linux-stable/net/xdp/xsk.c
Ilya Maximets f7306acec9 xsk: Honor SO_BINDTODEVICE on bind
Initial creation of an AF_XDP socket requires CAP_NET_RAW capability. A
privileged process might create the socket and pass it to a non-privileged
process for later use. However, that process will be able to bind the socket
to any network interface. Even though it will not be able to receive any
traffic without modification of the BPF map, the situation is not ideal.

Sockets already have a mechanism that can be used to restrict what interface
they can be attached to. That is SO_BINDTODEVICE.

To change the SO_BINDTODEVICE binding the process will need CAP_NET_RAW.

Make xsk_bind() honor the SO_BINDTODEVICE in order to allow safer workflow
when non-privileged process is using AF_XDP.

The intended workflow is following:

  1. First process creates a bare socket with socket(AF_XDP, ...).
  2. First process loads the XSK program to the interface.
  3. First process adds the socket fd to a BPF map.
  4. First process ties socket fd to a particular interface using
     SO_BINDTODEVICE.
  5. First process sends socket fd to a second process.
  6. Second process allocates UMEM.
  7. Second process binds socket to the interface with bind(...).
  8. Second process sends/receives the traffic.

All the steps above are possible today if the first process is privileged
and the second one has sufficient RLIMIT_MEMLOCK and no capabilities.
However, the second process will be able to bind the socket to any interface
it wants on step 7 and send traffic from it. With the proposed change, the
second process will be able to bind the socket only to a specific interface
chosen by the first process at step 4.

Fixes: 965a990984 ("xsk: add support for bind for Rx")
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Magnus Karlsson <magnus.karlsson@intel.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Link: https://lore.kernel.org/bpf/20230703175329.3259672-1-i.maximets@ovn.org
2023-07-04 10:19:48 +02:00

1518 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* XDP sockets
*
* AF_XDP sockets allows a channel between XDP programs and userspace
* applications.
* Copyright(c) 2018 Intel Corporation.
*
* Author(s): Björn Töpel <bjorn.topel@intel.com>
* Magnus Karlsson <magnus.karlsson@intel.com>
*/
#define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
#include <linux/if_xdp.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/rculist.h>
#include <linux/vmalloc.h>
#include <net/xdp_sock_drv.h>
#include <net/busy_poll.h>
#include <net/xdp.h>
#include "xsk_queue.h"
#include "xdp_umem.h"
#include "xsk.h"
#define TX_BATCH_SIZE 32
static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool)
{
if (pool->cached_need_wakeup & XDP_WAKEUP_RX)
return;
pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
pool->cached_need_wakeup |= XDP_WAKEUP_RX;
}
EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
pool->cached_need_wakeup |= XDP_WAKEUP_TX;
}
EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool)
{
if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX))
return;
pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
pool->cached_need_wakeup &= ~XDP_WAKEUP_RX;
}
EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX))
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
pool->cached_need_wakeup &= ~XDP_WAKEUP_TX;
}
EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool)
{
return pool->uses_need_wakeup;
}
EXPORT_SYMBOL(xsk_uses_need_wakeup);
struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev,
u16 queue_id)
{
if (queue_id < dev->real_num_rx_queues)
return dev->_rx[queue_id].pool;
if (queue_id < dev->real_num_tx_queues)
return dev->_tx[queue_id].pool;
return NULL;
}
EXPORT_SYMBOL(xsk_get_pool_from_qid);
void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id)
{
if (queue_id < dev->num_rx_queues)
dev->_rx[queue_id].pool = NULL;
if (queue_id < dev->num_tx_queues)
dev->_tx[queue_id].pool = NULL;
}
/* The buffer pool is stored both in the _rx struct and the _tx struct as we do
* not know if the device has more tx queues than rx, or the opposite.
* This might also change during run time.
*/
int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool,
u16 queue_id)
{
if (queue_id >= max_t(unsigned int,
dev->real_num_rx_queues,
dev->real_num_tx_queues))
return -EINVAL;
if (queue_id < dev->real_num_rx_queues)
dev->_rx[queue_id].pool = pool;
if (queue_id < dev->real_num_tx_queues)
dev->_tx[queue_id].pool = pool;
return 0;
}
static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
u64 addr;
int err;
addr = xp_get_handle(xskb);
err = xskq_prod_reserve_desc(xs->rx, addr, len);
if (err) {
xs->rx_queue_full++;
return err;
}
xp_release(xskb);
return 0;
}
static void xsk_copy_xdp(struct xdp_buff *to, struct xdp_buff *from, u32 len)
{
void *from_buf, *to_buf;
u32 metalen;
if (unlikely(xdp_data_meta_unsupported(from))) {
from_buf = from->data;
to_buf = to->data;
metalen = 0;
} else {
from_buf = from->data_meta;
metalen = from->data - from->data_meta;
to_buf = to->data - metalen;
}
memcpy(to_buf, from_buf, len + metalen);
}
static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
struct xdp_buff *xsk_xdp;
int err;
u32 len;
len = xdp->data_end - xdp->data;
if (len > xsk_pool_get_rx_frame_size(xs->pool)) {
xs->rx_dropped++;
return -ENOSPC;
}
xsk_xdp = xsk_buff_alloc(xs->pool);
if (!xsk_xdp) {
xs->rx_dropped++;
return -ENOMEM;
}
xsk_copy_xdp(xsk_xdp, xdp, len);
err = __xsk_rcv_zc(xs, xsk_xdp, len);
if (err) {
xsk_buff_free(xsk_xdp);
return err;
}
return 0;
}
static bool xsk_tx_writeable(struct xdp_sock *xs)
{
if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2)
return false;
return true;
}
static bool xsk_is_bound(struct xdp_sock *xs)
{
if (READ_ONCE(xs->state) == XSK_BOUND) {
/* Matches smp_wmb() in bind(). */
smp_rmb();
return true;
}
return false;
}
static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp)
{
if (!xsk_is_bound(xs))
return -ENXIO;
if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
return -EINVAL;
sk_mark_napi_id_once_xdp(&xs->sk, xdp);
return 0;
}
static void xsk_flush(struct xdp_sock *xs)
{
xskq_prod_submit(xs->rx);
__xskq_cons_release(xs->pool->fq);
sock_def_readable(&xs->sk);
}
int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
int err;
spin_lock_bh(&xs->rx_lock);
err = xsk_rcv_check(xs, xdp);
if (!err) {
err = __xsk_rcv(xs, xdp);
xsk_flush(xs);
}
spin_unlock_bh(&xs->rx_lock);
return err;
}
static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
int err;
u32 len;
err = xsk_rcv_check(xs, xdp);
if (err)
return err;
if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) {
len = xdp->data_end - xdp->data;
return __xsk_rcv_zc(xs, xdp, len);
}
err = __xsk_rcv(xs, xdp);
if (!err)
xdp_return_buff(xdp);
return err;
}
int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
{
struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
int err;
err = xsk_rcv(xs, xdp);
if (err)
return err;
if (!xs->flush_node.prev)
list_add(&xs->flush_node, flush_list);
return 0;
}
void __xsk_map_flush(void)
{
struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
struct xdp_sock *xs, *tmp;
list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
xsk_flush(xs);
__list_del_clearprev(&xs->flush_node);
}
}
void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries)
{
xskq_prod_submit_n(pool->cq, nb_entries);
}
EXPORT_SYMBOL(xsk_tx_completed);
void xsk_tx_release(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
__xskq_cons_release(xs->tx);
if (xsk_tx_writeable(xs))
xs->sk.sk_write_space(&xs->sk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(xsk_tx_release);
bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
if (!xskq_cons_peek_desc(xs->tx, desc, pool)) {
xs->tx->queue_empty_descs++;
continue;
}
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (xskq_prod_reserve_addr(pool->cq, desc->addr))
goto out;
xskq_cons_release(xs->tx);
rcu_read_unlock();
return true;
}
out:
rcu_read_unlock();
return false;
}
EXPORT_SYMBOL(xsk_tx_peek_desc);
static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, u32 max_entries)
{
struct xdp_desc *descs = pool->tx_descs;
u32 nb_pkts = 0;
while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts]))
nb_pkts++;
xsk_tx_release(pool);
return nb_pkts;
}
u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, u32 nb_pkts)
{
struct xdp_sock *xs;
rcu_read_lock();
if (!list_is_singular(&pool->xsk_tx_list)) {
/* Fallback to the non-batched version */
rcu_read_unlock();
return xsk_tx_peek_release_fallback(pool, nb_pkts);
}
xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list);
if (!xs) {
nb_pkts = 0;
goto out;
}
nb_pkts = xskq_cons_nb_entries(xs->tx, nb_pkts);
/* This is the backpressure mechanism for the Tx path. Try to
* reserve space in the completion queue for all packets, but
* if there are fewer slots available, just process that many
* packets. This avoids having to implement any buffering in
* the Tx path.
*/
nb_pkts = xskq_prod_nb_free(pool->cq, nb_pkts);
if (!nb_pkts)
goto out;
nb_pkts = xskq_cons_read_desc_batch(xs->tx, pool, nb_pkts);
if (!nb_pkts) {
xs->tx->queue_empty_descs++;
goto out;
}
__xskq_cons_release(xs->tx);
xskq_prod_write_addr_batch(pool->cq, pool->tx_descs, nb_pkts);
xs->sk.sk_write_space(&xs->sk);
out:
rcu_read_unlock();
return nb_pkts;
}
EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch);
static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
{
struct net_device *dev = xs->dev;
return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
}
static void xsk_destruct_skb(struct sk_buff *skb)
{
u64 addr = (u64)(long)skb_shinfo(skb)->destructor_arg;
struct xdp_sock *xs = xdp_sk(skb->sk);
unsigned long flags;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_submit_addr(xs->pool->cq, addr);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
sock_wfree(skb);
}
static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs,
struct xdp_desc *desc)
{
struct xsk_buff_pool *pool = xs->pool;
u32 hr, len, ts, offset, copy, copied;
struct sk_buff *skb;
struct page *page;
void *buffer;
int err, i;
u64 addr;
hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom));
skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err);
if (unlikely(!skb))
return ERR_PTR(err);
skb_reserve(skb, hr);
addr = desc->addr;
len = desc->len;
ts = pool->unaligned ? len : pool->chunk_size;
buffer = xsk_buff_raw_get_data(pool, addr);
offset = offset_in_page(buffer);
addr = buffer - pool->addrs;
for (copied = 0, i = 0; copied < len; i++) {
page = pool->umem->pgs[addr >> PAGE_SHIFT];
get_page(page);
copy = min_t(u32, PAGE_SIZE - offset, len - copied);
skb_fill_page_desc(skb, i, page, offset, copy);
copied += copy;
addr += copy;
offset = 0;
}
skb->len += len;
skb->data_len += len;
skb->truesize += ts;
refcount_add(ts, &xs->sk.sk_wmem_alloc);
return skb;
}
static struct sk_buff *xsk_build_skb(struct xdp_sock *xs,
struct xdp_desc *desc)
{
struct net_device *dev = xs->dev;
struct sk_buff *skb;
if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) {
skb = xsk_build_skb_zerocopy(xs, desc);
if (IS_ERR(skb))
return skb;
} else {
u32 hr, tr, len;
void *buffer;
int err;
hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom));
tr = dev->needed_tailroom;
len = desc->len;
skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err);
if (unlikely(!skb))
return ERR_PTR(err);
skb_reserve(skb, hr);
skb_put(skb, len);
buffer = xsk_buff_raw_get_data(xs->pool, desc->addr);
err = skb_store_bits(skb, 0, buffer, len);
if (unlikely(err)) {
kfree_skb(skb);
return ERR_PTR(err);
}
}
skb->dev = dev;
skb->priority = xs->sk.sk_priority;
skb->mark = xs->sk.sk_mark;
skb_shinfo(skb)->destructor_arg = (void *)(long)desc->addr;
skb->destructor = xsk_destruct_skb;
return skb;
}
static int __xsk_generic_xmit(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
u32 max_batch = TX_BATCH_SIZE;
bool sent_frame = false;
struct xdp_desc desc;
struct sk_buff *skb;
unsigned long flags;
int err = 0;
mutex_lock(&xs->mutex);
/* Since we dropped the RCU read lock, the socket state might have changed. */
if (unlikely(!xsk_is_bound(xs))) {
err = -ENXIO;
goto out;
}
if (xs->queue_id >= xs->dev->real_num_tx_queues)
goto out;
while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) {
if (max_batch-- == 0) {
err = -EAGAIN;
goto out;
}
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
spin_lock_irqsave(&xs->pool->cq_lock, flags);
if (xskq_prod_reserve(xs->pool->cq)) {
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
goto out;
}
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
skb = xsk_build_skb(xs, &desc);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_cancel(xs->pool->cq);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
goto out;
}
err = __dev_direct_xmit(skb, xs->queue_id);
if (err == NETDEV_TX_BUSY) {
/* Tell user-space to retry the send */
skb->destructor = sock_wfree;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_cancel(xs->pool->cq);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
/* Free skb without triggering the perf drop trace */
consume_skb(skb);
err = -EAGAIN;
goto out;
}
xskq_cons_release(xs->tx);
/* Ignore NET_XMIT_CN as packet might have been sent */
if (err == NET_XMIT_DROP) {
/* SKB completed but not sent */
err = -EBUSY;
goto out;
}
sent_frame = true;
}
xs->tx->queue_empty_descs++;
out:
if (sent_frame)
if (xsk_tx_writeable(xs))
sk->sk_write_space(sk);
mutex_unlock(&xs->mutex);
return err;
}
static int xsk_generic_xmit(struct sock *sk)
{
int ret;
/* Drop the RCU lock since the SKB path might sleep. */
rcu_read_unlock();
ret = __xsk_generic_xmit(sk);
/* Reaquire RCU lock before going into common code. */
rcu_read_lock();
return ret;
}
static bool xsk_no_wakeup(struct sock *sk)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
/* Prefer busy-polling, skip the wakeup. */
return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) &&
READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID;
#else
return false;
#endif
}
static int xsk_check_common(struct xdp_sock *xs)
{
if (unlikely(!xsk_is_bound(xs)))
return -ENXIO;
if (unlikely(!(xs->dev->flags & IFF_UP)))
return -ENETDOWN;
return 0;
}
static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xsk_buff_pool *pool;
int err;
err = xsk_check_common(xs);
if (err)
return err;
if (unlikely(need_wait))
return -EOPNOTSUPP;
if (unlikely(!xs->tx))
return -ENOBUFS;
if (sk_can_busy_loop(sk)) {
if (xs->zc)
__sk_mark_napi_id_once(sk, xsk_pool_get_napi_id(xs->pool));
sk_busy_loop(sk, 1); /* only support non-blocking sockets */
}
if (xs->zc && xsk_no_wakeup(sk))
return 0;
pool = xs->pool;
if (pool->cached_need_wakeup & XDP_WAKEUP_TX) {
if (xs->zc)
return xsk_wakeup(xs, XDP_WAKEUP_TX);
return xsk_generic_xmit(sk);
}
return 0;
}
static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
int ret;
rcu_read_lock();
ret = __xsk_sendmsg(sock, m, total_len);
rcu_read_unlock();
return ret;
}
static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
{
bool need_wait = !(flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int err;
err = xsk_check_common(xs);
if (err)
return err;
if (unlikely(!xs->rx))
return -ENOBUFS;
if (unlikely(need_wait))
return -EOPNOTSUPP;
if (sk_can_busy_loop(sk))
sk_busy_loop(sk, 1); /* only support non-blocking sockets */
if (xsk_no_wakeup(sk))
return 0;
if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc)
return xsk_wakeup(xs, XDP_WAKEUP_RX);
return 0;
}
static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
{
int ret;
rcu_read_lock();
ret = __xsk_recvmsg(sock, m, len, flags);
rcu_read_unlock();
return ret;
}
static __poll_t xsk_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
__poll_t mask = 0;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xsk_buff_pool *pool;
sock_poll_wait(file, sock, wait);
rcu_read_lock();
if (xsk_check_common(xs))
goto skip_tx;
pool = xs->pool;
if (pool->cached_need_wakeup) {
if (xs->zc)
xsk_wakeup(xs, pool->cached_need_wakeup);
else if (xs->tx)
/* Poll needs to drive Tx also in copy mode */
xsk_generic_xmit(sk);
}
skip_tx:
if (xs->rx && !xskq_prod_is_empty(xs->rx))
mask |= EPOLLIN | EPOLLRDNORM;
if (xs->tx && xsk_tx_writeable(xs))
mask |= EPOLLOUT | EPOLLWRNORM;
rcu_read_unlock();
return mask;
}
static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
bool umem_queue)
{
struct xsk_queue *q;
if (entries == 0 || *queue || !is_power_of_2(entries))
return -EINVAL;
q = xskq_create(entries, umem_queue);
if (!q)
return -ENOMEM;
/* Make sure queue is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(*queue, q);
return 0;
}
static void xsk_unbind_dev(struct xdp_sock *xs)
{
struct net_device *dev = xs->dev;
if (xs->state != XSK_BOUND)
return;
WRITE_ONCE(xs->state, XSK_UNBOUND);
/* Wait for driver to stop using the xdp socket. */
xp_del_xsk(xs->pool, xs);
synchronize_net();
dev_put(dev);
}
static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
struct xdp_sock __rcu ***map_entry)
{
struct xsk_map *map = NULL;
struct xsk_map_node *node;
*map_entry = NULL;
spin_lock_bh(&xs->map_list_lock);
node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
node);
if (node) {
bpf_map_inc(&node->map->map);
map = node->map;
*map_entry = node->map_entry;
}
spin_unlock_bh(&xs->map_list_lock);
return map;
}
static void xsk_delete_from_maps(struct xdp_sock *xs)
{
/* This function removes the current XDP socket from all the
* maps it resides in. We need to take extra care here, due to
* the two locks involved. Each map has a lock synchronizing
* updates to the entries, and each socket has a lock that
* synchronizes access to the list of maps (map_list). For
* deadlock avoidance the locks need to be taken in the order
* "map lock"->"socket map list lock". We start off by
* accessing the socket map list, and take a reference to the
* map to guarantee existence between the
* xsk_get_map_list_entry() and xsk_map_try_sock_delete()
* calls. Then we ask the map to remove the socket, which
* tries to remove the socket from the map. Note that there
* might be updates to the map between
* xsk_get_map_list_entry() and xsk_map_try_sock_delete().
*/
struct xdp_sock __rcu **map_entry = NULL;
struct xsk_map *map;
while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
xsk_map_try_sock_delete(map, xs, map_entry);
bpf_map_put(&map->map);
}
}
static int xsk_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net *net;
if (!sk)
return 0;
net = sock_net(sk);
mutex_lock(&net->xdp.lock);
sk_del_node_init_rcu(sk);
mutex_unlock(&net->xdp.lock);
sock_prot_inuse_add(net, sk->sk_prot, -1);
xsk_delete_from_maps(xs);
mutex_lock(&xs->mutex);
xsk_unbind_dev(xs);
mutex_unlock(&xs->mutex);
xskq_destroy(xs->rx);
xskq_destroy(xs->tx);
xskq_destroy(xs->fq_tmp);
xskq_destroy(xs->cq_tmp);
sock_orphan(sk);
sock->sk = NULL;
sock_put(sk);
return 0;
}
static struct socket *xsk_lookup_xsk_from_fd(int fd)
{
struct socket *sock;
int err;
sock = sockfd_lookup(fd, &err);
if (!sock)
return ERR_PTR(-ENOTSOCK);
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return ERR_PTR(-ENOPROTOOPT);
}
return sock;
}
static bool xsk_validate_queues(struct xdp_sock *xs)
{
return xs->fq_tmp && xs->cq_tmp;
}
static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{
struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net_device *dev;
int bound_dev_if;
u32 flags, qid;
int err = 0;
if (addr_len < sizeof(struct sockaddr_xdp))
return -EINVAL;
if (sxdp->sxdp_family != AF_XDP)
return -EINVAL;
flags = sxdp->sxdp_flags;
if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
XDP_USE_NEED_WAKEUP))
return -EINVAL;
bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
if (bound_dev_if && bound_dev_if != sxdp->sxdp_ifindex)
return -EINVAL;
rtnl_lock();
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
err = -EBUSY;
goto out_release;
}
dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
if (!dev) {
err = -ENODEV;
goto out_release;
}
if (!xs->rx && !xs->tx) {
err = -EINVAL;
goto out_unlock;
}
qid = sxdp->sxdp_queue_id;
if (flags & XDP_SHARED_UMEM) {
struct xdp_sock *umem_xs;
struct socket *sock;
if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
(flags & XDP_USE_NEED_WAKEUP)) {
/* Cannot specify flags for shared sockets. */
err = -EINVAL;
goto out_unlock;
}
if (xs->umem) {
/* We have already our own. */
err = -EINVAL;
goto out_unlock;
}
sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
if (IS_ERR(sock)) {
err = PTR_ERR(sock);
goto out_unlock;
}
umem_xs = xdp_sk(sock->sk);
if (!xsk_is_bound(umem_xs)) {
err = -EBADF;
sockfd_put(sock);
goto out_unlock;
}
if (umem_xs->queue_id != qid || umem_xs->dev != dev) {
/* Share the umem with another socket on another qid
* and/or device.
*/
xs->pool = xp_create_and_assign_umem(xs,
umem_xs->umem);
if (!xs->pool) {
err = -ENOMEM;
sockfd_put(sock);
goto out_unlock;
}
err = xp_assign_dev_shared(xs->pool, umem_xs, dev,
qid);
if (err) {
xp_destroy(xs->pool);
xs->pool = NULL;
sockfd_put(sock);
goto out_unlock;
}
} else {
/* Share the buffer pool with the other socket. */
if (xs->fq_tmp || xs->cq_tmp) {
/* Do not allow setting your own fq or cq. */
err = -EINVAL;
sockfd_put(sock);
goto out_unlock;
}
xp_get_pool(umem_xs->pool);
xs->pool = umem_xs->pool;
/* If underlying shared umem was created without Tx
* ring, allocate Tx descs array that Tx batching API
* utilizes
*/
if (xs->tx && !xs->pool->tx_descs) {
err = xp_alloc_tx_descs(xs->pool, xs);
if (err) {
xp_put_pool(xs->pool);
sockfd_put(sock);
goto out_unlock;
}
}
}
xdp_get_umem(umem_xs->umem);
WRITE_ONCE(xs->umem, umem_xs->umem);
sockfd_put(sock);
} else if (!xs->umem || !xsk_validate_queues(xs)) {
err = -EINVAL;
goto out_unlock;
} else {
/* This xsk has its own umem. */
xs->pool = xp_create_and_assign_umem(xs, xs->umem);
if (!xs->pool) {
err = -ENOMEM;
goto out_unlock;
}
err = xp_assign_dev(xs->pool, dev, qid, flags);
if (err) {
xp_destroy(xs->pool);
xs->pool = NULL;
goto out_unlock;
}
}
/* FQ and CQ are now owned by the buffer pool and cleaned up with it. */
xs->fq_tmp = NULL;
xs->cq_tmp = NULL;
xs->dev = dev;
xs->zc = xs->umem->zc;
xs->queue_id = qid;
xp_add_xsk(xs->pool, xs);
out_unlock:
if (err) {
dev_put(dev);
} else {
/* Matches smp_rmb() in bind() for shared umem
* sockets, and xsk_is_bound().
*/
smp_wmb();
WRITE_ONCE(xs->state, XSK_BOUND);
}
out_release:
mutex_unlock(&xs->mutex);
rtnl_unlock();
return err;
}
struct xdp_umem_reg_v1 {
__u64 addr; /* Start of packet data area */
__u64 len; /* Length of packet data area */
__u32 chunk_size;
__u32 headroom;
};
static int xsk_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int err;
if (level != SOL_XDP)
return -ENOPROTOOPT;
switch (optname) {
case XDP_RX_RING:
case XDP_TX_RING:
{
struct xsk_queue **q;
int entries;
if (optlen < sizeof(entries))
return -EINVAL;
if (copy_from_sockptr(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
err = xsk_init_queue(entries, q, false);
if (!err && optname == XDP_TX_RING)
/* Tx needs to be explicitly woken up the first time */
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
mutex_unlock(&xs->mutex);
return err;
}
case XDP_UMEM_REG:
{
size_t mr_size = sizeof(struct xdp_umem_reg);
struct xdp_umem_reg mr = {};
struct xdp_umem *umem;
if (optlen < sizeof(struct xdp_umem_reg_v1))
return -EINVAL;
else if (optlen < sizeof(mr))
mr_size = sizeof(struct xdp_umem_reg_v1);
if (copy_from_sockptr(&mr, optval, mr_size))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY || xs->umem) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
umem = xdp_umem_create(&mr);
if (IS_ERR(umem)) {
mutex_unlock(&xs->mutex);
return PTR_ERR(umem);
}
/* Make sure umem is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(xs->umem, umem);
mutex_unlock(&xs->mutex);
return 0;
}
case XDP_UMEM_FILL_RING:
case XDP_UMEM_COMPLETION_RING:
{
struct xsk_queue **q;
int entries;
if (copy_from_sockptr(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp :
&xs->cq_tmp;
err = xsk_init_queue(entries, q, true);
mutex_unlock(&xs->mutex);
return err;
}
default:
break;
}
return -ENOPROTOOPT;
}
static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_rxtx_ring, desc);
}
static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_umem_ring, desc);
}
struct xdp_statistics_v1 {
__u64 rx_dropped;
__u64 rx_invalid_descs;
__u64 tx_invalid_descs;
};
static int xsk_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int len;
if (level != SOL_XDP)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case XDP_STATISTICS:
{
struct xdp_statistics stats = {};
bool extra_stats = true;
size_t stats_size;
if (len < sizeof(struct xdp_statistics_v1)) {
return -EINVAL;
} else if (len < sizeof(stats)) {
extra_stats = false;
stats_size = sizeof(struct xdp_statistics_v1);
} else {
stats_size = sizeof(stats);
}
mutex_lock(&xs->mutex);
stats.rx_dropped = xs->rx_dropped;
if (extra_stats) {
stats.rx_ring_full = xs->rx_queue_full;
stats.rx_fill_ring_empty_descs =
xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx);
} else {
stats.rx_dropped += xs->rx_queue_full;
}
stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
mutex_unlock(&xs->mutex);
if (copy_to_user(optval, &stats, stats_size))
return -EFAULT;
if (put_user(stats_size, optlen))
return -EFAULT;
return 0;
}
case XDP_MMAP_OFFSETS:
{
struct xdp_mmap_offsets off;
struct xdp_mmap_offsets_v1 off_v1;
bool flags_supported = true;
void *to_copy;
if (len < sizeof(off_v1))
return -EINVAL;
else if (len < sizeof(off))
flags_supported = false;
if (flags_supported) {
/* xdp_ring_offset is identical to xdp_ring_offset_v1
* except for the flags field added to the end.
*/
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.rx);
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.tx);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.fr);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.cr);
off.rx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.tx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.fr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
off.cr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
len = sizeof(off);
to_copy = &off;
} else {
xsk_enter_rxtx_offsets(&off_v1.rx);
xsk_enter_rxtx_offsets(&off_v1.tx);
xsk_enter_umem_offsets(&off_v1.fr);
xsk_enter_umem_offsets(&off_v1.cr);
len = sizeof(off_v1);
to_copy = &off_v1;
}
if (copy_to_user(optval, to_copy, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
case XDP_OPTIONS:
{
struct xdp_options opts = {};
if (len < sizeof(opts))
return -EINVAL;
mutex_lock(&xs->mutex);
if (xs->zc)
opts.flags |= XDP_OPTIONS_ZEROCOPY;
mutex_unlock(&xs->mutex);
len = sizeof(opts);
if (copy_to_user(optval, &opts, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
default:
break;
}
return -EOPNOTSUPP;
}
static int xsk_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)
{
loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
unsigned long size = vma->vm_end - vma->vm_start;
struct xdp_sock *xs = xdp_sk(sock->sk);
int state = READ_ONCE(xs->state);
struct xsk_queue *q = NULL;
if (state != XSK_READY && state != XSK_BOUND)
return -EBUSY;
if (offset == XDP_PGOFF_RX_RING) {
q = READ_ONCE(xs->rx);
} else if (offset == XDP_PGOFF_TX_RING) {
q = READ_ONCE(xs->tx);
} else {
/* Matches the smp_wmb() in XDP_UMEM_REG */
smp_rmb();
if (offset == XDP_UMEM_PGOFF_FILL_RING)
q = state == XSK_READY ? READ_ONCE(xs->fq_tmp) :
READ_ONCE(xs->pool->fq);
else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
q = state == XSK_READY ? READ_ONCE(xs->cq_tmp) :
READ_ONCE(xs->pool->cq);
}
if (!q)
return -EINVAL;
/* Matches the smp_wmb() in xsk_init_queue */
smp_rmb();
if (size > q->ring_vmalloc_size)
return -EINVAL;
return remap_vmalloc_range(vma, q->ring, 0);
}
static int xsk_notifier(struct notifier_block *this,
unsigned long msg, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net *net = dev_net(dev);
struct sock *sk;
switch (msg) {
case NETDEV_UNREGISTER:
mutex_lock(&net->xdp.lock);
sk_for_each(sk, &net->xdp.list) {
struct xdp_sock *xs = xdp_sk(sk);
mutex_lock(&xs->mutex);
if (xs->dev == dev) {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
xsk_unbind_dev(xs);
/* Clear device references. */
xp_clear_dev(xs->pool);
}
mutex_unlock(&xs->mutex);
}
mutex_unlock(&net->xdp.lock);
break;
}
return NOTIFY_DONE;
}
static struct proto xsk_proto = {
.name = "XDP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct xdp_sock),
};
static const struct proto_ops xsk_proto_ops = {
.family = PF_XDP,
.owner = THIS_MODULE,
.release = xsk_release,
.bind = xsk_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = xsk_poll,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = xsk_setsockopt,
.getsockopt = xsk_getsockopt,
.sendmsg = xsk_sendmsg,
.recvmsg = xsk_recvmsg,
.mmap = xsk_mmap,
};
static void xsk_destruct(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
if (!sock_flag(sk, SOCK_DEAD))
return;
if (!xp_put_pool(xs->pool))
xdp_put_umem(xs->umem, !xs->pool);
}
static int xsk_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct xdp_sock *xs;
struct sock *sk;
if (!ns_capable(net->user_ns, CAP_NET_RAW))
return -EPERM;
if (sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (protocol)
return -EPROTONOSUPPORT;
sock->state = SS_UNCONNECTED;
sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
if (!sk)
return -ENOBUFS;
sock->ops = &xsk_proto_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_XDP;
sk->sk_destruct = xsk_destruct;
sock_set_flag(sk, SOCK_RCU_FREE);
xs = xdp_sk(sk);
xs->state = XSK_READY;
mutex_init(&xs->mutex);
spin_lock_init(&xs->rx_lock);
INIT_LIST_HEAD(&xs->map_list);
spin_lock_init(&xs->map_list_lock);
mutex_lock(&net->xdp.lock);
sk_add_node_rcu(sk, &net->xdp.list);
mutex_unlock(&net->xdp.lock);
sock_prot_inuse_add(net, &xsk_proto, 1);
return 0;
}
static const struct net_proto_family xsk_family_ops = {
.family = PF_XDP,
.create = xsk_create,
.owner = THIS_MODULE,
};
static struct notifier_block xsk_netdev_notifier = {
.notifier_call = xsk_notifier,
};
static int __net_init xsk_net_init(struct net *net)
{
mutex_init(&net->xdp.lock);
INIT_HLIST_HEAD(&net->xdp.list);
return 0;
}
static void __net_exit xsk_net_exit(struct net *net)
{
WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
}
static struct pernet_operations xsk_net_ops = {
.init = xsk_net_init,
.exit = xsk_net_exit,
};
static int __init xsk_init(void)
{
int err, cpu;
err = proto_register(&xsk_proto, 0 /* no slab */);
if (err)
goto out;
err = sock_register(&xsk_family_ops);
if (err)
goto out_proto;
err = register_pernet_subsys(&xsk_net_ops);
if (err)
goto out_sk;
err = register_netdevice_notifier(&xsk_netdev_notifier);
if (err)
goto out_pernet;
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
return 0;
out_pernet:
unregister_pernet_subsys(&xsk_net_ops);
out_sk:
sock_unregister(PF_XDP);
out_proto:
proto_unregister(&xsk_proto);
out:
return err;
}
fs_initcall(xsk_init);