mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
b0d3869ce9
... to protect the modification of mp->m_count done by it. Most of the places that modify that thing also have namespace_lock held, but not all of them can do so, so we really need mount_lock here. Kudos to Piotr Krysiuk <piotras@gmail.com>, who'd spotted a related bug in pivot_root(2) (fixed unnoticed in 5.3); search for other similar turds has caught out this one. Cc: stable@kernel.org Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
602 lines
15 KiB
C
602 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/fs/pnode.c
|
|
*
|
|
* (C) Copyright IBM Corporation 2005.
|
|
* Author : Ram Pai (linuxram@us.ibm.com)
|
|
*/
|
|
#include <linux/mnt_namespace.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <uapi/linux/mount.h>
|
|
#include "internal.h"
|
|
#include "pnode.h"
|
|
|
|
/* return the next shared peer mount of @p */
|
|
static inline struct mount *next_peer(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_share.next, struct mount, mnt_share);
|
|
}
|
|
|
|
static inline struct mount *first_slave(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
|
|
}
|
|
|
|
static inline struct mount *last_slave(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
|
|
}
|
|
|
|
static inline struct mount *next_slave(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
|
|
}
|
|
|
|
static struct mount *get_peer_under_root(struct mount *mnt,
|
|
struct mnt_namespace *ns,
|
|
const struct path *root)
|
|
{
|
|
struct mount *m = mnt;
|
|
|
|
do {
|
|
/* Check the namespace first for optimization */
|
|
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
|
|
return m;
|
|
|
|
m = next_peer(m);
|
|
} while (m != mnt);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Get ID of closest dominating peer group having a representative
|
|
* under the given root.
|
|
*
|
|
* Caller must hold namespace_sem
|
|
*/
|
|
int get_dominating_id(struct mount *mnt, const struct path *root)
|
|
{
|
|
struct mount *m;
|
|
|
|
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
|
|
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
|
|
if (d)
|
|
return d->mnt_group_id;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_make_slave(struct mount *mnt)
|
|
{
|
|
struct mount *master, *slave_mnt;
|
|
|
|
if (list_empty(&mnt->mnt_share)) {
|
|
if (IS_MNT_SHARED(mnt)) {
|
|
mnt_release_group_id(mnt);
|
|
CLEAR_MNT_SHARED(mnt);
|
|
}
|
|
master = mnt->mnt_master;
|
|
if (!master) {
|
|
struct list_head *p = &mnt->mnt_slave_list;
|
|
while (!list_empty(p)) {
|
|
slave_mnt = list_first_entry(p,
|
|
struct mount, mnt_slave);
|
|
list_del_init(&slave_mnt->mnt_slave);
|
|
slave_mnt->mnt_master = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
} else {
|
|
struct mount *m;
|
|
/*
|
|
* slave 'mnt' to a peer mount that has the
|
|
* same root dentry. If none is available then
|
|
* slave it to anything that is available.
|
|
*/
|
|
for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
|
|
if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
|
|
master = m;
|
|
break;
|
|
}
|
|
}
|
|
list_del_init(&mnt->mnt_share);
|
|
mnt->mnt_group_id = 0;
|
|
CLEAR_MNT_SHARED(mnt);
|
|
}
|
|
list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
|
|
slave_mnt->mnt_master = master;
|
|
list_move(&mnt->mnt_slave, &master->mnt_slave_list);
|
|
list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
|
|
INIT_LIST_HEAD(&mnt->mnt_slave_list);
|
|
mnt->mnt_master = master;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
void change_mnt_propagation(struct mount *mnt, int type)
|
|
{
|
|
if (type == MS_SHARED) {
|
|
set_mnt_shared(mnt);
|
|
return;
|
|
}
|
|
do_make_slave(mnt);
|
|
if (type != MS_SLAVE) {
|
|
list_del_init(&mnt->mnt_slave);
|
|
mnt->mnt_master = NULL;
|
|
if (type == MS_UNBINDABLE)
|
|
mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
|
|
else
|
|
mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* get the next mount in the propagation tree.
|
|
* @m: the mount seen last
|
|
* @origin: the original mount from where the tree walk initiated
|
|
*
|
|
* Note that peer groups form contiguous segments of slave lists.
|
|
* We rely on that in get_source() to be able to find out if
|
|
* vfsmount found while iterating with propagation_next() is
|
|
* a peer of one we'd found earlier.
|
|
*/
|
|
static struct mount *propagation_next(struct mount *m,
|
|
struct mount *origin)
|
|
{
|
|
/* are there any slaves of this mount? */
|
|
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
|
|
return first_slave(m);
|
|
|
|
while (1) {
|
|
struct mount *master = m->mnt_master;
|
|
|
|
if (master == origin->mnt_master) {
|
|
struct mount *next = next_peer(m);
|
|
return (next == origin) ? NULL : next;
|
|
} else if (m->mnt_slave.next != &master->mnt_slave_list)
|
|
return next_slave(m);
|
|
|
|
/* back at master */
|
|
m = master;
|
|
}
|
|
}
|
|
|
|
static struct mount *skip_propagation_subtree(struct mount *m,
|
|
struct mount *origin)
|
|
{
|
|
/*
|
|
* Advance m such that propagation_next will not return
|
|
* the slaves of m.
|
|
*/
|
|
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
|
|
m = last_slave(m);
|
|
|
|
return m;
|
|
}
|
|
|
|
static struct mount *next_group(struct mount *m, struct mount *origin)
|
|
{
|
|
while (1) {
|
|
while (1) {
|
|
struct mount *next;
|
|
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
|
|
return first_slave(m);
|
|
next = next_peer(m);
|
|
if (m->mnt_group_id == origin->mnt_group_id) {
|
|
if (next == origin)
|
|
return NULL;
|
|
} else if (m->mnt_slave.next != &next->mnt_slave)
|
|
break;
|
|
m = next;
|
|
}
|
|
/* m is the last peer */
|
|
while (1) {
|
|
struct mount *master = m->mnt_master;
|
|
if (m->mnt_slave.next != &master->mnt_slave_list)
|
|
return next_slave(m);
|
|
m = next_peer(master);
|
|
if (master->mnt_group_id == origin->mnt_group_id)
|
|
break;
|
|
if (master->mnt_slave.next == &m->mnt_slave)
|
|
break;
|
|
m = master;
|
|
}
|
|
if (m == origin)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* all accesses are serialized by namespace_sem */
|
|
static struct mount *last_dest, *first_source, *last_source, *dest_master;
|
|
static struct mountpoint *mp;
|
|
static struct hlist_head *list;
|
|
|
|
static inline bool peers(struct mount *m1, struct mount *m2)
|
|
{
|
|
return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
|
|
}
|
|
|
|
static int propagate_one(struct mount *m)
|
|
{
|
|
struct mount *child;
|
|
int type;
|
|
/* skip ones added by this propagate_mnt() */
|
|
if (IS_MNT_NEW(m))
|
|
return 0;
|
|
/* skip if mountpoint isn't covered by it */
|
|
if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
|
|
return 0;
|
|
if (peers(m, last_dest)) {
|
|
type = CL_MAKE_SHARED;
|
|
} else {
|
|
struct mount *n, *p;
|
|
bool done;
|
|
for (n = m; ; n = p) {
|
|
p = n->mnt_master;
|
|
if (p == dest_master || IS_MNT_MARKED(p))
|
|
break;
|
|
}
|
|
do {
|
|
struct mount *parent = last_source->mnt_parent;
|
|
if (last_source == first_source)
|
|
break;
|
|
done = parent->mnt_master == p;
|
|
if (done && peers(n, parent))
|
|
break;
|
|
last_source = last_source->mnt_master;
|
|
} while (!done);
|
|
|
|
type = CL_SLAVE;
|
|
/* beginning of peer group among the slaves? */
|
|
if (IS_MNT_SHARED(m))
|
|
type |= CL_MAKE_SHARED;
|
|
}
|
|
|
|
child = copy_tree(last_source, last_source->mnt.mnt_root, type);
|
|
if (IS_ERR(child))
|
|
return PTR_ERR(child);
|
|
read_seqlock_excl(&mount_lock);
|
|
mnt_set_mountpoint(m, mp, child);
|
|
if (m->mnt_master != dest_master)
|
|
SET_MNT_MARK(m->mnt_master);
|
|
read_sequnlock_excl(&mount_lock);
|
|
last_dest = m;
|
|
last_source = child;
|
|
hlist_add_head(&child->mnt_hash, list);
|
|
return count_mounts(m->mnt_ns, child);
|
|
}
|
|
|
|
/*
|
|
* mount 'source_mnt' under the destination 'dest_mnt' at
|
|
* dentry 'dest_dentry'. And propagate that mount to
|
|
* all the peer and slave mounts of 'dest_mnt'.
|
|
* Link all the new mounts into a propagation tree headed at
|
|
* source_mnt. Also link all the new mounts using ->mnt_list
|
|
* headed at source_mnt's ->mnt_list
|
|
*
|
|
* @dest_mnt: destination mount.
|
|
* @dest_dentry: destination dentry.
|
|
* @source_mnt: source mount.
|
|
* @tree_list : list of heads of trees to be attached.
|
|
*/
|
|
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
|
|
struct mount *source_mnt, struct hlist_head *tree_list)
|
|
{
|
|
struct mount *m, *n;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* we don't want to bother passing tons of arguments to
|
|
* propagate_one(); everything is serialized by namespace_sem,
|
|
* so globals will do just fine.
|
|
*/
|
|
last_dest = dest_mnt;
|
|
first_source = source_mnt;
|
|
last_source = source_mnt;
|
|
mp = dest_mp;
|
|
list = tree_list;
|
|
dest_master = dest_mnt->mnt_master;
|
|
|
|
/* all peers of dest_mnt, except dest_mnt itself */
|
|
for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
|
|
ret = propagate_one(n);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* all slave groups */
|
|
for (m = next_group(dest_mnt, dest_mnt); m;
|
|
m = next_group(m, dest_mnt)) {
|
|
/* everything in that slave group */
|
|
n = m;
|
|
do {
|
|
ret = propagate_one(n);
|
|
if (ret)
|
|
goto out;
|
|
n = next_peer(n);
|
|
} while (n != m);
|
|
}
|
|
out:
|
|
read_seqlock_excl(&mount_lock);
|
|
hlist_for_each_entry(n, tree_list, mnt_hash) {
|
|
m = n->mnt_parent;
|
|
if (m->mnt_master != dest_mnt->mnt_master)
|
|
CLEAR_MNT_MARK(m->mnt_master);
|
|
}
|
|
read_sequnlock_excl(&mount_lock);
|
|
return ret;
|
|
}
|
|
|
|
static struct mount *find_topper(struct mount *mnt)
|
|
{
|
|
/* If there is exactly one mount covering mnt completely return it. */
|
|
struct mount *child;
|
|
|
|
if (!list_is_singular(&mnt->mnt_mounts))
|
|
return NULL;
|
|
|
|
child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
|
|
if (child->mnt_mountpoint != mnt->mnt.mnt_root)
|
|
return NULL;
|
|
|
|
return child;
|
|
}
|
|
|
|
/*
|
|
* return true if the refcount is greater than count
|
|
*/
|
|
static inline int do_refcount_check(struct mount *mnt, int count)
|
|
{
|
|
return mnt_get_count(mnt) > count;
|
|
}
|
|
|
|
/*
|
|
* check if the mount 'mnt' can be unmounted successfully.
|
|
* @mnt: the mount to be checked for unmount
|
|
* NOTE: unmounting 'mnt' would naturally propagate to all
|
|
* other mounts its parent propagates to.
|
|
* Check if any of these mounts that **do not have submounts**
|
|
* have more references than 'refcnt'. If so return busy.
|
|
*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
int propagate_mount_busy(struct mount *mnt, int refcnt)
|
|
{
|
|
struct mount *m, *child, *topper;
|
|
struct mount *parent = mnt->mnt_parent;
|
|
|
|
if (mnt == parent)
|
|
return do_refcount_check(mnt, refcnt);
|
|
|
|
/*
|
|
* quickly check if the current mount can be unmounted.
|
|
* If not, we don't have to go checking for all other
|
|
* mounts
|
|
*/
|
|
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
|
|
return 1;
|
|
|
|
for (m = propagation_next(parent, parent); m;
|
|
m = propagation_next(m, parent)) {
|
|
int count = 1;
|
|
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
|
|
if (!child)
|
|
continue;
|
|
|
|
/* Is there exactly one mount on the child that covers
|
|
* it completely whose reference should be ignored?
|
|
*/
|
|
topper = find_topper(child);
|
|
if (topper)
|
|
count += 1;
|
|
else if (!list_empty(&child->mnt_mounts))
|
|
continue;
|
|
|
|
if (do_refcount_check(child, count))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear MNT_LOCKED when it can be shown to be safe.
|
|
*
|
|
* mount_lock lock must be held for write
|
|
*/
|
|
void propagate_mount_unlock(struct mount *mnt)
|
|
{
|
|
struct mount *parent = mnt->mnt_parent;
|
|
struct mount *m, *child;
|
|
|
|
BUG_ON(parent == mnt);
|
|
|
|
for (m = propagation_next(parent, parent); m;
|
|
m = propagation_next(m, parent)) {
|
|
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
|
|
if (child)
|
|
child->mnt.mnt_flags &= ~MNT_LOCKED;
|
|
}
|
|
}
|
|
|
|
static void umount_one(struct mount *mnt, struct list_head *to_umount)
|
|
{
|
|
CLEAR_MNT_MARK(mnt);
|
|
mnt->mnt.mnt_flags |= MNT_UMOUNT;
|
|
list_del_init(&mnt->mnt_child);
|
|
list_del_init(&mnt->mnt_umounting);
|
|
list_move_tail(&mnt->mnt_list, to_umount);
|
|
}
|
|
|
|
/*
|
|
* NOTE: unmounting 'mnt' naturally propagates to all other mounts its
|
|
* parent propagates to.
|
|
*/
|
|
static bool __propagate_umount(struct mount *mnt,
|
|
struct list_head *to_umount,
|
|
struct list_head *to_restore)
|
|
{
|
|
bool progress = false;
|
|
struct mount *child;
|
|
|
|
/*
|
|
* The state of the parent won't change if this mount is
|
|
* already unmounted or marked as without children.
|
|
*/
|
|
if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
|
|
goto out;
|
|
|
|
/* Verify topper is the only grandchild that has not been
|
|
* speculatively unmounted.
|
|
*/
|
|
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
|
|
if (child->mnt_mountpoint == mnt->mnt.mnt_root)
|
|
continue;
|
|
if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
|
|
continue;
|
|
/* Found a mounted child */
|
|
goto children;
|
|
}
|
|
|
|
/* Mark mounts that can be unmounted if not locked */
|
|
SET_MNT_MARK(mnt);
|
|
progress = true;
|
|
|
|
/* If a mount is without children and not locked umount it. */
|
|
if (!IS_MNT_LOCKED(mnt)) {
|
|
umount_one(mnt, to_umount);
|
|
} else {
|
|
children:
|
|
list_move_tail(&mnt->mnt_umounting, to_restore);
|
|
}
|
|
out:
|
|
return progress;
|
|
}
|
|
|
|
static void umount_list(struct list_head *to_umount,
|
|
struct list_head *to_restore)
|
|
{
|
|
struct mount *mnt, *child, *tmp;
|
|
list_for_each_entry(mnt, to_umount, mnt_list) {
|
|
list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
|
|
/* topper? */
|
|
if (child->mnt_mountpoint == mnt->mnt.mnt_root)
|
|
list_move_tail(&child->mnt_umounting, to_restore);
|
|
else
|
|
umount_one(child, to_umount);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_mounts(struct list_head *to_restore)
|
|
{
|
|
/* Restore mounts to a clean working state */
|
|
while (!list_empty(to_restore)) {
|
|
struct mount *mnt, *parent;
|
|
struct mountpoint *mp;
|
|
|
|
mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
|
|
CLEAR_MNT_MARK(mnt);
|
|
list_del_init(&mnt->mnt_umounting);
|
|
|
|
/* Should this mount be reparented? */
|
|
mp = mnt->mnt_mp;
|
|
parent = mnt->mnt_parent;
|
|
while (parent->mnt.mnt_flags & MNT_UMOUNT) {
|
|
mp = parent->mnt_mp;
|
|
parent = parent->mnt_parent;
|
|
}
|
|
if (parent != mnt->mnt_parent)
|
|
mnt_change_mountpoint(parent, mp, mnt);
|
|
}
|
|
}
|
|
|
|
static void cleanup_umount_visitations(struct list_head *visited)
|
|
{
|
|
while (!list_empty(visited)) {
|
|
struct mount *mnt =
|
|
list_first_entry(visited, struct mount, mnt_umounting);
|
|
list_del_init(&mnt->mnt_umounting);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* collect all mounts that receive propagation from the mount in @list,
|
|
* and return these additional mounts in the same list.
|
|
* @list: the list of mounts to be unmounted.
|
|
*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
int propagate_umount(struct list_head *list)
|
|
{
|
|
struct mount *mnt;
|
|
LIST_HEAD(to_restore);
|
|
LIST_HEAD(to_umount);
|
|
LIST_HEAD(visited);
|
|
|
|
/* Find candidates for unmounting */
|
|
list_for_each_entry_reverse(mnt, list, mnt_list) {
|
|
struct mount *parent = mnt->mnt_parent;
|
|
struct mount *m;
|
|
|
|
/*
|
|
* If this mount has already been visited it is known that it's
|
|
* entire peer group and all of their slaves in the propagation
|
|
* tree for the mountpoint has already been visited and there is
|
|
* no need to visit them again.
|
|
*/
|
|
if (!list_empty(&mnt->mnt_umounting))
|
|
continue;
|
|
|
|
list_add_tail(&mnt->mnt_umounting, &visited);
|
|
for (m = propagation_next(parent, parent); m;
|
|
m = propagation_next(m, parent)) {
|
|
struct mount *child = __lookup_mnt(&m->mnt,
|
|
mnt->mnt_mountpoint);
|
|
if (!child)
|
|
continue;
|
|
|
|
if (!list_empty(&child->mnt_umounting)) {
|
|
/*
|
|
* If the child has already been visited it is
|
|
* know that it's entire peer group and all of
|
|
* their slaves in the propgation tree for the
|
|
* mountpoint has already been visited and there
|
|
* is no need to visit this subtree again.
|
|
*/
|
|
m = skip_propagation_subtree(m, parent);
|
|
continue;
|
|
} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
|
|
/*
|
|
* We have come accross an partially unmounted
|
|
* mount in list that has not been visited yet.
|
|
* Remember it has been visited and continue
|
|
* about our merry way.
|
|
*/
|
|
list_add_tail(&child->mnt_umounting, &visited);
|
|
continue;
|
|
}
|
|
|
|
/* Check the child and parents while progress is made */
|
|
while (__propagate_umount(child,
|
|
&to_umount, &to_restore)) {
|
|
/* Is the parent a umount candidate? */
|
|
child = child->mnt_parent;
|
|
if (list_empty(&child->mnt_umounting))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
umount_list(&to_umount, &to_restore);
|
|
restore_mounts(&to_restore);
|
|
cleanup_umount_visitations(&visited);
|
|
list_splice_tail(&to_umount, list);
|
|
|
|
return 0;
|
|
}
|