linux-stable/arch/x86/kernel/setup_percpu.c
Linus Torvalds 94a855111e - Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for
 Skylake-based cores where enabling IBRS is a big hammer and causes a
 significant performance impact.
 
 What it basically does is, it aligns all kernel functions to 16 bytes
 boundary and adds a 16-byte padding before the function, objtool
 collects all functions' locations and when the mitigation gets applied,
 it patches a call accounting thunk which is used to track the call depth
 of the stack at any time.
 
 When that call depth reaches a magical, microarchitecture-specific value
 for the Return Stack Buffer, the code stuffs that RSB and avoids its
 underflow which could otherwise lead to the Intel variant of Retbleed.
 
 This software-only solution brings a lot of the lost performance back,
 as benchmarks suggest:
 
   https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
 
 That page above also contains a lot more detailed explanation of the
 whole mechanism
 
 - Implement a new control flow integrity scheme called FineIBT which is
 based on the software kCFI implementation and uses hardware IBT support
 where present to annotate and track indirect branches using a hash to
 validate them
 
 - Other misc fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
 VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
 VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
 gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
 iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
 Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
 ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
 ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
 i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
 Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
 zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
 =cRy1
 -----END PGP SIGNATURE-----

Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Borislav Petkov:

 - Add the call depth tracking mitigation for Retbleed which has been
   long in the making. It is a lighterweight software-only fix for
   Skylake-based cores where enabling IBRS is a big hammer and causes a
   significant performance impact.

   What it basically does is, it aligns all kernel functions to 16 bytes
   boundary and adds a 16-byte padding before the function, objtool
   collects all functions' locations and when the mitigation gets
   applied, it patches a call accounting thunk which is used to track
   the call depth of the stack at any time.

   When that call depth reaches a magical, microarchitecture-specific
   value for the Return Stack Buffer, the code stuffs that RSB and
   avoids its underflow which could otherwise lead to the Intel variant
   of Retbleed.

   This software-only solution brings a lot of the lost performance
   back, as benchmarks suggest:

       https://lore.kernel.org/all/20220915111039.092790446@infradead.org/

   That page above also contains a lot more detailed explanation of the
   whole mechanism

 - Implement a new control flow integrity scheme called FineIBT which is
   based on the software kCFI implementation and uses hardware IBT
   support where present to annotate and track indirect branches using a
   hash to validate them

 - Other misc fixes and cleanups

* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  x86/paravirt: Use common macro for creating simple asm paravirt functions
  x86/paravirt: Remove clobber bitmask from .parainstructions
  x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
  x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
  x86/Kconfig: Enable kernel IBT by default
  x86,pm: Force out-of-line memcpy()
  objtool: Fix weak hole vs prefix symbol
  objtool: Optimize elf_dirty_reloc_sym()
  x86/cfi: Add boot time hash randomization
  x86/cfi: Boot time selection of CFI scheme
  x86/ibt: Implement FineIBT
  objtool: Add --cfi to generate the .cfi_sites section
  x86: Add prefix symbols for function padding
  objtool: Add option to generate prefix symbols
  objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
  objtool: Slice up elf_create_section_symbol()
  kallsyms: Revert "Take callthunks into account"
  x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
  x86/retpoline: Fix crash printing warning
  x86/paravirt: Fix a !PARAVIRT build warning
  ...
2022-12-14 15:03:00 -08:00

244 lines
6.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/memblock.h>
#include <linux/percpu.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/pfn.h>
#include <linux/stackprotector.h>
#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/desc.h>
#include <asm/setup.h>
#include <asm/mpspec.h>
#include <asm/apicdef.h>
#include <asm/highmem.h>
#include <asm/proto.h>
#include <asm/cpumask.h>
#include <asm/cpu.h>
#ifdef CONFIG_X86_64
#define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
#else
#define BOOT_PERCPU_OFFSET 0
#endif
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
EXPORT_PER_CPU_SYMBOL(this_cpu_off);
unsigned long __per_cpu_offset[NR_CPUS] __ro_after_init = {
[0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
};
EXPORT_SYMBOL(__per_cpu_offset);
/*
* On x86_64 symbols referenced from code should be reachable using
* 32bit relocations. Reserve space for static percpu variables in
* modules so that they are always served from the first chunk which
* is located at the percpu segment base. On x86_32, anything can
* address anywhere. No need to reserve space in the first chunk.
*/
#ifdef CONFIG_X86_64
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
#else
#define PERCPU_FIRST_CHUNK_RESERVE 0
#endif
#ifdef CONFIG_X86_32
/**
* pcpu_need_numa - determine percpu allocation needs to consider NUMA
*
* If NUMA is not configured or there is only one NUMA node available,
* there is no reason to consider NUMA. This function determines
* whether percpu allocation should consider NUMA or not.
*
* RETURNS:
* true if NUMA should be considered; otherwise, false.
*/
static bool __init pcpu_need_numa(void)
{
#ifdef CONFIG_NUMA
pg_data_t *last = NULL;
unsigned int cpu;
for_each_possible_cpu(cpu) {
int node = early_cpu_to_node(cpu);
if (node_online(node) && NODE_DATA(node) &&
last && last != NODE_DATA(node))
return true;
last = NODE_DATA(node);
}
#endif
return false;
}
#endif
static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
{
#ifdef CONFIG_NUMA
if (early_cpu_to_node(from) == early_cpu_to_node(to))
return LOCAL_DISTANCE;
else
return REMOTE_DISTANCE;
#else
return LOCAL_DISTANCE;
#endif
}
static int __init pcpu_cpu_to_node(int cpu)
{
return early_cpu_to_node(cpu);
}
void __init pcpu_populate_pte(unsigned long addr)
{
populate_extra_pte(addr);
}
static inline void setup_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
struct desc_struct d = GDT_ENTRY_INIT(0x8092, per_cpu_offset(cpu),
0xFFFFF);
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_PERCPU, &d, DESCTYPE_S);
#endif
}
void __init setup_per_cpu_areas(void)
{
unsigned int cpu;
unsigned long delta;
int rc;
pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%u nr_node_ids:%u\n",
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
/*
* Allocate percpu area. Embedding allocator is our favorite;
* however, on NUMA configurations, it can result in very
* sparse unit mapping and vmalloc area isn't spacious enough
* on 32bit. Use page in that case.
*/
#ifdef CONFIG_X86_32
if (pcpu_chosen_fc == PCPU_FC_AUTO && pcpu_need_numa())
pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
rc = -EINVAL;
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
const size_t dyn_size = PERCPU_MODULE_RESERVE +
PERCPU_DYNAMIC_RESERVE - PERCPU_FIRST_CHUNK_RESERVE;
size_t atom_size;
/*
* On 64bit, use PMD_SIZE for atom_size so that embedded
* percpu areas are aligned to PMD. This, in the future,
* can also allow using PMD mappings in vmalloc area. Use
* PAGE_SIZE on 32bit as vmalloc space is highly contended
* and large vmalloc area allocs can easily fail.
*/
#ifdef CONFIG_X86_64
atom_size = PMD_SIZE;
#else
atom_size = PAGE_SIZE;
#endif
rc = pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
dyn_size, atom_size,
pcpu_cpu_distance,
pcpu_cpu_to_node);
if (rc < 0)
pr_warn("%s allocator failed (%d), falling back to page size\n",
pcpu_fc_names[pcpu_chosen_fc], rc);
}
if (rc < 0)
rc = pcpu_page_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
pcpu_cpu_to_node);
if (rc < 0)
panic("cannot initialize percpu area (err=%d)", rc);
/* alrighty, percpu areas up and running */
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu) {
per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
per_cpu(pcpu_hot.cpu_number, cpu) = cpu;
setup_percpu_segment(cpu);
/*
* Copy data used in early init routines from the
* initial arrays to the per cpu data areas. These
* arrays then become expendable and the *_early_ptr's
* are zeroed indicating that the static arrays are
* gone.
*/
#ifdef CONFIG_X86_LOCAL_APIC
per_cpu(x86_cpu_to_apicid, cpu) =
early_per_cpu_map(x86_cpu_to_apicid, cpu);
per_cpu(x86_bios_cpu_apicid, cpu) =
early_per_cpu_map(x86_bios_cpu_apicid, cpu);
per_cpu(x86_cpu_to_acpiid, cpu) =
early_per_cpu_map(x86_cpu_to_acpiid, cpu);
#endif
#ifdef CONFIG_X86_32
per_cpu(x86_cpu_to_logical_apicid, cpu) =
early_per_cpu_map(x86_cpu_to_logical_apicid, cpu);
#endif
#ifdef CONFIG_NUMA
per_cpu(x86_cpu_to_node_map, cpu) =
early_per_cpu_map(x86_cpu_to_node_map, cpu);
/*
* Ensure that the boot cpu numa_node is correct when the boot
* cpu is on a node that doesn't have memory installed.
* Also cpu_up() will call cpu_to_node() for APs when
* MEMORY_HOTPLUG is defined, before per_cpu(numa_node) is set
* up later with c_init aka intel_init/amd_init.
* So set them all (boot cpu and all APs).
*/
set_cpu_numa_node(cpu, early_cpu_to_node(cpu));
#endif
/*
* Up to this point, the boot CPU has been using .init.data
* area. Reload any changed state for the boot CPU.
*/
if (!cpu)
switch_gdt_and_percpu_base(cpu);
}
/* indicate the early static arrays will soon be gone */
#ifdef CONFIG_X86_LOCAL_APIC
early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
early_per_cpu_ptr(x86_cpu_to_acpiid) = NULL;
#endif
#ifdef CONFIG_X86_32
early_per_cpu_ptr(x86_cpu_to_logical_apicid) = NULL;
#endif
#ifdef CONFIG_NUMA
early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
#endif
/* Setup node to cpumask map */
setup_node_to_cpumask_map();
/* Setup cpu initialized, callin, callout masks */
setup_cpu_local_masks();
/*
* Sync back kernel address range again. We already did this in
* setup_arch(), but percpu data also needs to be available in
* the smpboot asm and arch_sync_kernel_mappings() doesn't sync to
* swapper_pg_dir on 32-bit. The per-cpu mappings need to be available
* there too.
*
* FIXME: Can the later sync in setup_cpu_entry_areas() replace
* this call?
*/
sync_initial_page_table();
}