linux-stable/include/linux/ieee80211.h
Steve deRosier cfdfa4d3a0 mac80211: Update mesh constants to approved IEEE ANA values
This patch updates IEEE802.11 mesh constants to be consistent with newly
approved values. It modifies some values, as well as adds many new constants
in preparation for updating mesh code to the current 802.11s drafts. ANA
numbers were taken from:
https://mentor.ieee.org/802.11/dcn/09/11-09-0031-12-0000-ana-database-assigned-number-authority.xls

A few notes are in order:
1. This will break backwards compatibility with existing Linux kernels as
over-the-air constants have changed.
2. Some old and obsolete constants have been retained for now as the mesh code
itself hasn't been updated yet to the new 802.11s draft. This was desired to
keep the existing mesh scheme working until it can be updated. Adding the
approved values is the first step in updating the mesh code.
3. Obsolete constants have been clearly marked.
4. All ANA approved 802.11s constants have been added.

Signed-off-by: Steve deRosier <steve@cozybit.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-11 15:04:21 -04:00

1640 lines
46 KiB
C

/*
* IEEE 802.11 defines
*
* Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
* <jkmaline@cc.hut.fi>
* Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright (c) 2005, Devicescape Software, Inc.
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef LINUX_IEEE80211_H
#define LINUX_IEEE80211_H
#include <linux/types.h>
#include <asm/byteorder.h>
/*
* DS bit usage
*
* TA = transmitter address
* RA = receiver address
* DA = destination address
* SA = source address
*
* ToDS FromDS A1(RA) A2(TA) A3 A4 Use
* -----------------------------------------------------------------
* 0 0 DA SA BSSID - IBSS/DLS
* 0 1 DA BSSID SA - AP -> STA
* 1 0 BSSID SA DA - AP <- STA
* 1 1 RA TA DA SA unspecified (WDS)
*/
#define FCS_LEN 4
#define IEEE80211_FCTL_VERS 0x0003
#define IEEE80211_FCTL_FTYPE 0x000c
#define IEEE80211_FCTL_STYPE 0x00f0
#define IEEE80211_FCTL_TODS 0x0100
#define IEEE80211_FCTL_FROMDS 0x0200
#define IEEE80211_FCTL_MOREFRAGS 0x0400
#define IEEE80211_FCTL_RETRY 0x0800
#define IEEE80211_FCTL_PM 0x1000
#define IEEE80211_FCTL_MOREDATA 0x2000
#define IEEE80211_FCTL_PROTECTED 0x4000
#define IEEE80211_FCTL_ORDER 0x8000
#define IEEE80211_SCTL_FRAG 0x000F
#define IEEE80211_SCTL_SEQ 0xFFF0
#define IEEE80211_FTYPE_MGMT 0x0000
#define IEEE80211_FTYPE_CTL 0x0004
#define IEEE80211_FTYPE_DATA 0x0008
/* management */
#define IEEE80211_STYPE_ASSOC_REQ 0x0000
#define IEEE80211_STYPE_ASSOC_RESP 0x0010
#define IEEE80211_STYPE_REASSOC_REQ 0x0020
#define IEEE80211_STYPE_REASSOC_RESP 0x0030
#define IEEE80211_STYPE_PROBE_REQ 0x0040
#define IEEE80211_STYPE_PROBE_RESP 0x0050
#define IEEE80211_STYPE_BEACON 0x0080
#define IEEE80211_STYPE_ATIM 0x0090
#define IEEE80211_STYPE_DISASSOC 0x00A0
#define IEEE80211_STYPE_AUTH 0x00B0
#define IEEE80211_STYPE_DEAUTH 0x00C0
#define IEEE80211_STYPE_ACTION 0x00D0
/* control */
#define IEEE80211_STYPE_BACK_REQ 0x0080
#define IEEE80211_STYPE_BACK 0x0090
#define IEEE80211_STYPE_PSPOLL 0x00A0
#define IEEE80211_STYPE_RTS 0x00B0
#define IEEE80211_STYPE_CTS 0x00C0
#define IEEE80211_STYPE_ACK 0x00D0
#define IEEE80211_STYPE_CFEND 0x00E0
#define IEEE80211_STYPE_CFENDACK 0x00F0
/* data */
#define IEEE80211_STYPE_DATA 0x0000
#define IEEE80211_STYPE_DATA_CFACK 0x0010
#define IEEE80211_STYPE_DATA_CFPOLL 0x0020
#define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
#define IEEE80211_STYPE_NULLFUNC 0x0040
#define IEEE80211_STYPE_CFACK 0x0050
#define IEEE80211_STYPE_CFPOLL 0x0060
#define IEEE80211_STYPE_CFACKPOLL 0x0070
#define IEEE80211_STYPE_QOS_DATA 0x0080
#define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090
#define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0
#define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0
#define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0
#define IEEE80211_STYPE_QOS_CFACK 0x00D0
#define IEEE80211_STYPE_QOS_CFPOLL 0x00E0
#define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0
/* miscellaneous IEEE 802.11 constants */
#define IEEE80211_MAX_FRAG_THRESHOLD 2352
#define IEEE80211_MAX_RTS_THRESHOLD 2353
#define IEEE80211_MAX_AID 2007
#define IEEE80211_MAX_TIM_LEN 251
/* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
6.2.1.1.2.
802.11e clarifies the figure in section 7.1.2. The frame body is
up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
#define IEEE80211_MAX_DATA_LEN 2304
/* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
#define IEEE80211_MAX_FRAME_LEN 2352
#define IEEE80211_MAX_SSID_LEN 32
#define IEEE80211_MAX_MESH_ID_LEN 32
#define IEEE80211_QOS_CTL_LEN 2
#define IEEE80211_QOS_CTL_TID_MASK 0x000F
#define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007
/* U-APSD queue for WMM IEs sent by AP */
#define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7)
/* U-APSD queues for WMM IEs sent by STA */
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3)
#define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f
/* U-APSD max SP length for WMM IEs sent by STA */
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03
#define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5
#define IEEE80211_HT_CTL_LEN 4
struct ieee80211_hdr {
__le16 frame_control;
__le16 duration_id;
u8 addr1[6];
u8 addr2[6];
u8 addr3[6];
__le16 seq_ctrl;
u8 addr4[6];
} __attribute__ ((packed));
struct ieee80211_hdr_3addr {
__le16 frame_control;
__le16 duration_id;
u8 addr1[6];
u8 addr2[6];
u8 addr3[6];
__le16 seq_ctrl;
} __attribute__ ((packed));
struct ieee80211_qos_hdr {
__le16 frame_control;
__le16 duration_id;
u8 addr1[6];
u8 addr2[6];
u8 addr3[6];
__le16 seq_ctrl;
__le16 qos_ctrl;
} __attribute__ ((packed));
/**
* ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_tods(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
}
/**
* ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_fromds(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
}
/**
* ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_a4(__le16 fc)
{
__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
return (fc & tmp) == tmp;
}
/**
* ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_morefrags(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
}
/**
* ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_retry(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
}
/**
* ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_pm(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
}
/**
* ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_moredata(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
}
/**
* ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_protected(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
}
/**
* ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_has_order(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
}
/**
* ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_mgmt(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT);
}
/**
* ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_ctl(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL);
}
/**
* ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_data(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA);
}
/**
* ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_data_qos(__le16 fc)
{
/*
* mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
* to check the one bit
*/
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
}
/**
* ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_data_present(__le16 fc)
{
/*
* mask with 0x40 and test that that bit is clear to only return true
* for the data-containing substypes.
*/
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA);
}
/**
* ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_assoc_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
}
/**
* ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_assoc_resp(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
}
/**
* ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_reassoc_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
}
/**
* ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_reassoc_resp(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
}
/**
* ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_probe_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
}
/**
* ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_probe_resp(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
}
/**
* ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_beacon(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
}
/**
* ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_atim(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
}
/**
* ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_disassoc(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
}
/**
* ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_auth(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
}
/**
* ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_deauth(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
}
/**
* ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_action(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
}
/**
* ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_back_req(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
}
/**
* ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_back(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
}
/**
* ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_pspoll(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
}
/**
* ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_rts(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
}
/**
* ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_cts(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
}
/**
* ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_ack(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
}
/**
* ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_cfend(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
}
/**
* ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_cfendack(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
}
/**
* ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_nullfunc(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
}
/**
* ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
* @fc: frame control bytes in little-endian byteorder
*/
static inline int ieee80211_is_qos_nullfunc(__le16 fc)
{
return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
}
struct ieee80211s_hdr {
u8 flags;
u8 ttl;
__le32 seqnum;
u8 eaddr1[6];
u8 eaddr2[6];
u8 eaddr3[6];
} __attribute__ ((packed));
/* Mesh flags */
#define MESH_FLAGS_AE_A4 0x1
#define MESH_FLAGS_AE_A5_A6 0x2
#define MESH_FLAGS_AE 0x3
#define MESH_FLAGS_PS_DEEP 0x4
/**
* struct ieee80211_quiet_ie
*
* This structure refers to "Quiet information element"
*/
struct ieee80211_quiet_ie {
u8 count;
u8 period;
__le16 duration;
__le16 offset;
} __attribute__ ((packed));
/**
* struct ieee80211_msrment_ie
*
* This structure refers to "Measurement Request/Report information element"
*/
struct ieee80211_msrment_ie {
u8 token;
u8 mode;
u8 type;
u8 request[0];
} __attribute__ ((packed));
/**
* struct ieee80211_channel_sw_ie
*
* This structure refers to "Channel Switch Announcement information element"
*/
struct ieee80211_channel_sw_ie {
u8 mode;
u8 new_ch_num;
u8 count;
} __attribute__ ((packed));
/**
* struct ieee80211_tim
*
* This structure refers to "Traffic Indication Map information element"
*/
struct ieee80211_tim_ie {
u8 dtim_count;
u8 dtim_period;
u8 bitmap_ctrl;
/* variable size: 1 - 251 bytes */
u8 virtual_map[1];
} __attribute__ ((packed));
/**
* struct ieee80211_meshconf_ie
*
* This structure refers to "Mesh Configuration information element"
*/
struct ieee80211_meshconf_ie {
u8 meshconf_psel;
u8 meshconf_pmetric;
u8 meshconf_congest;
u8 meshconf_synch;
u8 meshconf_auth;
u8 meshconf_form;
u8 meshconf_cap;
} __attribute__ ((packed));
/**
* struct ieee80211_rann_ie
*
* This structure refers to "Root Announcement information element"
*/
struct ieee80211_rann_ie {
u8 rann_flags;
u8 rann_hopcount;
u8 rann_ttl;
u8 rann_addr[6];
u32 rann_seq;
u32 rann_metric;
} __attribute__ ((packed));
#define WLAN_SA_QUERY_TR_ID_LEN 2
struct ieee80211_mgmt {
__le16 frame_control;
__le16 duration;
u8 da[6];
u8 sa[6];
u8 bssid[6];
__le16 seq_ctrl;
union {
struct {
__le16 auth_alg;
__le16 auth_transaction;
__le16 status_code;
/* possibly followed by Challenge text */
u8 variable[0];
} __attribute__ ((packed)) auth;
struct {
__le16 reason_code;
} __attribute__ ((packed)) deauth;
struct {
__le16 capab_info;
__le16 listen_interval;
/* followed by SSID and Supported rates */
u8 variable[0];
} __attribute__ ((packed)) assoc_req;
struct {
__le16 capab_info;
__le16 status_code;
__le16 aid;
/* followed by Supported rates */
u8 variable[0];
} __attribute__ ((packed)) assoc_resp, reassoc_resp;
struct {
__le16 capab_info;
__le16 listen_interval;
u8 current_ap[6];
/* followed by SSID and Supported rates */
u8 variable[0];
} __attribute__ ((packed)) reassoc_req;
struct {
__le16 reason_code;
} __attribute__ ((packed)) disassoc;
struct {
__le64 timestamp;
__le16 beacon_int;
__le16 capab_info;
/* followed by some of SSID, Supported rates,
* FH Params, DS Params, CF Params, IBSS Params, TIM */
u8 variable[0];
} __attribute__ ((packed)) beacon;
struct {
/* only variable items: SSID, Supported rates */
u8 variable[0];
} __attribute__ ((packed)) probe_req;
struct {
__le64 timestamp;
__le16 beacon_int;
__le16 capab_info;
/* followed by some of SSID, Supported rates,
* FH Params, DS Params, CF Params, IBSS Params */
u8 variable[0];
} __attribute__ ((packed)) probe_resp;
struct {
u8 category;
union {
struct {
u8 action_code;
u8 dialog_token;
u8 status_code;
u8 variable[0];
} __attribute__ ((packed)) wme_action;
struct{
u8 action_code;
u8 element_id;
u8 length;
struct ieee80211_channel_sw_ie sw_elem;
} __attribute__((packed)) chan_switch;
struct{
u8 action_code;
u8 dialog_token;
u8 element_id;
u8 length;
struct ieee80211_msrment_ie msr_elem;
} __attribute__((packed)) measurement;
struct{
u8 action_code;
u8 dialog_token;
__le16 capab;
__le16 timeout;
__le16 start_seq_num;
} __attribute__((packed)) addba_req;
struct{
u8 action_code;
u8 dialog_token;
__le16 status;
__le16 capab;
__le16 timeout;
} __attribute__((packed)) addba_resp;
struct{
u8 action_code;
__le16 params;
__le16 reason_code;
} __attribute__((packed)) delba;
struct{
u8 action_code;
/* capab_info for open and confirm,
* reason for close
*/
__le16 aux;
/* Followed in plink_confirm by status
* code, AID and supported rates,
* and directly by supported rates in
* plink_open and plink_close
*/
u8 variable[0];
} __attribute__((packed)) plink_action;
struct{
u8 action_code;
u8 variable[0];
} __attribute__((packed)) mesh_action;
struct {
u8 action;
u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
} __attribute__ ((packed)) sa_query;
struct {
u8 action;
u8 smps_control;
} __attribute__ ((packed)) ht_smps;
} u;
} __attribute__ ((packed)) action;
} u;
} __attribute__ ((packed));
/* mgmt header + 1 byte category code */
#define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
/* Management MIC information element (IEEE 802.11w) */
struct ieee80211_mmie {
u8 element_id;
u8 length;
__le16 key_id;
u8 sequence_number[6];
u8 mic[8];
} __attribute__ ((packed));
/* Control frames */
struct ieee80211_rts {
__le16 frame_control;
__le16 duration;
u8 ra[6];
u8 ta[6];
} __attribute__ ((packed));
struct ieee80211_cts {
__le16 frame_control;
__le16 duration;
u8 ra[6];
} __attribute__ ((packed));
struct ieee80211_pspoll {
__le16 frame_control;
__le16 aid;
u8 bssid[6];
u8 ta[6];
} __attribute__ ((packed));
/**
* struct ieee80211_bar - HT Block Ack Request
*
* This structure refers to "HT BlockAckReq" as
* described in 802.11n draft section 7.2.1.7.1
*/
struct ieee80211_bar {
__le16 frame_control;
__le16 duration;
__u8 ra[6];
__u8 ta[6];
__le16 control;
__le16 start_seq_num;
} __attribute__((packed));
/* 802.11 BAR control masks */
#define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000
#define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004
#define IEEE80211_HT_MCS_MASK_LEN 10
/**
* struct ieee80211_mcs_info - MCS information
* @rx_mask: RX mask
* @rx_highest: highest supported RX rate. If set represents
* the highest supported RX data rate in units of 1 Mbps.
* If this field is 0 this value should not be used to
* consider the highest RX data rate supported.
* @tx_params: TX parameters
*/
struct ieee80211_mcs_info {
u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
__le16 rx_highest;
u8 tx_params;
u8 reserved[3];
} __attribute__((packed));
/* 802.11n HT capability MSC set */
#define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff
#define IEEE80211_HT_MCS_TX_DEFINED 0x01
#define IEEE80211_HT_MCS_TX_RX_DIFF 0x02
/* value 0 == 1 stream etc */
#define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C
#define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2
#define IEEE80211_HT_MCS_TX_MAX_STREAMS 4
#define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10
/*
* 802.11n D5.0 20.3.5 / 20.6 says:
* - indices 0 to 7 and 32 are single spatial stream
* - 8 to 31 are multiple spatial streams using equal modulation
* [8..15 for two streams, 16..23 for three and 24..31 for four]
* - remainder are multiple spatial streams using unequal modulation
*/
#define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
#define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
/**
* struct ieee80211_ht_cap - HT capabilities
*
* This structure is the "HT capabilities element" as
* described in 802.11n D5.0 7.3.2.57
*/
struct ieee80211_ht_cap {
__le16 cap_info;
u8 ampdu_params_info;
/* 16 bytes MCS information */
struct ieee80211_mcs_info mcs;
__le16 extended_ht_cap_info;
__le32 tx_BF_cap_info;
u8 antenna_selection_info;
} __attribute__ ((packed));
/* 802.11n HT capabilities masks (for cap_info) */
#define IEEE80211_HT_CAP_LDPC_CODING 0x0001
#define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002
#define IEEE80211_HT_CAP_SM_PS 0x000C
#define IEEE80211_HT_CAP_SM_PS_SHIFT 2
#define IEEE80211_HT_CAP_GRN_FLD 0x0010
#define IEEE80211_HT_CAP_SGI_20 0x0020
#define IEEE80211_HT_CAP_SGI_40 0x0040
#define IEEE80211_HT_CAP_TX_STBC 0x0080
#define IEEE80211_HT_CAP_RX_STBC 0x0300
#define IEEE80211_HT_CAP_RX_STBC_SHIFT 8
#define IEEE80211_HT_CAP_DELAY_BA 0x0400
#define IEEE80211_HT_CAP_MAX_AMSDU 0x0800
#define IEEE80211_HT_CAP_DSSSCCK40 0x1000
#define IEEE80211_HT_CAP_RESERVED 0x2000
#define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000
#define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000
/* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
#define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03
#define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C
#define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2
/*
* Maximum length of AMPDU that the STA can receive.
* Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
*/
enum ieee80211_max_ampdu_length_exp {
IEEE80211_HT_MAX_AMPDU_8K = 0,
IEEE80211_HT_MAX_AMPDU_16K = 1,
IEEE80211_HT_MAX_AMPDU_32K = 2,
IEEE80211_HT_MAX_AMPDU_64K = 3
};
#define IEEE80211_HT_MAX_AMPDU_FACTOR 13
/* Minimum MPDU start spacing */
enum ieee80211_min_mpdu_spacing {
IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */
IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */
IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */
IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */
IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */
IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */
IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */
IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */
};
/**
* struct ieee80211_ht_info - HT information
*
* This structure is the "HT information element" as
* described in 802.11n D5.0 7.3.2.58
*/
struct ieee80211_ht_info {
u8 control_chan;
u8 ht_param;
__le16 operation_mode;
__le16 stbc_param;
u8 basic_set[16];
} __attribute__ ((packed));
/* for ht_param */
#define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03
#define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00
#define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01
#define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03
#define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04
#define IEEE80211_HT_PARAM_RIFS_MODE 0x08
#define IEEE80211_HT_PARAM_SPSMP_SUPPORT 0x10
#define IEEE80211_HT_PARAM_SERV_INTERVAL_GRAN 0xE0
/* for operation_mode */
#define IEEE80211_HT_OP_MODE_PROTECTION 0x0003
#define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0
#define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1
#define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2
#define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3
#define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004
#define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010
/* for stbc_param */
#define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040
#define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080
#define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100
#define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200
#define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400
#define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800
/* block-ack parameters */
#define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
#define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
#define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
#define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
#define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
/*
* A-PMDU buffer sizes
* According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2)
*/
#define IEEE80211_MIN_AMPDU_BUF 0x8
#define IEEE80211_MAX_AMPDU_BUF 0x40
/* Spatial Multiplexing Power Save Modes (for capability) */
#define WLAN_HT_CAP_SM_PS_STATIC 0
#define WLAN_HT_CAP_SM_PS_DYNAMIC 1
#define WLAN_HT_CAP_SM_PS_INVALID 2
#define WLAN_HT_CAP_SM_PS_DISABLED 3
/* for SM power control field lower two bits */
#define WLAN_HT_SMPS_CONTROL_DISABLED 0
#define WLAN_HT_SMPS_CONTROL_STATIC 1
#define WLAN_HT_SMPS_CONTROL_DYNAMIC 3
/* Authentication algorithms */
#define WLAN_AUTH_OPEN 0
#define WLAN_AUTH_SHARED_KEY 1
#define WLAN_AUTH_FT 2
#define WLAN_AUTH_SAE 3
#define WLAN_AUTH_LEAP 128
#define WLAN_AUTH_CHALLENGE_LEN 128
#define WLAN_CAPABILITY_ESS (1<<0)
#define WLAN_CAPABILITY_IBSS (1<<1)
#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
#define WLAN_CAPABILITY_PRIVACY (1<<4)
#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
#define WLAN_CAPABILITY_PBCC (1<<6)
#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
/* 802.11h */
#define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_QOS (1<<9)
#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
#define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
/* measurement */
#define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0)
#define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1)
#define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2)
#define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0
#define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1
#define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2
/* 802.11g ERP information element */
#define WLAN_ERP_NON_ERP_PRESENT (1<<0)
#define WLAN_ERP_USE_PROTECTION (1<<1)
#define WLAN_ERP_BARKER_PREAMBLE (1<<2)
/* WLAN_ERP_BARKER_PREAMBLE values */
enum {
WLAN_ERP_PREAMBLE_SHORT = 0,
WLAN_ERP_PREAMBLE_LONG = 1,
};
/* Status codes */
enum ieee80211_statuscode {
WLAN_STATUS_SUCCESS = 0,
WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
WLAN_STATUS_CAPS_UNSUPPORTED = 10,
WLAN_STATUS_REASSOC_NO_ASSOC = 11,
WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
WLAN_STATUS_CHALLENGE_FAIL = 15,
WLAN_STATUS_AUTH_TIMEOUT = 16,
WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
WLAN_STATUS_ASSOC_DENIED_RATES = 18,
/* 802.11b */
WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
/* 802.11h */
WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
/* 802.11g */
WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
/* 802.11w */
WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
/* 802.11i */
WLAN_STATUS_INVALID_IE = 40,
WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
WLAN_STATUS_INVALID_AKMP = 43,
WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
/* 802.11e */
WLAN_STATUS_UNSPECIFIED_QOS = 32,
WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
WLAN_STATUS_REQUEST_DECLINED = 37,
WLAN_STATUS_INVALID_QOS_PARAM = 38,
WLAN_STATUS_CHANGE_TSPEC = 39,
WLAN_STATUS_WAIT_TS_DELAY = 47,
WLAN_STATUS_NO_DIRECT_LINK = 48,
WLAN_STATUS_STA_NOT_PRESENT = 49,
WLAN_STATUS_STA_NOT_QSTA = 50,
/* 802.11s */
WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
WLAN_STATUS_FCG_NOT_SUPP = 78,
WLAN_STATUS_STA_NO_TBTT = 78,
};
/* Reason codes */
enum ieee80211_reasoncode {
WLAN_REASON_UNSPECIFIED = 1,
WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
WLAN_REASON_DEAUTH_LEAVING = 3,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
WLAN_REASON_DISASSOC_AP_BUSY = 5,
WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
/* 802.11h */
WLAN_REASON_DISASSOC_BAD_POWER = 10,
WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
/* 802.11i */
WLAN_REASON_INVALID_IE = 13,
WLAN_REASON_MIC_FAILURE = 14,
WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
WLAN_REASON_IE_DIFFERENT = 17,
WLAN_REASON_INVALID_GROUP_CIPHER = 18,
WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
WLAN_REASON_INVALID_AKMP = 20,
WLAN_REASON_UNSUPP_RSN_VERSION = 21,
WLAN_REASON_INVALID_RSN_IE_CAP = 22,
WLAN_REASON_IEEE8021X_FAILED = 23,
WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
/* 802.11e */
WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
WLAN_REASON_DISASSOC_LOW_ACK = 34,
WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
WLAN_REASON_QSTA_LEAVE_QBSS = 36,
WLAN_REASON_QSTA_NOT_USE = 37,
WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
WLAN_REASON_QSTA_TIMEOUT = 39,
WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
/* 802.11s */
WLAN_REASON_MESH_PEER_CANCELED = 52,
WLAN_REASON_MESH_MAX_PEERS = 53,
WLAN_REASON_MESH_CONFIG = 54,
WLAN_REASON_MESH_CLOSE = 55,
WLAN_REASON_MESH_MAX_RETRIES = 56,
WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
WLAN_REASON_MESH_INVALID_GTK = 58,
WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
WLAN_REASON_MESH_INVALID_SECURITY = 60,
WLAN_REASON_MESH_PATH_ERROR = 61,
WLAN_REASON_MESH_PATH_NOFORWARD = 62,
WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
WLAN_REASON_MESH_CHAN_REGULATORY = 65,
WLAN_REASON_MESH_CHAN = 66,
};
/* Information Element IDs */
enum ieee80211_eid {
WLAN_EID_SSID = 0,
WLAN_EID_SUPP_RATES = 1,
WLAN_EID_FH_PARAMS = 2,
WLAN_EID_DS_PARAMS = 3,
WLAN_EID_CF_PARAMS = 4,
WLAN_EID_TIM = 5,
WLAN_EID_IBSS_PARAMS = 6,
WLAN_EID_CHALLENGE = 16,
WLAN_EID_COUNTRY = 7,
WLAN_EID_HP_PARAMS = 8,
WLAN_EID_HP_TABLE = 9,
WLAN_EID_REQUEST = 10,
WLAN_EID_QBSS_LOAD = 11,
WLAN_EID_EDCA_PARAM_SET = 12,
WLAN_EID_TSPEC = 13,
WLAN_EID_TCLAS = 14,
WLAN_EID_SCHEDULE = 15,
WLAN_EID_TS_DELAY = 43,
WLAN_EID_TCLAS_PROCESSING = 44,
WLAN_EID_QOS_CAPA = 46,
/* 802.11s */
WLAN_EID_MESH_CONFIG = 113,
WLAN_EID_MESH_ID = 114,
WLAN_EID_LINK_METRIC_REPORT = 115,
WLAN_EID_CONGESTION_NOTIFICATION = 116,
/* Note that the Peer Link IE has been replaced with the similar
* Peer Management IE. We will keep the former definition until mesh
* code is changed to comply with latest 802.11s drafts.
*/
WLAN_EID_PEER_LINK = 55, /* no longer in 802.11s drafts */
WLAN_EID_PEER_MGMT = 117,
WLAN_EID_CHAN_SWITCH_PARAM = 118,
WLAN_EID_MESH_AWAKE_WINDOW = 119,
WLAN_EID_BEACON_TIMING = 120,
WLAN_EID_MCCAOP_SETUP_REQ = 121,
WLAN_EID_MCCAOP_SETUP_RESP = 122,
WLAN_EID_MCCAOP_ADVERT = 123,
WLAN_EID_MCCAOP_TEARDOWN = 124,
WLAN_EID_GANN = 125,
WLAN_EID_RANN = 126,
WLAN_EID_PREQ = 130,
WLAN_EID_PREP = 131,
WLAN_EID_PERR = 132,
WLAN_EID_PXU = 137,
WLAN_EID_PXUC = 138,
WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
WLAN_EID_MIC = 140,
WLAN_EID_PWR_CONSTRAINT = 32,
WLAN_EID_PWR_CAPABILITY = 33,
WLAN_EID_TPC_REQUEST = 34,
WLAN_EID_TPC_REPORT = 35,
WLAN_EID_SUPPORTED_CHANNELS = 36,
WLAN_EID_CHANNEL_SWITCH = 37,
WLAN_EID_MEASURE_REQUEST = 38,
WLAN_EID_MEASURE_REPORT = 39,
WLAN_EID_QUIET = 40,
WLAN_EID_IBSS_DFS = 41,
WLAN_EID_ERP_INFO = 42,
WLAN_EID_EXT_SUPP_RATES = 50,
WLAN_EID_HT_CAPABILITY = 45,
WLAN_EID_HT_INFORMATION = 61,
WLAN_EID_RSN = 48,
WLAN_EID_MMIE = 76,
WLAN_EID_WPA = 221,
WLAN_EID_GENERIC = 221,
WLAN_EID_VENDOR_SPECIFIC = 221,
WLAN_EID_QOS_PARAMETER = 222,
WLAN_EID_AP_CHAN_REPORT = 51,
WLAN_EID_NEIGHBOR_REPORT = 52,
WLAN_EID_RCPI = 53,
WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
WLAN_EID_ANTENNA_INFO = 64,
WLAN_EID_RSNI = 65,
WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
WLAN_EID_MULTIPLE_BSSID = 71,
WLAN_EID_MOBILITY_DOMAIN = 54,
WLAN_EID_FAST_BSS_TRANSITION = 55,
WLAN_EID_TIMEOUT_INTERVAL = 56,
WLAN_EID_RIC_DATA = 57,
WLAN_EID_RIC_DESCRIPTOR = 75,
WLAN_EID_DSE_REGISTERED_LOCATION = 58,
WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
WLAN_EID_EXT_CHANSWITCH_ANN = 60,
};
/* Action category code */
enum ieee80211_category {
WLAN_CATEGORY_SPECTRUM_MGMT = 0,
WLAN_CATEGORY_QOS = 1,
WLAN_CATEGORY_DLS = 2,
WLAN_CATEGORY_BACK = 3,
WLAN_CATEGORY_PUBLIC = 4,
WLAN_CATEGORY_HT = 7,
WLAN_CATEGORY_SA_QUERY = 8,
WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
WLAN_CATEGORY_MESH_ACTION = 13,
WLAN_CATEGORY_MULTIHOP_ACTION = 14,
WLAN_CATEGORY_SELF_PROTECTED = 15,
WLAN_CATEGORY_WMM = 17,
/* TODO: remove MESH_PLINK and MESH_PATH_SEL after */
/* mesh is updated to current 802.11s draft */
WLAN_CATEGORY_MESH_PLINK = 30,
WLAN_CATEGORY_MESH_PATH_SEL = 32,
WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
};
/* SPECTRUM_MGMT action code */
enum ieee80211_spectrum_mgmt_actioncode {
WLAN_ACTION_SPCT_MSR_REQ = 0,
WLAN_ACTION_SPCT_MSR_RPRT = 1,
WLAN_ACTION_SPCT_TPC_REQ = 2,
WLAN_ACTION_SPCT_TPC_RPRT = 3,
WLAN_ACTION_SPCT_CHL_SWITCH = 4,
};
/* HT action codes */
enum ieee80211_ht_actioncode {
WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
WLAN_HT_ACTION_SMPS = 1,
WLAN_HT_ACTION_PSMP = 2,
WLAN_HT_ACTION_PCO_PHASE = 3,
WLAN_HT_ACTION_CSI = 4,
WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
WLAN_HT_ACTION_COMPRESSED_BF = 6,
WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
};
/* Security key length */
enum ieee80211_key_len {
WLAN_KEY_LEN_WEP40 = 5,
WLAN_KEY_LEN_WEP104 = 13,
WLAN_KEY_LEN_CCMP = 16,
WLAN_KEY_LEN_TKIP = 32,
WLAN_KEY_LEN_AES_CMAC = 16,
};
/*
* IEEE 802.11-2007 7.3.2.9 Country information element
*
* Minimum length is 8 octets, ie len must be evenly
* divisible by 2
*/
/* Although the spec says 8 I'm seeing 6 in practice */
#define IEEE80211_COUNTRY_IE_MIN_LEN 6
/*
* For regulatory extension stuff see IEEE 802.11-2007
* Annex I (page 1141) and Annex J (page 1147). Also
* review 7.3.2.9.
*
* When dot11RegulatoryClassesRequired is true and the
* first_channel/reg_extension_id is >= 201 then the IE
* compromises of the 'ext' struct represented below:
*
* - Regulatory extension ID - when generating IE this just needs
* to be monotonically increasing for each triplet passed in
* the IE
* - Regulatory class - index into set of rules
* - Coverage class - index into air propagation time (Table 7-27),
* in microseconds, you can compute the air propagation time from
* the index by multiplying by 3, so index 10 yields a propagation
* of 10 us. Valid values are 0-31, values 32-255 are not defined
* yet. A value of 0 inicates air propagation of <= 1 us.
*
* See also Table I.2 for Emission limit sets and table
* I.3 for Behavior limit sets. Table J.1 indicates how to map
* a reg_class to an emission limit set and behavior limit set.
*/
#define IEEE80211_COUNTRY_EXTENSION_ID 201
/*
* Channels numbers in the IE must be monotonically increasing
* if dot11RegulatoryClassesRequired is not true.
*
* If dot11RegulatoryClassesRequired is true consecutive
* subband triplets following a regulatory triplet shall
* have monotonically increasing first_channel number fields.
*
* Channel numbers shall not overlap.
*
* Note that max_power is signed.
*/
struct ieee80211_country_ie_triplet {
union {
struct {
u8 first_channel;
u8 num_channels;
s8 max_power;
} __attribute__ ((packed)) chans;
struct {
u8 reg_extension_id;
u8 reg_class;
u8 coverage_class;
} __attribute__ ((packed)) ext;
};
} __attribute__ ((packed));
enum ieee80211_timeout_interval_type {
WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
};
/* BACK action code */
enum ieee80211_back_actioncode {
WLAN_ACTION_ADDBA_REQ = 0,
WLAN_ACTION_ADDBA_RESP = 1,
WLAN_ACTION_DELBA = 2,
};
/* BACK (block-ack) parties */
enum ieee80211_back_parties {
WLAN_BACK_RECIPIENT = 0,
WLAN_BACK_INITIATOR = 1,
};
/* SA Query action */
enum ieee80211_sa_query_action {
WLAN_ACTION_SA_QUERY_REQUEST = 0,
WLAN_ACTION_SA_QUERY_RESPONSE = 1,
};
/* A-MSDU 802.11n */
#define IEEE80211_QOS_CONTROL_A_MSDU_PRESENT 0x0080
/* cipher suite selectors */
#define WLAN_CIPHER_SUITE_USE_GROUP 0x000FAC00
#define WLAN_CIPHER_SUITE_WEP40 0x000FAC01
#define WLAN_CIPHER_SUITE_TKIP 0x000FAC02
/* reserved: 0x000FAC03 */
#define WLAN_CIPHER_SUITE_CCMP 0x000FAC04
#define WLAN_CIPHER_SUITE_WEP104 0x000FAC05
#define WLAN_CIPHER_SUITE_AES_CMAC 0x000FAC06
/* AKM suite selectors */
#define WLAN_AKM_SUITE_8021X 0x000FAC01
#define WLAN_AKM_SUITE_PSK 0x000FAC02
#define WLAN_AKM_SUITE_SAE 0x000FAC08
#define WLAN_AKM_SUITE_FT_OVER_SAE 0x000FAC09
#define WLAN_MAX_KEY_LEN 32
#define WLAN_PMKID_LEN 16
/**
* ieee80211_get_qos_ctl - get pointer to qos control bytes
* @hdr: the frame
*
* The qos ctrl bytes come after the frame_control, duration, seq_num
* and 3 or 4 addresses of length ETH_ALEN.
* 3 addr: 2 + 2 + 2 + 3*6 = 24
* 4 addr: 2 + 2 + 2 + 4*6 = 30
*/
static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
{
if (ieee80211_has_a4(hdr->frame_control))
return (u8 *)hdr + 30;
else
return (u8 *)hdr + 24;
}
/**
* ieee80211_get_SA - get pointer to SA
* @hdr: the frame
*
* Given an 802.11 frame, this function returns the offset
* to the source address (SA). It does not verify that the
* header is long enough to contain the address, and the
* header must be long enough to contain the frame control
* field.
*/
static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
{
if (ieee80211_has_a4(hdr->frame_control))
return hdr->addr4;
if (ieee80211_has_fromds(hdr->frame_control))
return hdr->addr3;
return hdr->addr2;
}
/**
* ieee80211_get_DA - get pointer to DA
* @hdr: the frame
*
* Given an 802.11 frame, this function returns the offset
* to the destination address (DA). It does not verify that
* the header is long enough to contain the address, and the
* header must be long enough to contain the frame control
* field.
*/
static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
{
if (ieee80211_has_tods(hdr->frame_control))
return hdr->addr3;
else
return hdr->addr1;
}
/**
* ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
* @hdr: the frame (buffer must include at least the first octet of payload)
*/
static inline bool ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
{
if (ieee80211_is_disassoc(hdr->frame_control) ||
ieee80211_is_deauth(hdr->frame_control))
return true;
if (ieee80211_is_action(hdr->frame_control)) {
u8 *category;
/*
* Action frames, excluding Public Action frames, are Robust
* Management Frames. However, if we are looking at a Protected
* frame, skip the check since the data may be encrypted and
* the frame has already been found to be a Robust Management
* Frame (by the other end).
*/
if (ieee80211_has_protected(hdr->frame_control))
return true;
category = ((u8 *) hdr) + 24;
return *category != WLAN_CATEGORY_PUBLIC &&
*category != WLAN_CATEGORY_HT &&
*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
}
return false;
}
/**
* ieee80211_fhss_chan_to_freq - get channel frequency
* @channel: the FHSS channel
*
* Convert IEEE802.11 FHSS channel to frequency (MHz)
* Ref IEEE 802.11-2007 section 14.6
*/
static inline int ieee80211_fhss_chan_to_freq(int channel)
{
if ((channel > 1) && (channel < 96))
return channel + 2400;
else
return -1;
}
/**
* ieee80211_freq_to_fhss_chan - get channel
* @freq: the channels frequency
*
* Convert frequency (MHz) to IEEE802.11 FHSS channel
* Ref IEEE 802.11-2007 section 14.6
*/
static inline int ieee80211_freq_to_fhss_chan(int freq)
{
if ((freq > 2401) && (freq < 2496))
return freq - 2400;
else
return -1;
}
/**
* ieee80211_dsss_chan_to_freq - get channel center frequency
* @channel: the DSSS channel
*
* Convert IEEE802.11 DSSS channel to the center frequency (MHz).
* Ref IEEE 802.11-2007 section 15.6
*/
static inline int ieee80211_dsss_chan_to_freq(int channel)
{
if ((channel > 0) && (channel < 14))
return 2407 + (channel * 5);
else if (channel == 14)
return 2484;
else
return -1;
}
/**
* ieee80211_freq_to_dsss_chan - get channel
* @freq: the frequency
*
* Convert frequency (MHz) to IEEE802.11 DSSS channel
* Ref IEEE 802.11-2007 section 15.6
*
* This routine selects the channel with the closest center frequency.
*/
static inline int ieee80211_freq_to_dsss_chan(int freq)
{
if ((freq >= 2410) && (freq < 2475))
return (freq - 2405) / 5;
else if ((freq >= 2482) && (freq < 2487))
return 14;
else
return -1;
}
/* Convert IEEE802.11 HR DSSS channel to frequency (MHz) and back
* Ref IEEE 802.11-2007 section 18.4.6.2
*
* The channels and frequencies are the same as those defined for DSSS
*/
#define ieee80211_hr_chan_to_freq(chan) ieee80211_dsss_chan_to_freq(chan)
#define ieee80211_freq_to_hr_chan(freq) ieee80211_freq_to_dsss_chan(freq)
/* Convert IEEE802.11 ERP channel to frequency (MHz) and back
* Ref IEEE 802.11-2007 section 19.4.2
*/
#define ieee80211_erp_chan_to_freq(chan) ieee80211_hr_chan_to_freq(chan)
#define ieee80211_freq_to_erp_chan(freq) ieee80211_freq_to_hr_chan(freq)
/**
* ieee80211_ofdm_chan_to_freq - get channel center frequency
* @s_freq: starting frequency == (dotChannelStartingFactor/2) MHz
* @channel: the OFDM channel
*
* Convert IEEE802.11 OFDM channel to center frequency (MHz)
* Ref IEEE 802.11-2007 section 17.3.8.3.2
*/
static inline int ieee80211_ofdm_chan_to_freq(int s_freq, int channel)
{
if ((channel > 0) && (channel <= 200) &&
(s_freq >= 4000))
return s_freq + (channel * 5);
else
return -1;
}
/**
* ieee80211_freq_to_ofdm_channel - get channel
* @s_freq: starting frequency == (dotChannelStartingFactor/2) MHz
* @freq: the frequency
*
* Convert frequency (MHz) to IEEE802.11 OFDM channel
* Ref IEEE 802.11-2007 section 17.3.8.3.2
*
* This routine selects the channel with the closest center frequency.
*/
static inline int ieee80211_freq_to_ofdm_chan(int s_freq, int freq)
{
if ((freq > (s_freq + 2)) && (freq <= (s_freq + 1202)) &&
(s_freq >= 4000))
return (freq + 2 - s_freq) / 5;
else
return -1;
}
/**
* ieee80211_tu_to_usec - convert time units (TU) to microseconds
* @tu: the TUs
*/
static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
{
return 1024 * tu;
}
/**
* ieee80211_check_tim - check if AID bit is set in TIM
* @tim: the TIM IE
* @tim_len: length of the TIM IE
* @aid: the AID to look for
*/
static inline bool ieee80211_check_tim(struct ieee80211_tim_ie *tim,
u8 tim_len, u16 aid)
{
u8 mask;
u8 index, indexn1, indexn2;
if (unlikely(!tim || tim_len < sizeof(*tim)))
return false;
aid &= 0x3fff;
index = aid / 8;
mask = 1 << (aid & 7);
indexn1 = tim->bitmap_ctrl & 0xfe;
indexn2 = tim_len + indexn1 - 4;
if (index < indexn1 || index > indexn2)
return false;
index -= indexn1;
return !!(tim->virtual_map[index] & mask);
}
#endif /* LINUX_IEEE80211_H */