linux-stable/fs/btrfs/volumes.h
Naohiro Aota f7ef5287a6 btrfs: zoned: relocate block group to repair IO failure in zoned filesystems
When a bad checksum is found and if the filesystem has a mirror of the
damaged data, we read the correct data from the mirror and writes it to
damaged blocks. This however, violates the sequential write constraints
of a zoned block device.

We can consider three methods to repair an IO failure in zoned filesystems:

(1) Reset and rewrite the damaged zone
(2) Allocate new device extent and replace the damaged device extent to
    the new extent
(3) Relocate the corresponding block group

Method (1) is most similar to a behavior done with regular devices.
However, it also wipes non-damaged data in the same device extent, and
so it unnecessary degrades non-damaged data.

Method (2) is much like device replacing but done in the same device. It
is safe because it keeps the device extent until the replacing finish.
However, extending device replacing is non-trivial. It assumes
"src_dev->physical == dst_dev->physical". Also, the extent mapping
replacing function should be extended to support replacing device extent
position in one device.

Method (3) invokes relocation of the damaged block group and is
straightforward to implement. It relocates all the mirrored device
extents, so it potentially is a more costly operation than method (1) or
(2). But it relocates only used extents which reduce the total IO size.

Let's apply method (3) for now. In the future, we can extend device-replace
and apply method (2).

For protecting a block group gets relocated multiple time with multiple
IO errors, this commit introduces "relocating_repair" bit to show it's
now relocating to repair IO failures. Also it uses a new kthread
"btrfs-relocating-repair", not to block IO path with relocating process.

This commit also supports repairing in the scrub process.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:07 +01:00

604 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#ifndef BTRFS_VOLUMES_H
#define BTRFS_VOLUMES_H
#include <linux/bio.h>
#include <linux/sort.h>
#include <linux/btrfs.h>
#include "async-thread.h"
#define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
extern struct mutex uuid_mutex;
#define BTRFS_STRIPE_LEN SZ_64K
struct btrfs_io_geometry {
/* remaining bytes before crossing a stripe */
u64 len;
/* offset of logical address in chunk */
u64 offset;
/* length of single IO stripe */
u64 stripe_len;
/* number of stripe where address falls */
u64 stripe_nr;
/* offset of address in stripe */
u64 stripe_offset;
/* offset of raid56 stripe into the chunk */
u64 raid56_stripe_offset;
};
/*
* Use sequence counter to get consistent device stat data on
* 32-bit processors.
*/
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
#include <linux/seqlock.h>
#define __BTRFS_NEED_DEVICE_DATA_ORDERED
#define btrfs_device_data_ordered_init(device) \
seqcount_init(&device->data_seqcount)
#else
#define btrfs_device_data_ordered_init(device) do { } while (0)
#endif
#define BTRFS_DEV_STATE_WRITEABLE (0)
#define BTRFS_DEV_STATE_IN_FS_METADATA (1)
#define BTRFS_DEV_STATE_MISSING (2)
#define BTRFS_DEV_STATE_REPLACE_TGT (3)
#define BTRFS_DEV_STATE_FLUSH_SENT (4)
#define BTRFS_DEV_STATE_NO_READA (5)
struct btrfs_zoned_device_info;
struct btrfs_device {
struct list_head dev_list; /* device_list_mutex */
struct list_head dev_alloc_list; /* chunk mutex */
struct list_head post_commit_list; /* chunk mutex */
struct btrfs_fs_devices *fs_devices;
struct btrfs_fs_info *fs_info;
struct rcu_string __rcu *name;
u64 generation;
struct block_device *bdev;
struct btrfs_zoned_device_info *zone_info;
/* the mode sent to blkdev_get */
fmode_t mode;
unsigned long dev_state;
blk_status_t last_flush_error;
#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
seqcount_t data_seqcount;
#endif
/* the internal btrfs device id */
u64 devid;
/* size of the device in memory */
u64 total_bytes;
/* size of the device on disk */
u64 disk_total_bytes;
/* bytes used */
u64 bytes_used;
/* optimal io alignment for this device */
u32 io_align;
/* optimal io width for this device */
u32 io_width;
/* type and info about this device */
u64 type;
/* minimal io size for this device */
u32 sector_size;
/* physical drive uuid (or lvm uuid) */
u8 uuid[BTRFS_UUID_SIZE];
/*
* size of the device on the current transaction
*
* This variant is update when committing the transaction,
* and protected by chunk mutex
*/
u64 commit_total_bytes;
/* bytes used on the current transaction */
u64 commit_bytes_used;
/* for sending down flush barriers */
struct bio *flush_bio;
struct completion flush_wait;
/* per-device scrub information */
struct scrub_ctx *scrub_ctx;
/* readahead state */
atomic_t reada_in_flight;
u64 reada_next;
struct reada_zone *reada_curr_zone;
struct radix_tree_root reada_zones;
struct radix_tree_root reada_extents;
/* disk I/O failure stats. For detailed description refer to
* enum btrfs_dev_stat_values in ioctl.h */
int dev_stats_valid;
/* Counter to record the change of device stats */
atomic_t dev_stats_ccnt;
atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
struct extent_io_tree alloc_state;
struct completion kobj_unregister;
/* For sysfs/FSID/devinfo/devid/ */
struct kobject devid_kobj;
};
/*
* If we read those variants at the context of their own lock, we needn't
* use the following helpers, reading them directly is safe.
*/
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
#define BTRFS_DEVICE_GETSET_FUNCS(name) \
static inline u64 \
btrfs_device_get_##name(const struct btrfs_device *dev) \
{ \
u64 size; \
unsigned int seq; \
\
do { \
seq = read_seqcount_begin(&dev->data_seqcount); \
size = dev->name; \
} while (read_seqcount_retry(&dev->data_seqcount, seq)); \
return size; \
} \
\
static inline void \
btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
{ \
preempt_disable(); \
write_seqcount_begin(&dev->data_seqcount); \
dev->name = size; \
write_seqcount_end(&dev->data_seqcount); \
preempt_enable(); \
}
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
#define BTRFS_DEVICE_GETSET_FUNCS(name) \
static inline u64 \
btrfs_device_get_##name(const struct btrfs_device *dev) \
{ \
u64 size; \
\
preempt_disable(); \
size = dev->name; \
preempt_enable(); \
return size; \
} \
\
static inline void \
btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
{ \
preempt_disable(); \
dev->name = size; \
preempt_enable(); \
}
#else
#define BTRFS_DEVICE_GETSET_FUNCS(name) \
static inline u64 \
btrfs_device_get_##name(const struct btrfs_device *dev) \
{ \
return dev->name; \
} \
\
static inline void \
btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
{ \
dev->name = size; \
}
#endif
BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
enum btrfs_chunk_allocation_policy {
BTRFS_CHUNK_ALLOC_REGULAR,
BTRFS_CHUNK_ALLOC_ZONED,
};
/*
* Read policies for mirrored block group profiles, read picks the stripe based
* on these policies.
*/
enum btrfs_read_policy {
/* Use process PID to choose the stripe */
BTRFS_READ_POLICY_PID,
BTRFS_NR_READ_POLICY,
};
struct btrfs_fs_devices {
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
u8 metadata_uuid[BTRFS_FSID_SIZE];
bool fsid_change;
struct list_head fs_list;
u64 num_devices;
u64 open_devices;
u64 rw_devices;
u64 missing_devices;
u64 total_rw_bytes;
u64 total_devices;
/* Highest generation number of seen devices */
u64 latest_generation;
struct block_device *latest_bdev;
/* all of the devices in the FS, protected by a mutex
* so we can safely walk it to write out the supers without
* worrying about add/remove by the multi-device code.
* Scrubbing super can kick off supers writing by holding
* this mutex lock.
*/
struct mutex device_list_mutex;
/* List of all devices, protected by device_list_mutex */
struct list_head devices;
/*
* Devices which can satisfy space allocation. Protected by
* chunk_mutex
*/
struct list_head alloc_list;
struct list_head seed_list;
bool seeding;
int opened;
/* set when we find or add a device that doesn't have the
* nonrot flag set
*/
bool rotating;
struct btrfs_fs_info *fs_info;
/* sysfs kobjects */
struct kobject fsid_kobj;
struct kobject *devices_kobj;
struct kobject *devinfo_kobj;
struct completion kobj_unregister;
enum btrfs_chunk_allocation_policy chunk_alloc_policy;
/* Policy used to read the mirrored stripes */
enum btrfs_read_policy read_policy;
};
#define BTRFS_BIO_INLINE_CSUM_SIZE 64
#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
- sizeof(struct btrfs_chunk)) \
/ sizeof(struct btrfs_stripe) + 1)
#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
- 2 * sizeof(struct btrfs_disk_key) \
- 2 * sizeof(struct btrfs_chunk)) \
/ sizeof(struct btrfs_stripe) + 1)
/*
* we need the mirror number and stripe index to be passed around
* the call chain while we are processing end_io (especially errors).
* Really, what we need is a btrfs_bio structure that has this info
* and is properly sized with its stripe array, but we're not there
* quite yet. We have our own btrfs bioset, and all of the bios
* we allocate are actually btrfs_io_bios. We'll cram as much of
* struct btrfs_bio as we can into this over time.
*/
struct btrfs_io_bio {
unsigned int mirror_num;
struct btrfs_device *device;
u64 logical;
u8 *csum;
u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
struct bvec_iter iter;
/*
* This member must come last, bio_alloc_bioset will allocate enough
* bytes for entire btrfs_io_bio but relies on bio being last.
*/
struct bio bio;
};
static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
{
return container_of(bio, struct btrfs_io_bio, bio);
}
static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
{
if (io_bio->csum != io_bio->csum_inline) {
kfree(io_bio->csum);
io_bio->csum = NULL;
}
}
struct btrfs_bio_stripe {
struct btrfs_device *dev;
u64 physical;
u64 length; /* only used for discard mappings */
};
struct btrfs_bio {
refcount_t refs;
atomic_t stripes_pending;
struct btrfs_fs_info *fs_info;
u64 map_type; /* get from map_lookup->type */
bio_end_io_t *end_io;
struct bio *orig_bio;
void *private;
atomic_t error;
int max_errors;
int num_stripes;
int mirror_num;
int num_tgtdevs;
int *tgtdev_map;
/*
* logical block numbers for the start of each stripe
* The last one or two are p/q. These are sorted,
* so raid_map[0] is the start of our full stripe
*/
u64 *raid_map;
struct btrfs_bio_stripe stripes[];
};
struct btrfs_device_info {
struct btrfs_device *dev;
u64 dev_offset;
u64 max_avail;
u64 total_avail;
};
struct btrfs_raid_attr {
u8 sub_stripes; /* sub_stripes info for map */
u8 dev_stripes; /* stripes per dev */
u8 devs_max; /* max devs to use */
u8 devs_min; /* min devs needed */
u8 tolerated_failures; /* max tolerated fail devs */
u8 devs_increment; /* ndevs has to be a multiple of this */
u8 ncopies; /* how many copies to data has */
u8 nparity; /* number of stripes worth of bytes to store
* parity information */
u8 mindev_error; /* error code if min devs requisite is unmet */
const char raid_name[8]; /* name of the raid */
u64 bg_flag; /* block group flag of the raid */
};
extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
struct map_lookup {
u64 type;
int io_align;
int io_width;
u64 stripe_len;
int num_stripes;
int sub_stripes;
int verified_stripes; /* For mount time dev extent verification */
struct btrfs_bio_stripe stripes[];
};
#define map_lookup_size(n) (sizeof(struct map_lookup) + \
(sizeof(struct btrfs_bio_stripe) * (n)))
struct btrfs_balance_args;
struct btrfs_balance_progress;
struct btrfs_balance_control {
struct btrfs_balance_args data;
struct btrfs_balance_args meta;
struct btrfs_balance_args sys;
u64 flags;
struct btrfs_balance_progress stat;
};
enum btrfs_map_op {
BTRFS_MAP_READ,
BTRFS_MAP_WRITE,
BTRFS_MAP_DISCARD,
BTRFS_MAP_GET_READ_MIRRORS,
};
static inline enum btrfs_map_op btrfs_op(struct bio *bio)
{
switch (bio_op(bio)) {
case REQ_OP_DISCARD:
return BTRFS_MAP_DISCARD;
case REQ_OP_WRITE:
case REQ_OP_ZONE_APPEND:
return BTRFS_MAP_WRITE;
default:
WARN_ON_ONCE(1);
fallthrough;
case REQ_OP_READ:
return BTRFS_MAP_READ;
}
}
void btrfs_get_bbio(struct btrfs_bio *bbio);
void btrfs_put_bbio(struct btrfs_bio *bbio);
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
u64 logical, u64 *length,
struct btrfs_bio **bbio_ret, int mirror_num);
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
u64 logical, u64 *length,
struct btrfs_bio **bbio_ret);
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *map,
enum btrfs_map_op op, u64 logical, u64 len,
struct btrfs_io_geometry *io_geom);
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
void btrfs_mapping_tree_free(struct extent_map_tree *tree);
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
int mirror_num);
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
fmode_t flags, void *holder);
struct btrfs_device *btrfs_scan_one_device(const char *path,
fmode_t flags, void *holder);
int btrfs_forget_devices(const char *path);
void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
void btrfs_assign_next_active_device(struct btrfs_device *device,
struct btrfs_device *this_dev);
struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
u64 devid,
const char *devpath);
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
const u64 *devid,
const u8 *uuid);
void btrfs_free_device(struct btrfs_device *device);
int btrfs_rm_device(struct btrfs_fs_info *fs_info,
const char *device_path, u64 devid);
void __exit btrfs_cleanup_fs_uuids(void);
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
int btrfs_grow_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device, u64 new_size);
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
u64 devid, u8 *uuid, u8 *fsid);
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
int btrfs_balance(struct btrfs_fs_info *fs_info,
struct btrfs_balance_control *bctl,
struct btrfs_ioctl_balance_args *bargs);
void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
int btrfs_uuid_scan_kthread(void *data);
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
u64 *start, u64 *max_avail);
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
struct btrfs_ioctl_get_dev_stats *stats);
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
u64 logical, u64 len);
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
u64 logical);
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
u64 chunk_offset, u64 chunk_size);
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
u64 logical, u64 length);
void btrfs_release_disk_super(struct btrfs_super_block *super);
static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
int index)
{
atomic_inc(dev->dev_stat_values + index);
/*
* This memory barrier orders stores updating statistics before stores
* updating dev_stats_ccnt.
*
* It pairs with smp_rmb() in btrfs_run_dev_stats().
*/
smp_mb__before_atomic();
atomic_inc(&dev->dev_stats_ccnt);
}
static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
int index)
{
return atomic_read(dev->dev_stat_values + index);
}
static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
int index)
{
int ret;
ret = atomic_xchg(dev->dev_stat_values + index, 0);
/*
* atomic_xchg implies a full memory barriers as per atomic_t.txt:
* - RMW operations that have a return value are fully ordered;
*
* This implicit memory barriers is paired with the smp_rmb in
* btrfs_run_dev_stats
*/
atomic_inc(&dev->dev_stats_ccnt);
return ret;
}
static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
int index, unsigned long val)
{
atomic_set(dev->dev_stat_values + index, val);
/*
* This memory barrier orders stores updating statistics before stores
* updating dev_stats_ccnt.
*
* It pairs with smp_rmb() in btrfs_run_dev_stats().
*/
smp_mb__before_atomic();
atomic_inc(&dev->dev_stats_ccnt);
}
/*
* Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
* can be used as index to access btrfs_raid_array[].
*/
static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
{
if (flags & BTRFS_BLOCK_GROUP_RAID10)
return BTRFS_RAID_RAID10;
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
return BTRFS_RAID_RAID1;
else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
return BTRFS_RAID_RAID1C3;
else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
return BTRFS_RAID_RAID1C4;
else if (flags & BTRFS_BLOCK_GROUP_DUP)
return BTRFS_RAID_DUP;
else if (flags & BTRFS_BLOCK_GROUP_RAID0)
return BTRFS_RAID_RAID0;
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
return BTRFS_RAID_RAID5;
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
return BTRFS_RAID_RAID6;
return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
}
void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
struct btrfs_device *failing_dev);
void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
struct block_device *bdev,
const char *device_path);
int btrfs_bg_type_to_factor(u64 flags);
const char *btrfs_bg_type_to_raid_name(u64 flags);
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
#endif