mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
4d65adfcd1
Decode Xen and KVM's emulate-prefix signature by x86 insn decoder. It is called "prefix" but actually not x86 instruction prefix, so this adds insn.emulate_prefix_size field instead of reusing insn.prefixes. If x86 decoder finds a special sequence of instructions of XEN_EMULATE_PREFIX and 'ud2a; .ascii "kvm"', it just counts the length, set insn.emulate_prefix_size and fold it with the next instruction. In other words, the signature and the next instruction is treated as a single instruction. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: x86@kernel.org Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Borislav Petkov <bp@alien8.de> Cc: xen-devel@lists.xenproject.org Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/156777564986.25081.4964537658500952557.stgit@devnote2
627 lines
15 KiB
C
627 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* x86 instruction analysis
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004, 2009
|
|
*/
|
|
|
|
#ifdef __KERNEL__
|
|
#include <linux/string.h>
|
|
#else
|
|
#include <string.h>
|
|
#endif
|
|
#include <asm/inat.h>
|
|
#include <asm/insn.h>
|
|
|
|
#include <asm/emulate_prefix.h>
|
|
|
|
/* Verify next sizeof(t) bytes can be on the same instruction */
|
|
#define validate_next(t, insn, n) \
|
|
((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
|
|
|
|
#define __get_next(t, insn) \
|
|
({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
|
|
|
|
#define __peek_nbyte_next(t, insn, n) \
|
|
({ t r = *(t*)((insn)->next_byte + n); r; })
|
|
|
|
#define get_next(t, insn) \
|
|
({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
|
|
|
|
#define peek_nbyte_next(t, insn, n) \
|
|
({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
|
|
|
|
#define peek_next(t, insn) peek_nbyte_next(t, insn, 0)
|
|
|
|
/**
|
|
* insn_init() - initialize struct insn
|
|
* @insn: &struct insn to be initialized
|
|
* @kaddr: address (in kernel memory) of instruction (or copy thereof)
|
|
* @x86_64: !0 for 64-bit kernel or 64-bit app
|
|
*/
|
|
void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
|
|
{
|
|
/*
|
|
* Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
|
|
* even if the input buffer is long enough to hold them.
|
|
*/
|
|
if (buf_len > MAX_INSN_SIZE)
|
|
buf_len = MAX_INSN_SIZE;
|
|
|
|
memset(insn, 0, sizeof(*insn));
|
|
insn->kaddr = kaddr;
|
|
insn->end_kaddr = kaddr + buf_len;
|
|
insn->next_byte = kaddr;
|
|
insn->x86_64 = x86_64 ? 1 : 0;
|
|
insn->opnd_bytes = 4;
|
|
if (x86_64)
|
|
insn->addr_bytes = 8;
|
|
else
|
|
insn->addr_bytes = 4;
|
|
}
|
|
|
|
static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
|
|
static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
|
|
|
|
static int __insn_get_emulate_prefix(struct insn *insn,
|
|
const insn_byte_t *prefix, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
|
|
goto err_out;
|
|
}
|
|
|
|
insn->emulate_prefix_size = len;
|
|
insn->next_byte += len;
|
|
|
|
return 1;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
static void insn_get_emulate_prefix(struct insn *insn)
|
|
{
|
|
if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
|
|
return;
|
|
|
|
__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
|
|
}
|
|
|
|
/**
|
|
* insn_get_prefixes - scan x86 instruction prefix bytes
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* Populates the @insn->prefixes bitmap, and updates @insn->next_byte
|
|
* to point to the (first) opcode. No effect if @insn->prefixes.got
|
|
* is already set.
|
|
*/
|
|
void insn_get_prefixes(struct insn *insn)
|
|
{
|
|
struct insn_field *prefixes = &insn->prefixes;
|
|
insn_attr_t attr;
|
|
insn_byte_t b, lb;
|
|
int i, nb;
|
|
|
|
if (prefixes->got)
|
|
return;
|
|
|
|
insn_get_emulate_prefix(insn);
|
|
|
|
nb = 0;
|
|
lb = 0;
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
while (inat_is_legacy_prefix(attr)) {
|
|
/* Skip if same prefix */
|
|
for (i = 0; i < nb; i++)
|
|
if (prefixes->bytes[i] == b)
|
|
goto found;
|
|
if (nb == 4)
|
|
/* Invalid instruction */
|
|
break;
|
|
prefixes->bytes[nb++] = b;
|
|
if (inat_is_address_size_prefix(attr)) {
|
|
/* address size switches 2/4 or 4/8 */
|
|
if (insn->x86_64)
|
|
insn->addr_bytes ^= 12;
|
|
else
|
|
insn->addr_bytes ^= 6;
|
|
} else if (inat_is_operand_size_prefix(attr)) {
|
|
/* oprand size switches 2/4 */
|
|
insn->opnd_bytes ^= 6;
|
|
}
|
|
found:
|
|
prefixes->nbytes++;
|
|
insn->next_byte++;
|
|
lb = b;
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
}
|
|
/* Set the last prefix */
|
|
if (lb && lb != insn->prefixes.bytes[3]) {
|
|
if (unlikely(insn->prefixes.bytes[3])) {
|
|
/* Swap the last prefix */
|
|
b = insn->prefixes.bytes[3];
|
|
for (i = 0; i < nb; i++)
|
|
if (prefixes->bytes[i] == lb)
|
|
prefixes->bytes[i] = b;
|
|
}
|
|
insn->prefixes.bytes[3] = lb;
|
|
}
|
|
|
|
/* Decode REX prefix */
|
|
if (insn->x86_64) {
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
if (inat_is_rex_prefix(attr)) {
|
|
insn->rex_prefix.value = b;
|
|
insn->rex_prefix.nbytes = 1;
|
|
insn->next_byte++;
|
|
if (X86_REX_W(b))
|
|
/* REX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
}
|
|
}
|
|
insn->rex_prefix.got = 1;
|
|
|
|
/* Decode VEX prefix */
|
|
b = peek_next(insn_byte_t, insn);
|
|
attr = inat_get_opcode_attribute(b);
|
|
if (inat_is_vex_prefix(attr)) {
|
|
insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
|
|
if (!insn->x86_64) {
|
|
/*
|
|
* In 32-bits mode, if the [7:6] bits (mod bits of
|
|
* ModRM) on the second byte are not 11b, it is
|
|
* LDS or LES or BOUND.
|
|
*/
|
|
if (X86_MODRM_MOD(b2) != 3)
|
|
goto vex_end;
|
|
}
|
|
insn->vex_prefix.bytes[0] = b;
|
|
insn->vex_prefix.bytes[1] = b2;
|
|
if (inat_is_evex_prefix(attr)) {
|
|
b2 = peek_nbyte_next(insn_byte_t, insn, 2);
|
|
insn->vex_prefix.bytes[2] = b2;
|
|
b2 = peek_nbyte_next(insn_byte_t, insn, 3);
|
|
insn->vex_prefix.bytes[3] = b2;
|
|
insn->vex_prefix.nbytes = 4;
|
|
insn->next_byte += 4;
|
|
if (insn->x86_64 && X86_VEX_W(b2))
|
|
/* VEX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
} else if (inat_is_vex3_prefix(attr)) {
|
|
b2 = peek_nbyte_next(insn_byte_t, insn, 2);
|
|
insn->vex_prefix.bytes[2] = b2;
|
|
insn->vex_prefix.nbytes = 3;
|
|
insn->next_byte += 3;
|
|
if (insn->x86_64 && X86_VEX_W(b2))
|
|
/* VEX.W overrides opnd_size */
|
|
insn->opnd_bytes = 8;
|
|
} else {
|
|
/*
|
|
* For VEX2, fake VEX3-like byte#2.
|
|
* Makes it easier to decode vex.W, vex.vvvv,
|
|
* vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
|
|
*/
|
|
insn->vex_prefix.bytes[2] = b2 & 0x7f;
|
|
insn->vex_prefix.nbytes = 2;
|
|
insn->next_byte += 2;
|
|
}
|
|
}
|
|
vex_end:
|
|
insn->vex_prefix.got = 1;
|
|
|
|
prefixes->got = 1;
|
|
|
|
err_out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* insn_get_opcode - collect opcode(s)
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* Populates @insn->opcode, updates @insn->next_byte to point past the
|
|
* opcode byte(s), and set @insn->attr (except for groups).
|
|
* If necessary, first collects any preceding (prefix) bytes.
|
|
* Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
|
|
* is already 1.
|
|
*/
|
|
void insn_get_opcode(struct insn *insn)
|
|
{
|
|
struct insn_field *opcode = &insn->opcode;
|
|
insn_byte_t op;
|
|
int pfx_id;
|
|
if (opcode->got)
|
|
return;
|
|
if (!insn->prefixes.got)
|
|
insn_get_prefixes(insn);
|
|
|
|
/* Get first opcode */
|
|
op = get_next(insn_byte_t, insn);
|
|
opcode->bytes[0] = op;
|
|
opcode->nbytes = 1;
|
|
|
|
/* Check if there is VEX prefix or not */
|
|
if (insn_is_avx(insn)) {
|
|
insn_byte_t m, p;
|
|
m = insn_vex_m_bits(insn);
|
|
p = insn_vex_p_bits(insn);
|
|
insn->attr = inat_get_avx_attribute(op, m, p);
|
|
if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
|
|
(!inat_accept_vex(insn->attr) &&
|
|
!inat_is_group(insn->attr)))
|
|
insn->attr = 0; /* This instruction is bad */
|
|
goto end; /* VEX has only 1 byte for opcode */
|
|
}
|
|
|
|
insn->attr = inat_get_opcode_attribute(op);
|
|
while (inat_is_escape(insn->attr)) {
|
|
/* Get escaped opcode */
|
|
op = get_next(insn_byte_t, insn);
|
|
opcode->bytes[opcode->nbytes++] = op;
|
|
pfx_id = insn_last_prefix_id(insn);
|
|
insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
|
|
}
|
|
if (inat_must_vex(insn->attr))
|
|
insn->attr = 0; /* This instruction is bad */
|
|
end:
|
|
opcode->got = 1;
|
|
|
|
err_out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* insn_get_modrm - collect ModRM byte, if any
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* Populates @insn->modrm and updates @insn->next_byte to point past the
|
|
* ModRM byte, if any. If necessary, first collects the preceding bytes
|
|
* (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
|
|
*/
|
|
void insn_get_modrm(struct insn *insn)
|
|
{
|
|
struct insn_field *modrm = &insn->modrm;
|
|
insn_byte_t pfx_id, mod;
|
|
if (modrm->got)
|
|
return;
|
|
if (!insn->opcode.got)
|
|
insn_get_opcode(insn);
|
|
|
|
if (inat_has_modrm(insn->attr)) {
|
|
mod = get_next(insn_byte_t, insn);
|
|
modrm->value = mod;
|
|
modrm->nbytes = 1;
|
|
if (inat_is_group(insn->attr)) {
|
|
pfx_id = insn_last_prefix_id(insn);
|
|
insn->attr = inat_get_group_attribute(mod, pfx_id,
|
|
insn->attr);
|
|
if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
|
|
insn->attr = 0; /* This is bad */
|
|
}
|
|
}
|
|
|
|
if (insn->x86_64 && inat_is_force64(insn->attr))
|
|
insn->opnd_bytes = 8;
|
|
modrm->got = 1;
|
|
|
|
err_out:
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
* insn_rip_relative() - Does instruction use RIP-relative addressing mode?
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* ModRM byte. No effect if @insn->x86_64 is 0.
|
|
*/
|
|
int insn_rip_relative(struct insn *insn)
|
|
{
|
|
struct insn_field *modrm = &insn->modrm;
|
|
|
|
if (!insn->x86_64)
|
|
return 0;
|
|
if (!modrm->got)
|
|
insn_get_modrm(insn);
|
|
/*
|
|
* For rip-relative instructions, the mod field (top 2 bits)
|
|
* is zero and the r/m field (bottom 3 bits) is 0x5.
|
|
*/
|
|
return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
|
|
}
|
|
|
|
/**
|
|
* insn_get_sib() - Get the SIB byte of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* ModRM byte.
|
|
*/
|
|
void insn_get_sib(struct insn *insn)
|
|
{
|
|
insn_byte_t modrm;
|
|
|
|
if (insn->sib.got)
|
|
return;
|
|
if (!insn->modrm.got)
|
|
insn_get_modrm(insn);
|
|
if (insn->modrm.nbytes) {
|
|
modrm = (insn_byte_t)insn->modrm.value;
|
|
if (insn->addr_bytes != 2 &&
|
|
X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
|
|
insn->sib.value = get_next(insn_byte_t, insn);
|
|
insn->sib.nbytes = 1;
|
|
}
|
|
}
|
|
insn->sib.got = 1;
|
|
|
|
err_out:
|
|
return;
|
|
}
|
|
|
|
|
|
/**
|
|
* insn_get_displacement() - Get the displacement of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* SIB byte.
|
|
* Displacement value is sign-expanded.
|
|
*/
|
|
void insn_get_displacement(struct insn *insn)
|
|
{
|
|
insn_byte_t mod, rm, base;
|
|
|
|
if (insn->displacement.got)
|
|
return;
|
|
if (!insn->sib.got)
|
|
insn_get_sib(insn);
|
|
if (insn->modrm.nbytes) {
|
|
/*
|
|
* Interpreting the modrm byte:
|
|
* mod = 00 - no displacement fields (exceptions below)
|
|
* mod = 01 - 1-byte displacement field
|
|
* mod = 10 - displacement field is 4 bytes, or 2 bytes if
|
|
* address size = 2 (0x67 prefix in 32-bit mode)
|
|
* mod = 11 - no memory operand
|
|
*
|
|
* If address size = 2...
|
|
* mod = 00, r/m = 110 - displacement field is 2 bytes
|
|
*
|
|
* If address size != 2...
|
|
* mod != 11, r/m = 100 - SIB byte exists
|
|
* mod = 00, SIB base = 101 - displacement field is 4 bytes
|
|
* mod = 00, r/m = 101 - rip-relative addressing, displacement
|
|
* field is 4 bytes
|
|
*/
|
|
mod = X86_MODRM_MOD(insn->modrm.value);
|
|
rm = X86_MODRM_RM(insn->modrm.value);
|
|
base = X86_SIB_BASE(insn->sib.value);
|
|
if (mod == 3)
|
|
goto out;
|
|
if (mod == 1) {
|
|
insn->displacement.value = get_next(signed char, insn);
|
|
insn->displacement.nbytes = 1;
|
|
} else if (insn->addr_bytes == 2) {
|
|
if ((mod == 0 && rm == 6) || mod == 2) {
|
|
insn->displacement.value =
|
|
get_next(short, insn);
|
|
insn->displacement.nbytes = 2;
|
|
}
|
|
} else {
|
|
if ((mod == 0 && rm == 5) || mod == 2 ||
|
|
(mod == 0 && base == 5)) {
|
|
insn->displacement.value = get_next(int, insn);
|
|
insn->displacement.nbytes = 4;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
insn->displacement.got = 1;
|
|
|
|
err_out:
|
|
return;
|
|
}
|
|
|
|
/* Decode moffset16/32/64. Return 0 if failed */
|
|
static int __get_moffset(struct insn *insn)
|
|
{
|
|
switch (insn->addr_bytes) {
|
|
case 2:
|
|
insn->moffset1.value = get_next(short, insn);
|
|
insn->moffset1.nbytes = 2;
|
|
break;
|
|
case 4:
|
|
insn->moffset1.value = get_next(int, insn);
|
|
insn->moffset1.nbytes = 4;
|
|
break;
|
|
case 8:
|
|
insn->moffset1.value = get_next(int, insn);
|
|
insn->moffset1.nbytes = 4;
|
|
insn->moffset2.value = get_next(int, insn);
|
|
insn->moffset2.nbytes = 4;
|
|
break;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
insn->moffset1.got = insn->moffset2.got = 1;
|
|
|
|
return 1;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/* Decode imm v32(Iz). Return 0 if failed */
|
|
static int __get_immv32(struct insn *insn)
|
|
{
|
|
switch (insn->opnd_bytes) {
|
|
case 2:
|
|
insn->immediate.value = get_next(short, insn);
|
|
insn->immediate.nbytes = 2;
|
|
break;
|
|
case 4:
|
|
case 8:
|
|
insn->immediate.value = get_next(int, insn);
|
|
insn->immediate.nbytes = 4;
|
|
break;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/* Decode imm v64(Iv/Ov), Return 0 if failed */
|
|
static int __get_immv(struct insn *insn)
|
|
{
|
|
switch (insn->opnd_bytes) {
|
|
case 2:
|
|
insn->immediate1.value = get_next(short, insn);
|
|
insn->immediate1.nbytes = 2;
|
|
break;
|
|
case 4:
|
|
insn->immediate1.value = get_next(int, insn);
|
|
insn->immediate1.nbytes = 4;
|
|
break;
|
|
case 8:
|
|
insn->immediate1.value = get_next(int, insn);
|
|
insn->immediate1.nbytes = 4;
|
|
insn->immediate2.value = get_next(int, insn);
|
|
insn->immediate2.nbytes = 4;
|
|
break;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
insn->immediate1.got = insn->immediate2.got = 1;
|
|
|
|
return 1;
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/* Decode ptr16:16/32(Ap) */
|
|
static int __get_immptr(struct insn *insn)
|
|
{
|
|
switch (insn->opnd_bytes) {
|
|
case 2:
|
|
insn->immediate1.value = get_next(short, insn);
|
|
insn->immediate1.nbytes = 2;
|
|
break;
|
|
case 4:
|
|
insn->immediate1.value = get_next(int, insn);
|
|
insn->immediate1.nbytes = 4;
|
|
break;
|
|
case 8:
|
|
/* ptr16:64 is not exist (no segment) */
|
|
return 0;
|
|
default: /* opnd_bytes must be modified manually */
|
|
goto err_out;
|
|
}
|
|
insn->immediate2.value = get_next(unsigned short, insn);
|
|
insn->immediate2.nbytes = 2;
|
|
insn->immediate1.got = insn->immediate2.got = 1;
|
|
|
|
return 1;
|
|
err_out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* insn_get_immediate() - Get the immediates of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* displacement bytes.
|
|
* Basically, most of immediates are sign-expanded. Unsigned-value can be
|
|
* get by bit masking with ((1 << (nbytes * 8)) - 1)
|
|
*/
|
|
void insn_get_immediate(struct insn *insn)
|
|
{
|
|
if (insn->immediate.got)
|
|
return;
|
|
if (!insn->displacement.got)
|
|
insn_get_displacement(insn);
|
|
|
|
if (inat_has_moffset(insn->attr)) {
|
|
if (!__get_moffset(insn))
|
|
goto err_out;
|
|
goto done;
|
|
}
|
|
|
|
if (!inat_has_immediate(insn->attr))
|
|
/* no immediates */
|
|
goto done;
|
|
|
|
switch (inat_immediate_size(insn->attr)) {
|
|
case INAT_IMM_BYTE:
|
|
insn->immediate.value = get_next(signed char, insn);
|
|
insn->immediate.nbytes = 1;
|
|
break;
|
|
case INAT_IMM_WORD:
|
|
insn->immediate.value = get_next(short, insn);
|
|
insn->immediate.nbytes = 2;
|
|
break;
|
|
case INAT_IMM_DWORD:
|
|
insn->immediate.value = get_next(int, insn);
|
|
insn->immediate.nbytes = 4;
|
|
break;
|
|
case INAT_IMM_QWORD:
|
|
insn->immediate1.value = get_next(int, insn);
|
|
insn->immediate1.nbytes = 4;
|
|
insn->immediate2.value = get_next(int, insn);
|
|
insn->immediate2.nbytes = 4;
|
|
break;
|
|
case INAT_IMM_PTR:
|
|
if (!__get_immptr(insn))
|
|
goto err_out;
|
|
break;
|
|
case INAT_IMM_VWORD32:
|
|
if (!__get_immv32(insn))
|
|
goto err_out;
|
|
break;
|
|
case INAT_IMM_VWORD:
|
|
if (!__get_immv(insn))
|
|
goto err_out;
|
|
break;
|
|
default:
|
|
/* Here, insn must have an immediate, but failed */
|
|
goto err_out;
|
|
}
|
|
if (inat_has_second_immediate(insn->attr)) {
|
|
insn->immediate2.value = get_next(signed char, insn);
|
|
insn->immediate2.nbytes = 1;
|
|
}
|
|
done:
|
|
insn->immediate.got = 1;
|
|
|
|
err_out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* insn_get_length() - Get the length of instruction
|
|
* @insn: &struct insn containing instruction
|
|
*
|
|
* If necessary, first collects the instruction up to and including the
|
|
* immediates bytes.
|
|
*/
|
|
void insn_get_length(struct insn *insn)
|
|
{
|
|
if (insn->length)
|
|
return;
|
|
if (!insn->immediate.got)
|
|
insn_get_immediate(insn);
|
|
insn->length = (unsigned char)((unsigned long)insn->next_byte
|
|
- (unsigned long)insn->kaddr);
|
|
}
|