linux-stable/fs/f2fs/sysfs.c
Daeho Jeong 5ac443e26a f2fs: add sysfs nodes to get runtime compression stat
I've added new sysfs nodes to show runtime compression stat since mount.
compr_written_block - show the block count written after compression
compr_saved_block - show the saved block count with compression
compr_new_inode - show the count of inode newly enabled for compression

Signed-off-by: Daeho Jeong <daehojeong@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2021-03-25 18:20:50 -07:00

1142 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* f2fs sysfs interface
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
* Copyright (c) 2017 Chao Yu <chao@kernel.org>
*/
#include <linux/compiler.h>
#include <linux/proc_fs.h>
#include <linux/f2fs_fs.h>
#include <linux/seq_file.h>
#include <linux/unicode.h>
#include <linux/ioprio.h>
#include <linux/sysfs.h>
#include "f2fs.h"
#include "segment.h"
#include "gc.h"
#include <trace/events/f2fs.h>
static struct proc_dir_entry *f2fs_proc_root;
/* Sysfs support for f2fs */
enum {
GC_THREAD, /* struct f2fs_gc_thread */
SM_INFO, /* struct f2fs_sm_info */
DCC_INFO, /* struct discard_cmd_control */
NM_INFO, /* struct f2fs_nm_info */
F2FS_SBI, /* struct f2fs_sb_info */
#ifdef CONFIG_F2FS_STAT_FS
STAT_INFO, /* struct f2fs_stat_info */
#endif
#ifdef CONFIG_F2FS_FAULT_INJECTION
FAULT_INFO_RATE, /* struct f2fs_fault_info */
FAULT_INFO_TYPE, /* struct f2fs_fault_info */
#endif
RESERVED_BLOCKS, /* struct f2fs_sb_info */
CPRC_INFO, /* struct ckpt_req_control */
};
struct f2fs_attr {
struct attribute attr;
ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
const char *, size_t);
int struct_type;
int offset;
int id;
};
static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf);
static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
{
if (struct_type == GC_THREAD)
return (unsigned char *)sbi->gc_thread;
else if (struct_type == SM_INFO)
return (unsigned char *)SM_I(sbi);
else if (struct_type == DCC_INFO)
return (unsigned char *)SM_I(sbi)->dcc_info;
else if (struct_type == NM_INFO)
return (unsigned char *)NM_I(sbi);
else if (struct_type == F2FS_SBI || struct_type == RESERVED_BLOCKS)
return (unsigned char *)sbi;
#ifdef CONFIG_F2FS_FAULT_INJECTION
else if (struct_type == FAULT_INFO_RATE ||
struct_type == FAULT_INFO_TYPE)
return (unsigned char *)&F2FS_OPTION(sbi).fault_info;
#endif
#ifdef CONFIG_F2FS_STAT_FS
else if (struct_type == STAT_INFO)
return (unsigned char *)F2FS_STAT(sbi);
#endif
else if (struct_type == CPRC_INFO)
return (unsigned char *)&sbi->cprc_info;
return NULL;
}
static ssize_t dirty_segments_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%llu\n",
(unsigned long long)(dirty_segments(sbi)));
}
static ssize_t free_segments_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%llu\n",
(unsigned long long)(free_segments(sbi)));
}
static ssize_t ovp_segments_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%llu\n",
(unsigned long long)(overprovision_segments(sbi)));
}
static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%llu\n",
(unsigned long long)(sbi->kbytes_written +
((f2fs_get_sectors_written(sbi) -
sbi->sectors_written_start) >> 1)));
}
static ssize_t sb_status_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%lx\n", sbi->s_flag);
}
static ssize_t features_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
int len = 0;
if (f2fs_sb_has_encrypt(sbi))
len += scnprintf(buf, PAGE_SIZE - len, "%s",
"encryption");
if (f2fs_sb_has_blkzoned(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "blkzoned");
if (f2fs_sb_has_extra_attr(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "extra_attr");
if (f2fs_sb_has_project_quota(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "projquota");
if (f2fs_sb_has_inode_chksum(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "inode_checksum");
if (f2fs_sb_has_flexible_inline_xattr(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "flexible_inline_xattr");
if (f2fs_sb_has_quota_ino(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "quota_ino");
if (f2fs_sb_has_inode_crtime(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "inode_crtime");
if (f2fs_sb_has_lost_found(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "lost_found");
if (f2fs_sb_has_verity(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "verity");
if (f2fs_sb_has_sb_chksum(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "sb_checksum");
if (f2fs_sb_has_casefold(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "casefold");
if (f2fs_sb_has_compression(sbi))
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "compression");
len += scnprintf(buf + len, PAGE_SIZE - len, "%s%s",
len ? ", " : "", "pin_file");
len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
return len;
}
static ssize_t current_reserved_blocks_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%u\n", sbi->current_reserved_blocks);
}
static ssize_t unusable_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
block_t unusable;
if (test_opt(sbi, DISABLE_CHECKPOINT))
unusable = sbi->unusable_block_count;
else
unusable = f2fs_get_unusable_blocks(sbi);
return sprintf(buf, "%llu\n", (unsigned long long)unusable);
}
static ssize_t encoding_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
#ifdef CONFIG_UNICODE
struct super_block *sb = sbi->sb;
if (f2fs_sb_has_casefold(sbi))
return snprintf(buf, PAGE_SIZE, "%s (%d.%d.%d)\n",
sb->s_encoding->charset,
(sb->s_encoding->version >> 16) & 0xff,
(sb->s_encoding->version >> 8) & 0xff,
sb->s_encoding->version & 0xff);
#endif
return sprintf(buf, "(none)");
}
static ssize_t mounted_time_sec_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return sprintf(buf, "%llu", SIT_I(sbi)->mounted_time);
}
#ifdef CONFIG_F2FS_STAT_FS
static ssize_t moved_blocks_foreground_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
struct f2fs_stat_info *si = F2FS_STAT(sbi);
return sprintf(buf, "%llu\n",
(unsigned long long)(si->tot_blks -
(si->bg_data_blks + si->bg_node_blks)));
}
static ssize_t moved_blocks_background_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
struct f2fs_stat_info *si = F2FS_STAT(sbi);
return sprintf(buf, "%llu\n",
(unsigned long long)(si->bg_data_blks + si->bg_node_blks));
}
static ssize_t avg_vblocks_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
struct f2fs_stat_info *si = F2FS_STAT(sbi);
si->dirty_count = dirty_segments(sbi);
f2fs_update_sit_info(sbi);
return sprintf(buf, "%llu\n", (unsigned long long)(si->avg_vblocks));
}
#endif
static ssize_t main_blkaddr_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%llu\n",
(unsigned long long)MAIN_BLKADDR(sbi));
}
static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
unsigned char *ptr = NULL;
unsigned int *ui;
ptr = __struct_ptr(sbi, a->struct_type);
if (!ptr)
return -EINVAL;
if (!strcmp(a->attr.name, "extension_list")) {
__u8 (*extlist)[F2FS_EXTENSION_LEN] =
sbi->raw_super->extension_list;
int cold_count = le32_to_cpu(sbi->raw_super->extension_count);
int hot_count = sbi->raw_super->hot_ext_count;
int len = 0, i;
len += scnprintf(buf + len, PAGE_SIZE - len,
"cold file extension:\n");
for (i = 0; i < cold_count; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%s\n",
extlist[i]);
len += scnprintf(buf + len, PAGE_SIZE - len,
"hot file extension:\n");
for (i = cold_count; i < cold_count + hot_count; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%s\n",
extlist[i]);
return len;
}
if (!strcmp(a->attr.name, "ckpt_thread_ioprio")) {
struct ckpt_req_control *cprc = &sbi->cprc_info;
int len = 0;
int class = IOPRIO_PRIO_CLASS(cprc->ckpt_thread_ioprio);
int data = IOPRIO_PRIO_DATA(cprc->ckpt_thread_ioprio);
if (class == IOPRIO_CLASS_RT)
len += scnprintf(buf + len, PAGE_SIZE - len, "rt,");
else if (class == IOPRIO_CLASS_BE)
len += scnprintf(buf + len, PAGE_SIZE - len, "be,");
else
return -EINVAL;
len += scnprintf(buf + len, PAGE_SIZE - len, "%d\n", data);
return len;
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (!strcmp(a->attr.name, "compr_written_block"))
return sysfs_emit(buf, "%llu\n", sbi->compr_written_block);
if (!strcmp(a->attr.name, "compr_saved_block"))
return sysfs_emit(buf, "%llu\n", sbi->compr_saved_block);
if (!strcmp(a->attr.name, "compr_new_inode"))
return sysfs_emit(buf, "%u\n", sbi->compr_new_inode);
#endif
ui = (unsigned int *)(ptr + a->offset);
return sprintf(buf, "%u\n", *ui);
}
static ssize_t __sbi_store(struct f2fs_attr *a,
struct f2fs_sb_info *sbi,
const char *buf, size_t count)
{
unsigned char *ptr;
unsigned long t;
unsigned int *ui;
ssize_t ret;
ptr = __struct_ptr(sbi, a->struct_type);
if (!ptr)
return -EINVAL;
if (!strcmp(a->attr.name, "extension_list")) {
const char *name = strim((char *)buf);
bool set = true, hot;
if (!strncmp(name, "[h]", 3))
hot = true;
else if (!strncmp(name, "[c]", 3))
hot = false;
else
return -EINVAL;
name += 3;
if (*name == '!') {
name++;
set = false;
}
if (strlen(name) >= F2FS_EXTENSION_LEN)
return -EINVAL;
down_write(&sbi->sb_lock);
ret = f2fs_update_extension_list(sbi, name, hot, set);
if (ret)
goto out;
ret = f2fs_commit_super(sbi, false);
if (ret)
f2fs_update_extension_list(sbi, name, hot, !set);
out:
up_write(&sbi->sb_lock);
return ret ? ret : count;
}
if (!strcmp(a->attr.name, "ckpt_thread_ioprio")) {
const char *name = strim((char *)buf);
struct ckpt_req_control *cprc = &sbi->cprc_info;
int class;
long data;
int ret;
if (!strncmp(name, "rt,", 3))
class = IOPRIO_CLASS_RT;
else if (!strncmp(name, "be,", 3))
class = IOPRIO_CLASS_BE;
else
return -EINVAL;
name += 3;
ret = kstrtol(name, 10, &data);
if (ret)
return ret;
if (data >= IOPRIO_BE_NR || data < 0)
return -EINVAL;
cprc->ckpt_thread_ioprio = IOPRIO_PRIO_VALUE(class, data);
if (test_opt(sbi, MERGE_CHECKPOINT)) {
ret = set_task_ioprio(cprc->f2fs_issue_ckpt,
cprc->ckpt_thread_ioprio);
if (ret)
return ret;
}
return count;
}
ui = (unsigned int *)(ptr + a->offset);
ret = kstrtoul(skip_spaces(buf), 0, &t);
if (ret < 0)
return ret;
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
return -EINVAL;
if (a->struct_type == FAULT_INFO_RATE && t >= UINT_MAX)
return -EINVAL;
#endif
if (a->struct_type == RESERVED_BLOCKS) {
spin_lock(&sbi->stat_lock);
if (t > (unsigned long)(sbi->user_block_count -
F2FS_OPTION(sbi).root_reserved_blocks)) {
spin_unlock(&sbi->stat_lock);
return -EINVAL;
}
*ui = t;
sbi->current_reserved_blocks = min(sbi->reserved_blocks,
sbi->user_block_count - valid_user_blocks(sbi));
spin_unlock(&sbi->stat_lock);
return count;
}
if (!strcmp(a->attr.name, "discard_granularity")) {
if (t == 0 || t > MAX_PLIST_NUM)
return -EINVAL;
if (t == *ui)
return count;
*ui = t;
return count;
}
if (!strcmp(a->attr.name, "migration_granularity")) {
if (t == 0 || t > sbi->segs_per_sec)
return -EINVAL;
}
if (!strcmp(a->attr.name, "trim_sections"))
return -EINVAL;
if (!strcmp(a->attr.name, "gc_urgent")) {
if (t == 0) {
sbi->gc_mode = GC_NORMAL;
} else if (t == 1) {
sbi->gc_mode = GC_URGENT_HIGH;
if (sbi->gc_thread) {
sbi->gc_thread->gc_wake = 1;
wake_up_interruptible_all(
&sbi->gc_thread->gc_wait_queue_head);
wake_up_discard_thread(sbi, true);
}
} else if (t == 2) {
sbi->gc_mode = GC_URGENT_LOW;
} else {
return -EINVAL;
}
return count;
}
if (!strcmp(a->attr.name, "gc_idle")) {
if (t == GC_IDLE_CB) {
sbi->gc_mode = GC_IDLE_CB;
} else if (t == GC_IDLE_GREEDY) {
sbi->gc_mode = GC_IDLE_GREEDY;
} else if (t == GC_IDLE_AT) {
if (!sbi->am.atgc_enabled)
return -EINVAL;
sbi->gc_mode = GC_AT;
} else {
sbi->gc_mode = GC_NORMAL;
}
return count;
}
if (!strcmp(a->attr.name, "iostat_enable")) {
sbi->iostat_enable = !!t;
if (!sbi->iostat_enable)
f2fs_reset_iostat(sbi);
return count;
}
if (!strcmp(a->attr.name, "iostat_period_ms")) {
if (t < MIN_IOSTAT_PERIOD_MS || t > MAX_IOSTAT_PERIOD_MS)
return -EINVAL;
spin_lock(&sbi->iostat_lock);
sbi->iostat_period_ms = (unsigned int)t;
spin_unlock(&sbi->iostat_lock);
return count;
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (!strcmp(a->attr.name, "compr_written_block") ||
!strcmp(a->attr.name, "compr_saved_block")) {
if (t != 0)
return -EINVAL;
sbi->compr_written_block = 0;
sbi->compr_saved_block = 0;
return count;
}
if (!strcmp(a->attr.name, "compr_new_inode")) {
if (t != 0)
return -EINVAL;
sbi->compr_new_inode = 0;
return count;
}
#endif
*ui = (unsigned int)t;
return count;
}
static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
struct f2fs_sb_info *sbi,
const char *buf, size_t count)
{
ssize_t ret;
bool gc_entry = (!strcmp(a->attr.name, "gc_urgent") ||
a->struct_type == GC_THREAD);
if (gc_entry) {
if (!down_read_trylock(&sbi->sb->s_umount))
return -EAGAIN;
}
ret = __sbi_store(a, sbi, buf, count);
if (gc_entry)
up_read(&sbi->sb->s_umount);
return ret;
}
static ssize_t f2fs_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->show ? a->show(a, sbi, buf) : 0;
}
static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t len)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->store ? a->store(a, sbi, buf, len) : 0;
}
static void f2fs_sb_release(struct kobject *kobj)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
complete(&sbi->s_kobj_unregister);
}
enum feat_id {
FEAT_CRYPTO = 0,
FEAT_BLKZONED,
FEAT_ATOMIC_WRITE,
FEAT_EXTRA_ATTR,
FEAT_PROJECT_QUOTA,
FEAT_INODE_CHECKSUM,
FEAT_FLEXIBLE_INLINE_XATTR,
FEAT_QUOTA_INO,
FEAT_INODE_CRTIME,
FEAT_LOST_FOUND,
FEAT_VERITY,
FEAT_SB_CHECKSUM,
FEAT_CASEFOLD,
FEAT_COMPRESSION,
FEAT_TEST_DUMMY_ENCRYPTION_V2,
};
static ssize_t f2fs_feature_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
switch (a->id) {
case FEAT_CRYPTO:
case FEAT_BLKZONED:
case FEAT_ATOMIC_WRITE:
case FEAT_EXTRA_ATTR:
case FEAT_PROJECT_QUOTA:
case FEAT_INODE_CHECKSUM:
case FEAT_FLEXIBLE_INLINE_XATTR:
case FEAT_QUOTA_INO:
case FEAT_INODE_CRTIME:
case FEAT_LOST_FOUND:
case FEAT_VERITY:
case FEAT_SB_CHECKSUM:
case FEAT_CASEFOLD:
case FEAT_COMPRESSION:
case FEAT_TEST_DUMMY_ENCRYPTION_V2:
return sprintf(buf, "supported\n");
}
return 0;
}
#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
static struct f2fs_attr f2fs_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
.struct_type = _struct_type, \
.offset = _offset \
}
#define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
F2FS_ATTR_OFFSET(struct_type, name, 0644, \
f2fs_sbi_show, f2fs_sbi_store, \
offsetof(struct struct_name, elname))
#define F2FS_GENERAL_RO_ATTR(name) \
static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
#define F2FS_FEATURE_RO_ATTR(_name, _id) \
static struct f2fs_attr f2fs_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = 0444 }, \
.show = f2fs_feature_show, \
.id = _id, \
}
#define F2FS_STAT_ATTR(_struct_type, _struct_name, _name, _elname) \
static struct f2fs_attr f2fs_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = 0444 }, \
.show = f2fs_sbi_show, \
.struct_type = _struct_type, \
.offset = offsetof(struct _struct_name, _elname), \
}
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_urgent_sleep_time,
urgent_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_idle, gc_mode);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_urgent, gc_mode);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards);
F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, discard_granularity, discard_granularity);
F2FS_RW_ATTR(RESERVED_BLOCKS, f2fs_sb_info, reserved_blocks, reserved_blocks);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_seq_blocks, min_seq_blocks);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_hot_blocks, min_hot_blocks);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ssr_sections, min_ssr_sections);
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, migration_granularity, migration_granularity);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, discard_idle_interval,
interval_time[DISCARD_TIME]);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_idle_interval, interval_time[GC_TIME]);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info,
umount_discard_timeout, interval_time[UMOUNT_DISCARD_TIMEOUT]);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, iostat_enable, iostat_enable);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, iostat_period_ms, iostat_period_ms);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, readdir_ra, readdir_ra);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_io_bytes, max_io_bytes);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, gc_pin_file_thresh, gc_pin_file_threshold);
F2FS_RW_ATTR(F2FS_SBI, f2fs_super_block, extension_list, extension_list);
#ifdef CONFIG_F2FS_FAULT_INJECTION
F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
#endif
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, data_io_flag, data_io_flag);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, node_io_flag, node_io_flag);
F2FS_RW_ATTR(CPRC_INFO, ckpt_req_control, ckpt_thread_ioprio, ckpt_thread_ioprio);
F2FS_GENERAL_RO_ATTR(dirty_segments);
F2FS_GENERAL_RO_ATTR(free_segments);
F2FS_GENERAL_RO_ATTR(ovp_segments);
F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
F2FS_GENERAL_RO_ATTR(features);
F2FS_GENERAL_RO_ATTR(current_reserved_blocks);
F2FS_GENERAL_RO_ATTR(unusable);
F2FS_GENERAL_RO_ATTR(encoding);
F2FS_GENERAL_RO_ATTR(mounted_time_sec);
F2FS_GENERAL_RO_ATTR(main_blkaddr);
#ifdef CONFIG_F2FS_STAT_FS
F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, cp_foreground_calls, cp_count);
F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, cp_background_calls, bg_cp_count);
F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, gc_foreground_calls, call_count);
F2FS_STAT_ATTR(STAT_INFO, f2fs_stat_info, gc_background_calls, bg_gc);
F2FS_GENERAL_RO_ATTR(moved_blocks_background);
F2FS_GENERAL_RO_ATTR(moved_blocks_foreground);
F2FS_GENERAL_RO_ATTR(avg_vblocks);
#endif
#ifdef CONFIG_FS_ENCRYPTION
F2FS_FEATURE_RO_ATTR(encryption, FEAT_CRYPTO);
F2FS_FEATURE_RO_ATTR(test_dummy_encryption_v2, FEAT_TEST_DUMMY_ENCRYPTION_V2);
#endif
#ifdef CONFIG_BLK_DEV_ZONED
F2FS_FEATURE_RO_ATTR(block_zoned, FEAT_BLKZONED);
#endif
F2FS_FEATURE_RO_ATTR(atomic_write, FEAT_ATOMIC_WRITE);
F2FS_FEATURE_RO_ATTR(extra_attr, FEAT_EXTRA_ATTR);
F2FS_FEATURE_RO_ATTR(project_quota, FEAT_PROJECT_QUOTA);
F2FS_FEATURE_RO_ATTR(inode_checksum, FEAT_INODE_CHECKSUM);
F2FS_FEATURE_RO_ATTR(flexible_inline_xattr, FEAT_FLEXIBLE_INLINE_XATTR);
F2FS_FEATURE_RO_ATTR(quota_ino, FEAT_QUOTA_INO);
F2FS_FEATURE_RO_ATTR(inode_crtime, FEAT_INODE_CRTIME);
F2FS_FEATURE_RO_ATTR(lost_found, FEAT_LOST_FOUND);
#ifdef CONFIG_FS_VERITY
F2FS_FEATURE_RO_ATTR(verity, FEAT_VERITY);
#endif
F2FS_FEATURE_RO_ATTR(sb_checksum, FEAT_SB_CHECKSUM);
F2FS_FEATURE_RO_ATTR(casefold, FEAT_CASEFOLD);
#ifdef CONFIG_F2FS_FS_COMPRESSION
F2FS_FEATURE_RO_ATTR(compression, FEAT_COMPRESSION);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, compr_written_block, compr_written_block);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, compr_saved_block, compr_saved_block);
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, compr_new_inode, compr_new_inode);
#endif
#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
static struct attribute *f2fs_attrs[] = {
ATTR_LIST(gc_urgent_sleep_time),
ATTR_LIST(gc_min_sleep_time),
ATTR_LIST(gc_max_sleep_time),
ATTR_LIST(gc_no_gc_sleep_time),
ATTR_LIST(gc_idle),
ATTR_LIST(gc_urgent),
ATTR_LIST(reclaim_segments),
ATTR_LIST(main_blkaddr),
ATTR_LIST(max_small_discards),
ATTR_LIST(discard_granularity),
ATTR_LIST(batched_trim_sections),
ATTR_LIST(ipu_policy),
ATTR_LIST(min_ipu_util),
ATTR_LIST(min_fsync_blocks),
ATTR_LIST(min_seq_blocks),
ATTR_LIST(min_hot_blocks),
ATTR_LIST(min_ssr_sections),
ATTR_LIST(max_victim_search),
ATTR_LIST(migration_granularity),
ATTR_LIST(dir_level),
ATTR_LIST(ram_thresh),
ATTR_LIST(ra_nid_pages),
ATTR_LIST(dirty_nats_ratio),
ATTR_LIST(cp_interval),
ATTR_LIST(idle_interval),
ATTR_LIST(discard_idle_interval),
ATTR_LIST(gc_idle_interval),
ATTR_LIST(umount_discard_timeout),
ATTR_LIST(iostat_enable),
ATTR_LIST(iostat_period_ms),
ATTR_LIST(readdir_ra),
ATTR_LIST(max_io_bytes),
ATTR_LIST(gc_pin_file_thresh),
ATTR_LIST(extension_list),
#ifdef CONFIG_F2FS_FAULT_INJECTION
ATTR_LIST(inject_rate),
ATTR_LIST(inject_type),
#endif
ATTR_LIST(data_io_flag),
ATTR_LIST(node_io_flag),
ATTR_LIST(ckpt_thread_ioprio),
ATTR_LIST(dirty_segments),
ATTR_LIST(free_segments),
ATTR_LIST(ovp_segments),
ATTR_LIST(unusable),
ATTR_LIST(lifetime_write_kbytes),
ATTR_LIST(features),
ATTR_LIST(reserved_blocks),
ATTR_LIST(current_reserved_blocks),
ATTR_LIST(encoding),
ATTR_LIST(mounted_time_sec),
#ifdef CONFIG_F2FS_STAT_FS
ATTR_LIST(cp_foreground_calls),
ATTR_LIST(cp_background_calls),
ATTR_LIST(gc_foreground_calls),
ATTR_LIST(gc_background_calls),
ATTR_LIST(moved_blocks_foreground),
ATTR_LIST(moved_blocks_background),
ATTR_LIST(avg_vblocks),
#endif
#ifdef CONFIG_F2FS_FS_COMPRESSION
ATTR_LIST(compr_written_block),
ATTR_LIST(compr_saved_block),
ATTR_LIST(compr_new_inode),
#endif
NULL,
};
ATTRIBUTE_GROUPS(f2fs);
static struct attribute *f2fs_feat_attrs[] = {
#ifdef CONFIG_FS_ENCRYPTION
ATTR_LIST(encryption),
ATTR_LIST(test_dummy_encryption_v2),
#endif
#ifdef CONFIG_BLK_DEV_ZONED
ATTR_LIST(block_zoned),
#endif
ATTR_LIST(atomic_write),
ATTR_LIST(extra_attr),
ATTR_LIST(project_quota),
ATTR_LIST(inode_checksum),
ATTR_LIST(flexible_inline_xattr),
ATTR_LIST(quota_ino),
ATTR_LIST(inode_crtime),
ATTR_LIST(lost_found),
#ifdef CONFIG_FS_VERITY
ATTR_LIST(verity),
#endif
ATTR_LIST(sb_checksum),
ATTR_LIST(casefold),
#ifdef CONFIG_F2FS_FS_COMPRESSION
ATTR_LIST(compression),
#endif
NULL,
};
ATTRIBUTE_GROUPS(f2fs_feat);
F2FS_GENERAL_RO_ATTR(sb_status);
static struct attribute *f2fs_stat_attrs[] = {
ATTR_LIST(sb_status),
NULL,
};
ATTRIBUTE_GROUPS(f2fs_stat);
static const struct sysfs_ops f2fs_attr_ops = {
.show = f2fs_attr_show,
.store = f2fs_attr_store,
};
static struct kobj_type f2fs_sb_ktype = {
.default_groups = f2fs_groups,
.sysfs_ops = &f2fs_attr_ops,
.release = f2fs_sb_release,
};
static struct kobj_type f2fs_ktype = {
.sysfs_ops = &f2fs_attr_ops,
};
static struct kset f2fs_kset = {
.kobj = {.ktype = &f2fs_ktype},
};
static struct kobj_type f2fs_feat_ktype = {
.default_groups = f2fs_feat_groups,
.sysfs_ops = &f2fs_attr_ops,
};
static struct kobject f2fs_feat = {
.kset = &f2fs_kset,
};
static ssize_t f2fs_stat_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_stat_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->show ? a->show(a, sbi, buf) : 0;
}
static ssize_t f2fs_stat_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t len)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_stat_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->store ? a->store(a, sbi, buf, len) : 0;
}
static void f2fs_stat_kobj_release(struct kobject *kobj)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_stat_kobj);
complete(&sbi->s_stat_kobj_unregister);
}
static const struct sysfs_ops f2fs_stat_attr_ops = {
.show = f2fs_stat_attr_show,
.store = f2fs_stat_attr_store,
};
static struct kobj_type f2fs_stat_ktype = {
.default_groups = f2fs_stat_groups,
.sysfs_ops = &f2fs_stat_attr_ops,
.release = f2fs_stat_kobj_release,
};
static int __maybe_unused segment_info_seq_show(struct seq_file *seq,
void *offset)
{
struct super_block *sb = seq->private;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
unsigned int total_segs =
le32_to_cpu(sbi->raw_super->segment_count_main);
int i;
seq_puts(seq, "format: segment_type|valid_blocks\n"
"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
for (i = 0; i < total_segs; i++) {
struct seg_entry *se = get_seg_entry(sbi, i);
if ((i % 10) == 0)
seq_printf(seq, "%-10d", i);
seq_printf(seq, "%d|%-3u", se->type, se->valid_blocks);
if ((i % 10) == 9 || i == (total_segs - 1))
seq_putc(seq, '\n');
else
seq_putc(seq, ' ');
}
return 0;
}
static int __maybe_unused segment_bits_seq_show(struct seq_file *seq,
void *offset)
{
struct super_block *sb = seq->private;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
unsigned int total_segs =
le32_to_cpu(sbi->raw_super->segment_count_main);
int i, j;
seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
for (i = 0; i < total_segs; i++) {
struct seg_entry *se = get_seg_entry(sbi, i);
seq_printf(seq, "%-10d", i);
seq_printf(seq, "%d|%-3u|", se->type, se->valid_blocks);
for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
seq_printf(seq, " %.2x", se->cur_valid_map[j]);
seq_putc(seq, '\n');
}
return 0;
}
void f2fs_record_iostat(struct f2fs_sb_info *sbi)
{
unsigned long long iostat_diff[NR_IO_TYPE];
int i;
if (time_is_after_jiffies(sbi->iostat_next_period))
return;
/* Need double check under the lock */
spin_lock(&sbi->iostat_lock);
if (time_is_after_jiffies(sbi->iostat_next_period)) {
spin_unlock(&sbi->iostat_lock);
return;
}
sbi->iostat_next_period = jiffies +
msecs_to_jiffies(sbi->iostat_period_ms);
for (i = 0; i < NR_IO_TYPE; i++) {
iostat_diff[i] = sbi->rw_iostat[i] -
sbi->prev_rw_iostat[i];
sbi->prev_rw_iostat[i] = sbi->rw_iostat[i];
}
spin_unlock(&sbi->iostat_lock);
trace_f2fs_iostat(sbi, iostat_diff);
}
static int __maybe_unused iostat_info_seq_show(struct seq_file *seq,
void *offset)
{
struct super_block *sb = seq->private;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
time64_t now = ktime_get_real_seconds();
if (!sbi->iostat_enable)
return 0;
seq_printf(seq, "time: %-16llu\n", now);
/* print app write IOs */
seq_puts(seq, "[WRITE]\n");
seq_printf(seq, "app buffered: %-16llu\n",
sbi->rw_iostat[APP_BUFFERED_IO]);
seq_printf(seq, "app direct: %-16llu\n",
sbi->rw_iostat[APP_DIRECT_IO]);
seq_printf(seq, "app mapped: %-16llu\n",
sbi->rw_iostat[APP_MAPPED_IO]);
/* print fs write IOs */
seq_printf(seq, "fs data: %-16llu\n",
sbi->rw_iostat[FS_DATA_IO]);
seq_printf(seq, "fs node: %-16llu\n",
sbi->rw_iostat[FS_NODE_IO]);
seq_printf(seq, "fs meta: %-16llu\n",
sbi->rw_iostat[FS_META_IO]);
seq_printf(seq, "fs gc data: %-16llu\n",
sbi->rw_iostat[FS_GC_DATA_IO]);
seq_printf(seq, "fs gc node: %-16llu\n",
sbi->rw_iostat[FS_GC_NODE_IO]);
seq_printf(seq, "fs cp data: %-16llu\n",
sbi->rw_iostat[FS_CP_DATA_IO]);
seq_printf(seq, "fs cp node: %-16llu\n",
sbi->rw_iostat[FS_CP_NODE_IO]);
seq_printf(seq, "fs cp meta: %-16llu\n",
sbi->rw_iostat[FS_CP_META_IO]);
/* print app read IOs */
seq_puts(seq, "[READ]\n");
seq_printf(seq, "app buffered: %-16llu\n",
sbi->rw_iostat[APP_BUFFERED_READ_IO]);
seq_printf(seq, "app direct: %-16llu\n",
sbi->rw_iostat[APP_DIRECT_READ_IO]);
seq_printf(seq, "app mapped: %-16llu\n",
sbi->rw_iostat[APP_MAPPED_READ_IO]);
/* print fs read IOs */
seq_printf(seq, "fs data: %-16llu\n",
sbi->rw_iostat[FS_DATA_READ_IO]);
seq_printf(seq, "fs gc data: %-16llu\n",
sbi->rw_iostat[FS_GDATA_READ_IO]);
seq_printf(seq, "fs compr_data: %-16llu\n",
sbi->rw_iostat[FS_CDATA_READ_IO]);
seq_printf(seq, "fs node: %-16llu\n",
sbi->rw_iostat[FS_NODE_READ_IO]);
seq_printf(seq, "fs meta: %-16llu\n",
sbi->rw_iostat[FS_META_READ_IO]);
/* print other IOs */
seq_puts(seq, "[OTHER]\n");
seq_printf(seq, "fs discard: %-16llu\n",
sbi->rw_iostat[FS_DISCARD]);
return 0;
}
static int __maybe_unused victim_bits_seq_show(struct seq_file *seq,
void *offset)
{
struct super_block *sb = seq->private;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
int i;
seq_puts(seq, "format: victim_secmap bitmaps\n");
for (i = 0; i < MAIN_SECS(sbi); i++) {
if ((i % 10) == 0)
seq_printf(seq, "%-10d", i);
seq_printf(seq, "%d", test_bit(i, dirty_i->victim_secmap) ? 1 : 0);
if ((i % 10) == 9 || i == (MAIN_SECS(sbi) - 1))
seq_putc(seq, '\n');
else
seq_putc(seq, ' ');
}
return 0;
}
int __init f2fs_init_sysfs(void)
{
int ret;
kobject_set_name(&f2fs_kset.kobj, "f2fs");
f2fs_kset.kobj.parent = fs_kobj;
ret = kset_register(&f2fs_kset);
if (ret)
return ret;
ret = kobject_init_and_add(&f2fs_feat, &f2fs_feat_ktype,
NULL, "features");
if (ret) {
kobject_put(&f2fs_feat);
kset_unregister(&f2fs_kset);
} else {
f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
}
return ret;
}
void f2fs_exit_sysfs(void)
{
kobject_put(&f2fs_feat);
kset_unregister(&f2fs_kset);
remove_proc_entry("fs/f2fs", NULL);
f2fs_proc_root = NULL;
}
int f2fs_register_sysfs(struct f2fs_sb_info *sbi)
{
struct super_block *sb = sbi->sb;
int err;
sbi->s_kobj.kset = &f2fs_kset;
init_completion(&sbi->s_kobj_unregister);
err = kobject_init_and_add(&sbi->s_kobj, &f2fs_sb_ktype, NULL,
"%s", sb->s_id);
if (err)
goto put_sb_kobj;
sbi->s_stat_kobj.kset = &f2fs_kset;
init_completion(&sbi->s_stat_kobj_unregister);
err = kobject_init_and_add(&sbi->s_stat_kobj, &f2fs_stat_ktype,
&sbi->s_kobj, "stat");
if (err)
goto put_stat_kobj;
if (f2fs_proc_root)
sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
if (sbi->s_proc) {
proc_create_single_data("segment_info", S_IRUGO, sbi->s_proc,
segment_info_seq_show, sb);
proc_create_single_data("segment_bits", S_IRUGO, sbi->s_proc,
segment_bits_seq_show, sb);
proc_create_single_data("iostat_info", S_IRUGO, sbi->s_proc,
iostat_info_seq_show, sb);
proc_create_single_data("victim_bits", S_IRUGO, sbi->s_proc,
victim_bits_seq_show, sb);
}
return 0;
put_stat_kobj:
kobject_put(&sbi->s_stat_kobj);
wait_for_completion(&sbi->s_stat_kobj_unregister);
put_sb_kobj:
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
return err;
}
void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi)
{
if (sbi->s_proc) {
remove_proc_entry("iostat_info", sbi->s_proc);
remove_proc_entry("segment_info", sbi->s_proc);
remove_proc_entry("segment_bits", sbi->s_proc);
remove_proc_entry("victim_bits", sbi->s_proc);
remove_proc_entry(sbi->sb->s_id, f2fs_proc_root);
}
kobject_del(&sbi->s_stat_kobj);
kobject_put(&sbi->s_stat_kobj);
wait_for_completion(&sbi->s_stat_kobj_unregister);
kobject_del(&sbi->s_kobj);
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
}