disconnect = ap_disconnect,
.id_table = id_table,
};
module_usb_driver(es1_ap_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Greg Kroah-Hartman <gregkh@linuxfoundation.org>");