linux-stable/arch/x86/kernel/nmi.c
Linus Torvalds 49d5759268 ARM:
- Provide a virtual cache topology to the guest to avoid
   inconsistencies with migration on heterogenous systems. Non secure
   software has no practical need to traverse the caches by set/way in
   the first place.
 
 - Add support for taking stage-2 access faults in parallel. This was an
   accidental omission in the original parallel faults implementation,
   but should provide a marginal improvement to machines w/o FEAT_HAFDBS
   (such as hardware from the fruit company).
 
 - A preamble to adding support for nested virtualization to KVM,
   including vEL2 register state, rudimentary nested exception handling
   and masking unsupported features for nested guests.
 
 - Fixes to the PSCI relay that avoid an unexpected host SVE trap when
   resuming a CPU when running pKVM.
 
 - VGIC maintenance interrupt support for the AIC
 
 - Improvements to the arch timer emulation, primarily aimed at reducing
   the trap overhead of running nested.
 
 - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
   interest of CI systems.
 
 - Avoid VM-wide stop-the-world operations when a vCPU accesses its own
   redistributor.
 
 - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
   in the host.
 
 - Aesthetic and comment/kerneldoc fixes
 
 - Drop the vestiges of the old Columbia mailing list and add [Oliver]
   as co-maintainer
 
 This also drags in arm64's 'for-next/sme2' branch, because both it and
 the PSCI relay changes touch the EL2 initialization code.
 
 RISC-V:
 
 - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
 
 - Correctly place the guest in S-mode after redirecting a trap to the guest
 
 - Redirect illegal instruction traps to guest
 
 - SBI PMU support for guest
 
 s390:
 
 - Two patches sorting out confusion between virtual and physical
   addresses, which currently are the same on s390.
 
 - A new ioctl that performs cmpxchg on guest memory
 
 - A few fixes
 
 x86:
 
 - Change tdp_mmu to a read-only parameter
 
 - Separate TDP and shadow MMU page fault paths
 
 - Enable Hyper-V invariant TSC control
 
 - Fix a variety of APICv and AVIC bugs, some of them real-world,
   some of them affecting architecurally legal but unlikely to
   happen in practice
 
 - Mark APIC timer as expired if its in one-shot mode and the count
   underflows while the vCPU task was being migrated
 
 - Advertise support for Intel's new fast REP string features
 
 - Fix a double-shootdown issue in the emergency reboot code
 
 - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
   similar treatment to VMX
 
 - Update Xen's TSC info CPUID sub-leaves as appropriate
 
 - Add support for Hyper-V's extended hypercalls, where "support" at this
   point is just forwarding the hypercalls to userspace
 
 - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
   MSR filters
 
 - One-off fixes and cleanups
 
 - Fix and cleanup the range-based TLB flushing code, used when KVM is
   running on Hyper-V
 
 - Add support for filtering PMU events using a mask.  If userspace
   wants to restrict heavily what events the guest can use, it can now
   do so without needing an absurd number of filter entries
 
 - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
   support is disabled
 
 - Add PEBS support for Intel Sapphire Rapids
 
 - Fix a mostly benign overflow bug in SEV's send|receive_update_data()
 
 - Move several SVM-specific flags into vcpu_svm
 
 x86 Intel:
 
 - Handle NMI VM-Exits before leaving the noinstr region
 
 - A few trivial cleanups in the VM-Enter flows
 
 - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
   EPTP switching (or any other VM function) for L1
 
 - Fix a crash when using eVMCS's enlighted MSR bitmaps
 
 Generic:
 
 - Clean up the hardware enable and initialization flow, which was
   scattered around multiple arch-specific hooks.  Instead, just
   let the arch code call into generic code.  Both x86 and ARM should
   benefit from not having to fight common KVM code's notion of how
   to do initialization.
 
 - Account allocations in generic kvm_arch_alloc_vm()
 
 - Fix a memory leak if coalesced MMIO unregistration fails
 
 selftests:
 
 - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
   the correct hypercall instruction instead of relying on KVM to patch
   in VMMCALL
 
 - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
 mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
 9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
 duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
 VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
 /WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
 =goe1
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:

   - Provide a virtual cache topology to the guest to avoid
     inconsistencies with migration on heterogenous systems. Non secure
     software has no practical need to traverse the caches by set/way in
     the first place

   - Add support for taking stage-2 access faults in parallel. This was
     an accidental omission in the original parallel faults
     implementation, but should provide a marginal improvement to
     machines w/o FEAT_HAFDBS (such as hardware from the fruit company)

   - A preamble to adding support for nested virtualization to KVM,
     including vEL2 register state, rudimentary nested exception
     handling and masking unsupported features for nested guests

   - Fixes to the PSCI relay that avoid an unexpected host SVE trap when
     resuming a CPU when running pKVM

   - VGIC maintenance interrupt support for the AIC

   - Improvements to the arch timer emulation, primarily aimed at
     reducing the trap overhead of running nested

   - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
     interest of CI systems

   - Avoid VM-wide stop-the-world operations when a vCPU accesses its
     own redistributor

   - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
     exceptions in the host

   - Aesthetic and comment/kerneldoc fixes

   - Drop the vestiges of the old Columbia mailing list and add [Oliver]
     as co-maintainer

  RISC-V:

   - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE

   - Correctly place the guest in S-mode after redirecting a trap to the
     guest

   - Redirect illegal instruction traps to guest

   - SBI PMU support for guest

  s390:

   - Sort out confusion between virtual and physical addresses, which
     currently are the same on s390

   - A new ioctl that performs cmpxchg on guest memory

   - A few fixes

  x86:

   - Change tdp_mmu to a read-only parameter

   - Separate TDP and shadow MMU page fault paths

   - Enable Hyper-V invariant TSC control

   - Fix a variety of APICv and AVIC bugs, some of them real-world, some
     of them affecting architecurally legal but unlikely to happen in
     practice

   - Mark APIC timer as expired if its in one-shot mode and the count
     underflows while the vCPU task was being migrated

   - Advertise support for Intel's new fast REP string features

   - Fix a double-shootdown issue in the emergency reboot code

   - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
     SVM similar treatment to VMX

   - Update Xen's TSC info CPUID sub-leaves as appropriate

   - Add support for Hyper-V's extended hypercalls, where "support" at
     this point is just forwarding the hypercalls to userspace

   - Clean up the kvm->lock vs. kvm->srcu sequences when updating the
     PMU and MSR filters

   - One-off fixes and cleanups

   - Fix and cleanup the range-based TLB flushing code, used when KVM is
     running on Hyper-V

   - Add support for filtering PMU events using a mask. If userspace
     wants to restrict heavily what events the guest can use, it can now
     do so without needing an absurd number of filter entries

   - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
     support is disabled

   - Add PEBS support for Intel Sapphire Rapids

   - Fix a mostly benign overflow bug in SEV's
     send|receive_update_data()

   - Move several SVM-specific flags into vcpu_svm

  x86 Intel:

   - Handle NMI VM-Exits before leaving the noinstr region

   - A few trivial cleanups in the VM-Enter flows

   - Stop enabling VMFUNC for L1 purely to document that KVM doesn't
     support EPTP switching (or any other VM function) for L1

   - Fix a crash when using eVMCS's enlighted MSR bitmaps

  Generic:

   - Clean up the hardware enable and initialization flow, which was
     scattered around multiple arch-specific hooks. Instead, just let
     the arch code call into generic code. Both x86 and ARM should
     benefit from not having to fight common KVM code's notion of how to
     do initialization

   - Account allocations in generic kvm_arch_alloc_vm()

   - Fix a memory leak if coalesced MMIO unregistration fails

  selftests:

   - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
     emit the correct hypercall instruction instead of relying on KVM to
     patch in VMMCALL

   - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
  KVM: SVM: hyper-v: placate modpost section mismatch error
  KVM: x86/mmu: Make tdp_mmu_allowed static
  KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
  KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
  KVM: arm64: nv: Filter out unsupported features from ID regs
  KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
  KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
  KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
  KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
  KVM: arm64: nv: Handle SMCs taken from virtual EL2
  KVM: arm64: nv: Handle trapped ERET from virtual EL2
  KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
  KVM: arm64: nv: Support virtual EL2 exceptions
  KVM: arm64: nv: Handle HCR_EL2.NV system register traps
  KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
  KVM: arm64: nv: Add EL2 system registers to vcpu context
  KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
  KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
  KVM: arm64: nv: Introduce nested virtualization VCPU feature
  KVM: arm64: Use the S2 MMU context to iterate over S2 table
  ...
2023-02-25 11:30:21 -08:00

661 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2011 Don Zickus Red Hat, Inc.
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/sched/debug.h>
#include <linux/nmi.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/atomic.h>
#include <linux/sched/clock.h>
#include <asm/cpu_entry_area.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
#include <asm/nmi.h>
#include <asm/x86_init.h>
#include <asm/reboot.h>
#include <asm/cache.h>
#include <asm/nospec-branch.h>
#include <asm/sev.h>
#define CREATE_TRACE_POINTS
#include <trace/events/nmi.h>
struct nmi_desc {
raw_spinlock_t lock;
struct list_head head;
};
static struct nmi_desc nmi_desc[NMI_MAX] =
{
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
.head = LIST_HEAD_INIT(nmi_desc[0].head),
},
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
.head = LIST_HEAD_INIT(nmi_desc[1].head),
},
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
.head = LIST_HEAD_INIT(nmi_desc[2].head),
},
{
.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
.head = LIST_HEAD_INIT(nmi_desc[3].head),
},
};
struct nmi_stats {
unsigned int normal;
unsigned int unknown;
unsigned int external;
unsigned int swallow;
unsigned long recv_jiffies;
unsigned long idt_seq;
unsigned long idt_nmi_seq;
unsigned long idt_ignored;
atomic_long_t idt_calls;
unsigned long idt_seq_snap;
unsigned long idt_nmi_seq_snap;
unsigned long idt_ignored_snap;
long idt_calls_snap;
};
static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
static int ignore_nmis __read_mostly;
int unknown_nmi_panic;
/*
* Prevent NMI reason port (0x61) being accessed simultaneously, can
* only be used in NMI handler.
*/
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
static int __init setup_unknown_nmi_panic(char *str)
{
unknown_nmi_panic = 1;
return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
#define nmi_to_desc(type) (&nmi_desc[type])
static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
static int __init nmi_warning_debugfs(void)
{
debugfs_create_u64("nmi_longest_ns", 0644,
arch_debugfs_dir, &nmi_longest_ns);
return 0;
}
fs_initcall(nmi_warning_debugfs);
static void nmi_check_duration(struct nmiaction *action, u64 duration)
{
int remainder_ns, decimal_msecs;
if (duration < nmi_longest_ns || duration < action->max_duration)
return;
action->max_duration = duration;
remainder_ns = do_div(duration, (1000 * 1000));
decimal_msecs = remainder_ns / 1000;
printk_ratelimited(KERN_INFO
"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
action->handler, duration, decimal_msecs);
}
static int nmi_handle(unsigned int type, struct pt_regs *regs)
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *a;
int handled=0;
rcu_read_lock();
/*
* NMIs are edge-triggered, which means if you have enough
* of them concurrently, you can lose some because only one
* can be latched at any given time. Walk the whole list
* to handle those situations.
*/
list_for_each_entry_rcu(a, &desc->head, list) {
int thishandled;
u64 delta;
delta = sched_clock();
thishandled = a->handler(type, regs);
handled += thishandled;
delta = sched_clock() - delta;
trace_nmi_handler(a->handler, (int)delta, thishandled);
nmi_check_duration(a, delta);
}
rcu_read_unlock();
/* return total number of NMI events handled */
return handled;
}
NOKPROBE_SYMBOL(nmi_handle);
int __register_nmi_handler(unsigned int type, struct nmiaction *action)
{
struct nmi_desc *desc = nmi_to_desc(type);
unsigned long flags;
if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
return -EINVAL;
raw_spin_lock_irqsave(&desc->lock, flags);
/*
* Indicate if there are multiple registrations on the
* internal NMI handler call chains (SERR and IO_CHECK).
*/
WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
/*
* some handlers need to be executed first otherwise a fake
* event confuses some handlers (kdump uses this flag)
*/
if (action->flags & NMI_FLAG_FIRST)
list_add_rcu(&action->list, &desc->head);
else
list_add_tail_rcu(&action->list, &desc->head);
raw_spin_unlock_irqrestore(&desc->lock, flags);
return 0;
}
EXPORT_SYMBOL(__register_nmi_handler);
void unregister_nmi_handler(unsigned int type, const char *name)
{
struct nmi_desc *desc = nmi_to_desc(type);
struct nmiaction *n, *found = NULL;
unsigned long flags;
raw_spin_lock_irqsave(&desc->lock, flags);
list_for_each_entry_rcu(n, &desc->head, list) {
/*
* the name passed in to describe the nmi handler
* is used as the lookup key
*/
if (!strcmp(n->name, name)) {
WARN(in_nmi(),
"Trying to free NMI (%s) from NMI context!\n", n->name);
list_del_rcu(&n->list);
found = n;
break;
}
}
raw_spin_unlock_irqrestore(&desc->lock, flags);
if (found) {
synchronize_rcu();
INIT_LIST_HEAD(&found->list);
}
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);
static void
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
/* check to see if anyone registered against these types of errors */
if (nmi_handle(NMI_SERR, regs))
return;
pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
if (panic_on_unrecovered_nmi)
nmi_panic(regs, "NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
/* Clear and disable the PCI SERR error line. */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
}
NOKPROBE_SYMBOL(pci_serr_error);
static void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
unsigned long i;
/* check to see if anyone registered against these types of errors */
if (nmi_handle(NMI_IO_CHECK, regs))
return;
pr_emerg(
"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
reason, smp_processor_id());
show_regs(regs);
if (panic_on_io_nmi) {
nmi_panic(regs, "NMI IOCK error: Not continuing");
/*
* If we end up here, it means we have received an NMI while
* processing panic(). Simply return without delaying and
* re-enabling NMIs.
*/
return;
}
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
i = 20000;
while (--i) {
touch_nmi_watchdog();
udelay(100);
}
reason &= ~NMI_REASON_CLEAR_IOCHK;
outb(reason, NMI_REASON_PORT);
}
NOKPROBE_SYMBOL(io_check_error);
static void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
int handled;
/*
* Use 'false' as back-to-back NMIs are dealt with one level up.
* Of course this makes having multiple 'unknown' handlers useless
* as only the first one is ever run (unless it can actually determine
* if it caused the NMI)
*/
handled = nmi_handle(NMI_UNKNOWN, regs);
if (handled) {
__this_cpu_add(nmi_stats.unknown, handled);
return;
}
__this_cpu_add(nmi_stats.unknown, 1);
pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
reason, smp_processor_id());
if (unknown_nmi_panic || panic_on_unrecovered_nmi)
nmi_panic(regs, "NMI: Not continuing");
pr_emerg("Dazed and confused, but trying to continue\n");
}
NOKPROBE_SYMBOL(unknown_nmi_error);
static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
static noinstr void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
int handled;
bool b2b = false;
/*
* CPU-specific NMI must be processed before non-CPU-specific
* NMI, otherwise we may lose it, because the CPU-specific
* NMI can not be detected/processed on other CPUs.
*/
/*
* Back-to-back NMIs are interesting because they can either
* be two NMI or more than two NMIs (any thing over two is dropped
* due to NMI being edge-triggered). If this is the second half
* of the back-to-back NMI, assume we dropped things and process
* more handlers. Otherwise reset the 'swallow' NMI behaviour
*/
if (regs->ip == __this_cpu_read(last_nmi_rip))
b2b = true;
else
__this_cpu_write(swallow_nmi, false);
__this_cpu_write(last_nmi_rip, regs->ip);
instrumentation_begin();
handled = nmi_handle(NMI_LOCAL, regs);
__this_cpu_add(nmi_stats.normal, handled);
if (handled) {
/*
* There are cases when a NMI handler handles multiple
* events in the current NMI. One of these events may
* be queued for in the next NMI. Because the event is
* already handled, the next NMI will result in an unknown
* NMI. Instead lets flag this for a potential NMI to
* swallow.
*/
if (handled > 1)
__this_cpu_write(swallow_nmi, true);
goto out;
}
/*
* Non-CPU-specific NMI: NMI sources can be processed on any CPU.
*
* Another CPU may be processing panic routines while holding
* nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
* and if so, call its callback directly. If there is no CPU preparing
* crash dump, we simply loop here.
*/
while (!raw_spin_trylock(&nmi_reason_lock)) {
run_crash_ipi_callback(regs);
cpu_relax();
}
reason = x86_platform.get_nmi_reason();
if (reason & NMI_REASON_MASK) {
if (reason & NMI_REASON_SERR)
pci_serr_error(reason, regs);
else if (reason & NMI_REASON_IOCHK)
io_check_error(reason, regs);
#ifdef CONFIG_X86_32
/*
* Reassert NMI in case it became active
* meanwhile as it's edge-triggered:
*/
reassert_nmi();
#endif
__this_cpu_add(nmi_stats.external, 1);
raw_spin_unlock(&nmi_reason_lock);
goto out;
}
raw_spin_unlock(&nmi_reason_lock);
/*
* Only one NMI can be latched at a time. To handle
* this we may process multiple nmi handlers at once to
* cover the case where an NMI is dropped. The downside
* to this approach is we may process an NMI prematurely,
* while its real NMI is sitting latched. This will cause
* an unknown NMI on the next run of the NMI processing.
*
* We tried to flag that condition above, by setting the
* swallow_nmi flag when we process more than one event.
* This condition is also only present on the second half
* of a back-to-back NMI, so we flag that condition too.
*
* If both are true, we assume we already processed this
* NMI previously and we swallow it. Otherwise we reset
* the logic.
*
* There are scenarios where we may accidentally swallow
* a 'real' unknown NMI. For example, while processing
* a perf NMI another perf NMI comes in along with a
* 'real' unknown NMI. These two NMIs get combined into
* one (as described above). When the next NMI gets
* processed, it will be flagged by perf as handled, but
* no one will know that there was a 'real' unknown NMI sent
* also. As a result it gets swallowed. Or if the first
* perf NMI returns two events handled then the second
* NMI will get eaten by the logic below, again losing a
* 'real' unknown NMI. But this is the best we can do
* for now.
*/
if (b2b && __this_cpu_read(swallow_nmi))
__this_cpu_add(nmi_stats.swallow, 1);
else
unknown_nmi_error(reason, regs);
out:
instrumentation_end();
}
/*
* NMIs can page fault or hit breakpoints which will cause it to lose
* its NMI context with the CPU when the breakpoint or page fault does an IRET.
*
* As a result, NMIs can nest if NMIs get unmasked due an IRET during
* NMI processing. On x86_64, the asm glue protects us from nested NMIs
* if the outer NMI came from kernel mode, but we can still nest if the
* outer NMI came from user mode.
*
* To handle these nested NMIs, we have three states:
*
* 1) not running
* 2) executing
* 3) latched
*
* When no NMI is in progress, it is in the "not running" state.
* When an NMI comes in, it goes into the "executing" state.
* Normally, if another NMI is triggered, it does not interrupt
* the running NMI and the HW will simply latch it so that when
* the first NMI finishes, it will restart the second NMI.
* (Note, the latch is binary, thus multiple NMIs triggering,
* when one is running, are ignored. Only one NMI is restarted.)
*
* If an NMI executes an iret, another NMI can preempt it. We do not
* want to allow this new NMI to run, but we want to execute it when the
* first one finishes. We set the state to "latched", and the exit of
* the first NMI will perform a dec_return, if the result is zero
* (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
* dec_return would have set the state to NMI_EXECUTING (what we want it
* to be when we are running). In this case, we simply jump back to
* rerun the NMI handler again, and restart the 'latched' NMI.
*
* No trap (breakpoint or page fault) should be hit before nmi_restart,
* thus there is no race between the first check of state for NOT_RUNNING
* and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
* at this point.
*
* In case the NMI takes a page fault, we need to save off the CR2
* because the NMI could have preempted another page fault and corrupt
* the CR2 that is about to be read. As nested NMIs must be restarted
* and they can not take breakpoints or page faults, the update of the
* CR2 must be done before converting the nmi state back to NOT_RUNNING.
* Otherwise, there would be a race of another nested NMI coming in
* after setting state to NOT_RUNNING but before updating the nmi_cr2.
*/
enum nmi_states {
NMI_NOT_RUNNING = 0,
NMI_EXECUTING,
NMI_LATCHED,
};
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
static DEFINE_PER_CPU(unsigned long, nmi_dr7);
DEFINE_IDTENTRY_RAW(exc_nmi)
{
irqentry_state_t irq_state;
struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
/*
* Re-enable NMIs right here when running as an SEV-ES guest. This might
* cause nested NMIs, but those can be handled safely.
*/
sev_es_nmi_complete();
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
arch_atomic_long_inc(&nsp->idt_calls);
if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
return;
if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
this_cpu_write(nmi_state, NMI_LATCHED);
return;
}
this_cpu_write(nmi_state, NMI_EXECUTING);
this_cpu_write(nmi_cr2, read_cr2());
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
WRITE_ONCE(nsp->recv_jiffies, jiffies);
}
nmi_restart:
/*
* Needs to happen before DR7 is accessed, because the hypervisor can
* intercept DR7 reads/writes, turning those into #VC exceptions.
*/
sev_es_ist_enter(regs);
this_cpu_write(nmi_dr7, local_db_save());
irq_state = irqentry_nmi_enter(regs);
inc_irq_stat(__nmi_count);
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
} else if (!ignore_nmis) {
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
}
default_do_nmi(regs);
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
}
}
irqentry_nmi_exit(regs, irq_state);
local_db_restore(this_cpu_read(nmi_dr7));
sev_es_ist_exit();
if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
write_cr2(this_cpu_read(nmi_cr2));
if (this_cpu_dec_return(nmi_state))
goto nmi_restart;
if (user_mode(regs))
mds_user_clear_cpu_buffers();
if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
WARN_ON_ONCE(nsp->idt_seq & 0x1);
WRITE_ONCE(nsp->recv_jiffies, jiffies);
}
}
#if IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
{
exc_nmi(regs);
}
#if IS_MODULE(CONFIG_KVM_INTEL)
EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
#endif
#endif
#ifdef CONFIG_NMI_CHECK_CPU
static char *nmi_check_stall_msg[] = {
/* */
/* +--------- nsp->idt_seq_snap & 0x1: CPU is in NMI handler. */
/* | +------ cpu_is_offline(cpu) */
/* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */
/* | | | NMI handler has been invoked. */
/* | | | */
/* V V V */
/* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
/* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
/* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
/* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
/* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
/* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
/* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
/* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
};
void nmi_backtrace_stall_snap(const struct cpumask *btp)
{
int cpu;
struct nmi_stats *nsp;
for_each_cpu(cpu, btp) {
nsp = per_cpu_ptr(&nmi_stats, cpu);
nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
}
}
void nmi_backtrace_stall_check(const struct cpumask *btp)
{
int cpu;
int idx;
unsigned long nmi_seq;
unsigned long j = jiffies;
char *modp;
char *msgp;
char *msghp;
struct nmi_stats *nsp;
for_each_cpu(cpu, btp) {
nsp = per_cpu_ptr(&nmi_stats, cpu);
modp = "";
msghp = "";
nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
msgp = "CPU entered NMI handler function, but has not exited";
} else if ((nsp->idt_nmi_seq_snap & 0x1) != (nmi_seq & 0x1)) {
msgp = "CPU is handling NMIs";
} else {
idx = ((nsp->idt_seq_snap & 0x1) << 2) |
(cpu_is_offline(cpu) << 1) |
(nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
msgp = nmi_check_stall_msg[idx];
if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
modp = ", but OK because ignore_nmis was set";
if (nmi_seq & ~0x1)
msghp = " (CPU currently in NMI handler function)";
else if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
msghp = " (CPU exited one NMI handler function)";
}
pr_alert("%s: CPU %d: %s%s%s, last activity: %lu jiffies ago.\n",
__func__, cpu, msgp, modp, msghp, j - READ_ONCE(nsp->recv_jiffies));
}
}
#endif
void stop_nmi(void)
{
ignore_nmis++;
}
void restart_nmi(void)
{
ignore_nmis--;
}
/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
__this_cpu_write(last_nmi_rip, 0);
}
EXPORT_SYMBOL_GPL(local_touch_nmi);