linux-stable/drivers/gpu/drm/nouveau/nv50_grctx.c
Marcin Kościelnicki eaeefba154 drm/nv50: Add NVA3 support in ctxprog/ctxvals generator.
Signed-off-by: Marcin Kościelnicki <koriakin@0x04.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2010-04-09 10:15:42 +10:00

2383 lines
67 KiB
C

/*
* Copyright 2009 Marcin Kościelnicki
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#define CP_FLAG_CLEAR 0
#define CP_FLAG_SET 1
#define CP_FLAG_SWAP_DIRECTION ((0 * 32) + 0)
#define CP_FLAG_SWAP_DIRECTION_LOAD 0
#define CP_FLAG_SWAP_DIRECTION_SAVE 1
#define CP_FLAG_UNK01 ((0 * 32) + 1)
#define CP_FLAG_UNK01_CLEAR 0
#define CP_FLAG_UNK01_SET 1
#define CP_FLAG_UNK03 ((0 * 32) + 3)
#define CP_FLAG_UNK03_CLEAR 0
#define CP_FLAG_UNK03_SET 1
#define CP_FLAG_USER_SAVE ((0 * 32) + 5)
#define CP_FLAG_USER_SAVE_NOT_PENDING 0
#define CP_FLAG_USER_SAVE_PENDING 1
#define CP_FLAG_USER_LOAD ((0 * 32) + 6)
#define CP_FLAG_USER_LOAD_NOT_PENDING 0
#define CP_FLAG_USER_LOAD_PENDING 1
#define CP_FLAG_UNK0B ((0 * 32) + 0xb)
#define CP_FLAG_UNK0B_CLEAR 0
#define CP_FLAG_UNK0B_SET 1
#define CP_FLAG_UNK1D ((0 * 32) + 0x1d)
#define CP_FLAG_UNK1D_CLEAR 0
#define CP_FLAG_UNK1D_SET 1
#define CP_FLAG_UNK20 ((1 * 32) + 0)
#define CP_FLAG_UNK20_CLEAR 0
#define CP_FLAG_UNK20_SET 1
#define CP_FLAG_STATUS ((2 * 32) + 0)
#define CP_FLAG_STATUS_BUSY 0
#define CP_FLAG_STATUS_IDLE 1
#define CP_FLAG_AUTO_SAVE ((2 * 32) + 4)
#define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
#define CP_FLAG_AUTO_SAVE_PENDING 1
#define CP_FLAG_AUTO_LOAD ((2 * 32) + 5)
#define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
#define CP_FLAG_AUTO_LOAD_PENDING 1
#define CP_FLAG_NEWCTX ((2 * 32) + 10)
#define CP_FLAG_NEWCTX_BUSY 0
#define CP_FLAG_NEWCTX_DONE 1
#define CP_FLAG_XFER ((2 * 32) + 11)
#define CP_FLAG_XFER_IDLE 0
#define CP_FLAG_XFER_BUSY 1
#define CP_FLAG_ALWAYS ((2 * 32) + 13)
#define CP_FLAG_ALWAYS_FALSE 0
#define CP_FLAG_ALWAYS_TRUE 1
#define CP_FLAG_INTR ((2 * 32) + 15)
#define CP_FLAG_INTR_NOT_PENDING 0
#define CP_FLAG_INTR_PENDING 1
#define CP_CTX 0x00100000
#define CP_CTX_COUNT 0x000f0000
#define CP_CTX_COUNT_SHIFT 16
#define CP_CTX_REG 0x00003fff
#define CP_LOAD_SR 0x00200000
#define CP_LOAD_SR_VALUE 0x000fffff
#define CP_BRA 0x00400000
#define CP_BRA_IP 0x0001ff00
#define CP_BRA_IP_SHIFT 8
#define CP_BRA_IF_CLEAR 0x00000080
#define CP_BRA_FLAG 0x0000007f
#define CP_WAIT 0x00500000
#define CP_WAIT_SET 0x00000080
#define CP_WAIT_FLAG 0x0000007f
#define CP_SET 0x00700000
#define CP_SET_1 0x00000080
#define CP_SET_FLAG 0x0000007f
#define CP_NEWCTX 0x00600004
#define CP_NEXT_TO_SWAP 0x00600005
#define CP_SET_CONTEXT_POINTER 0x00600006
#define CP_SET_XFER_POINTER 0x00600007
#define CP_ENABLE 0x00600009
#define CP_END 0x0060000c
#define CP_NEXT_TO_CURRENT 0x0060000d
#define CP_DISABLE1 0x0090ffff
#define CP_DISABLE2 0x0091ffff
#define CP_XFER_1 0x008000ff
#define CP_XFER_2 0x008800ff
#define CP_SEEK_1 0x00c000ff
#define CP_SEEK_2 0x00c800ff
#include "drmP.h"
#include "nouveau_drv.h"
#include "nouveau_grctx.h"
/*
* This code deals with PGRAPH contexts on NV50 family cards. Like NV40, it's
* the GPU itself that does context-switching, but it needs a special
* microcode to do it. And it's the driver's task to supply this microcode,
* further known as ctxprog, as well as the initial context values, known
* as ctxvals.
*
* Without ctxprog, you cannot switch contexts. Not even in software, since
* the majority of context [xfer strands] isn't accessible directly. You're
* stuck with a single channel, and you also suffer all the problems resulting
* from missing ctxvals, since you cannot load them.
*
* Without ctxvals, you're stuck with PGRAPH's default context. It's enough to
* run 2d operations, but trying to utilise 3d or CUDA will just lock you up,
* since you don't have... some sort of needed setup.
*
* Nouveau will just disable acceleration if not given ctxprog + ctxvals, since
* it's too much hassle to handle no-ctxprog as a special case.
*/
/*
* How ctxprogs work.
*
* The ctxprog is written in its own kind of microcode, with very small and
* crappy set of available commands. You upload it to a small [512 insns]
* area of memory on PGRAPH, and it'll be run when PFIFO wants PGRAPH to
* switch channel. or when the driver explicitely requests it. Stuff visible
* to ctxprog consists of: PGRAPH MMIO registers, PGRAPH context strands,
* the per-channel context save area in VRAM [known as ctxvals or grctx],
* 4 flags registers, a scratch register, two grctx pointers, plus many
* random poorly-understood details.
*
* When ctxprog runs, it's supposed to check what operations are asked of it,
* save old context if requested, optionally reset PGRAPH and switch to the
* new channel, and load the new context. Context consists of three major
* parts: subset of MMIO registers and two "xfer areas".
*/
/* TODO:
* - document unimplemented bits compared to nvidia
* - NVAx: make a TP subroutine, use it.
* - use 0x4008fc instead of 0x1540?
*/
enum cp_label {
cp_check_load = 1,
cp_setup_auto_load,
cp_setup_load,
cp_setup_save,
cp_swap_state,
cp_prepare_exit,
cp_exit,
};
static void nv50_graph_construct_mmio(struct nouveau_grctx *ctx);
static void nv50_graph_construct_xfer1(struct nouveau_grctx *ctx);
static void nv50_graph_construct_xfer2(struct nouveau_grctx *ctx);
/* Main function: construct the ctxprog skeleton, call the other functions. */
int
nv50_grctx_init(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
switch (dev_priv->chipset) {
case 0x50:
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
case 0xa0:
case 0xa3:
case 0xa5:
case 0xa8:
case 0xaa:
case 0xac:
break;
default:
NV_ERROR(ctx->dev, "I don't know how to make a ctxprog for "
"your NV%x card.\n", dev_priv->chipset);
NV_ERROR(ctx->dev, "Disabling acceleration. Please contact "
"the devs.\n");
return -ENOSYS;
}
/* decide whether we're loading/unloading the context */
cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
cp_name(ctx, cp_check_load);
cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
cp_bra (ctx, ALWAYS, TRUE, cp_exit);
/* setup for context load */
cp_name(ctx, cp_setup_auto_load);
cp_out (ctx, CP_DISABLE1);
cp_out (ctx, CP_DISABLE2);
cp_out (ctx, CP_ENABLE);
cp_out (ctx, CP_NEXT_TO_SWAP);
cp_set (ctx, UNK01, SET);
cp_name(ctx, cp_setup_load);
cp_out (ctx, CP_NEWCTX);
cp_wait(ctx, NEWCTX, BUSY);
cp_set (ctx, UNK1D, CLEAR);
cp_set (ctx, SWAP_DIRECTION, LOAD);
cp_bra (ctx, UNK0B, SET, cp_prepare_exit);
cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
/* setup for context save */
cp_name(ctx, cp_setup_save);
cp_set (ctx, UNK1D, SET);
cp_wait(ctx, STATUS, BUSY);
cp_wait(ctx, INTR, PENDING);
cp_bra (ctx, STATUS, BUSY, cp_setup_save);
cp_set (ctx, UNK01, SET);
cp_set (ctx, SWAP_DIRECTION, SAVE);
/* general PGRAPH state */
cp_name(ctx, cp_swap_state);
cp_set (ctx, UNK03, SET);
cp_pos (ctx, 0x00004/4);
cp_ctx (ctx, 0x400828, 1); /* needed. otherwise, flickering happens. */
cp_pos (ctx, 0x00100/4);
nv50_graph_construct_mmio(ctx);
nv50_graph_construct_xfer1(ctx);
nv50_graph_construct_xfer2(ctx);
cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
cp_set (ctx, UNK20, SET);
cp_set (ctx, SWAP_DIRECTION, SAVE); /* no idea why this is needed, but fixes at least one lockup. */
cp_lsr (ctx, ctx->ctxvals_base);
cp_out (ctx, CP_SET_XFER_POINTER);
cp_lsr (ctx, 4);
cp_out (ctx, CP_SEEK_1);
cp_out (ctx, CP_XFER_1);
cp_wait(ctx, XFER, BUSY);
/* pre-exit state updates */
cp_name(ctx, cp_prepare_exit);
cp_set (ctx, UNK01, CLEAR);
cp_set (ctx, UNK03, CLEAR);
cp_set (ctx, UNK1D, CLEAR);
cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
cp_out (ctx, CP_NEXT_TO_CURRENT);
cp_name(ctx, cp_exit);
cp_set (ctx, USER_SAVE, NOT_PENDING);
cp_set (ctx, USER_LOAD, NOT_PENDING);
cp_out (ctx, CP_END);
ctx->ctxvals_pos += 0x400; /* padding... no idea why you need it */
return 0;
}
/*
* Constructs MMIO part of ctxprog and ctxvals. Just a matter of knowing which
* registers to save/restore and the default values for them.
*/
static void
nv50_graph_construct_mmio(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int i, j;
int offset, base;
uint32_t units = nv_rd32 (ctx->dev, 0x1540);
/* 0800: DISPATCH */
cp_ctx(ctx, 0x400808, 7);
gr_def(ctx, 0x400814, 0x00000030);
cp_ctx(ctx, 0x400834, 0x32);
if (dev_priv->chipset == 0x50) {
gr_def(ctx, 0x400834, 0xff400040);
gr_def(ctx, 0x400838, 0xfff00080);
gr_def(ctx, 0x40083c, 0xfff70090);
gr_def(ctx, 0x400840, 0xffe806a8);
}
gr_def(ctx, 0x400844, 0x00000002);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
gr_def(ctx, 0x400894, 0x00001000);
gr_def(ctx, 0x4008e8, 0x00000003);
gr_def(ctx, 0x4008ec, 0x00001000);
if (dev_priv->chipset == 0x50)
cp_ctx(ctx, 0x400908, 0xb);
else if (dev_priv->chipset < 0xa0)
cp_ctx(ctx, 0x400908, 0xc);
else
cp_ctx(ctx, 0x400908, 0xe);
if (dev_priv->chipset >= 0xa0)
cp_ctx(ctx, 0x400b00, 0x1);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
cp_ctx(ctx, 0x400b10, 0x1);
gr_def(ctx, 0x400b10, 0x0001629d);
cp_ctx(ctx, 0x400b20, 0x1);
gr_def(ctx, 0x400b20, 0x0001629d);
}
/* 0C00: VFETCH */
cp_ctx(ctx, 0x400c08, 0x2);
gr_def(ctx, 0x400c08, 0x0000fe0c);
/* 1000 */
if (dev_priv->chipset < 0xa0) {
cp_ctx(ctx, 0x401008, 0x4);
gr_def(ctx, 0x401014, 0x00001000);
} else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa) {
cp_ctx(ctx, 0x401008, 0x5);
gr_def(ctx, 0x401018, 0x00001000);
} else {
cp_ctx(ctx, 0x401008, 0x5);
gr_def(ctx, 0x401018, 0x00004000);
}
/* 1400 */
cp_ctx(ctx, 0x401400, 0x8);
cp_ctx(ctx, 0x401424, 0x3);
if (dev_priv->chipset == 0x50)
gr_def(ctx, 0x40142c, 0x0001fd87);
else
gr_def(ctx, 0x40142c, 0x00000187);
cp_ctx(ctx, 0x401540, 0x5);
gr_def(ctx, 0x401550, 0x00001018);
/* 1800: STREAMOUT */
cp_ctx(ctx, 0x401814, 0x1);
gr_def(ctx, 0x401814, 0x000000ff);
if (dev_priv->chipset == 0x50) {
cp_ctx(ctx, 0x40181c, 0xe);
gr_def(ctx, 0x401850, 0x00000004);
} else if (dev_priv->chipset < 0xa0) {
cp_ctx(ctx, 0x40181c, 0xf);
gr_def(ctx, 0x401854, 0x00000004);
} else {
cp_ctx(ctx, 0x40181c, 0x13);
gr_def(ctx, 0x401864, 0x00000004);
}
/* 1C00 */
cp_ctx(ctx, 0x401c00, 0x1);
switch (dev_priv->chipset) {
case 0x50:
gr_def(ctx, 0x401c00, 0x0001005f);
break;
case 0x84:
case 0x86:
case 0x94:
gr_def(ctx, 0x401c00, 0x044d00df);
break;
case 0x92:
case 0x96:
case 0x98:
case 0xa0:
case 0xaa:
case 0xac:
gr_def(ctx, 0x401c00, 0x042500df);
break;
case 0xa3:
case 0xa5:
case 0xa8:
gr_def(ctx, 0x401c00, 0x142500df);
break;
}
/* 2400 */
cp_ctx(ctx, 0x402400, 0x1);
if (dev_priv->chipset == 0x50)
cp_ctx(ctx, 0x402408, 0x1);
else
cp_ctx(ctx, 0x402408, 0x2);
gr_def(ctx, 0x402408, 0x00000600);
/* 2800 */
cp_ctx(ctx, 0x402800, 0x1);
if (dev_priv->chipset == 0x50)
gr_def(ctx, 0x402800, 0x00000006);
/* 2C00 */
cp_ctx(ctx, 0x402c08, 0x6);
if (dev_priv->chipset != 0x50)
gr_def(ctx, 0x402c14, 0x01000000);
gr_def(ctx, 0x402c18, 0x000000ff);
if (dev_priv->chipset == 0x50)
cp_ctx(ctx, 0x402ca0, 0x1);
else
cp_ctx(ctx, 0x402ca0, 0x2);
if (dev_priv->chipset < 0xa0)
gr_def(ctx, 0x402ca0, 0x00000400);
else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa)
gr_def(ctx, 0x402ca0, 0x00000800);
else
gr_def(ctx, 0x402ca0, 0x00000400);
cp_ctx(ctx, 0x402cac, 0x4);
/* 3000 */
cp_ctx(ctx, 0x403004, 0x1);
gr_def(ctx, 0x403004, 0x00000001);
/* 3404 */
if (dev_priv->chipset >= 0xa0) {
cp_ctx(ctx, 0x403404, 0x1);
gr_def(ctx, 0x403404, 0x00000001);
}
/* 5000 */
cp_ctx(ctx, 0x405000, 0x1);
switch (dev_priv->chipset) {
case 0x50:
gr_def(ctx, 0x405000, 0x00300080);
break;
case 0x84:
case 0xa0:
case 0xa3:
case 0xa5:
case 0xa8:
case 0xaa:
case 0xac:
gr_def(ctx, 0x405000, 0x000e0080);
break;
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
gr_def(ctx, 0x405000, 0x00000080);
break;
}
cp_ctx(ctx, 0x405014, 0x1);
gr_def(ctx, 0x405014, 0x00000004);
cp_ctx(ctx, 0x40501c, 0x1);
cp_ctx(ctx, 0x405024, 0x1);
cp_ctx(ctx, 0x40502c, 0x1);
/* 5400 or maybe 4800 */
if (dev_priv->chipset == 0x50) {
offset = 0x405400;
cp_ctx(ctx, 0x405400, 0xea);
} else if (dev_priv->chipset < 0x94) {
offset = 0x405400;
cp_ctx(ctx, 0x405400, 0xcb);
} else if (dev_priv->chipset < 0xa0) {
offset = 0x405400;
cp_ctx(ctx, 0x405400, 0xcc);
} else if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
offset = 0x404800;
cp_ctx(ctx, 0x404800, 0xda);
} else {
offset = 0x405400;
cp_ctx(ctx, 0x405400, 0xd4);
}
gr_def(ctx, offset + 0x0c, 0x00000002);
gr_def(ctx, offset + 0x10, 0x00000001);
if (dev_priv->chipset >= 0x94)
offset += 4;
gr_def(ctx, offset + 0x1c, 0x00000001);
gr_def(ctx, offset + 0x20, 0x00000100);
gr_def(ctx, offset + 0x38, 0x00000002);
gr_def(ctx, offset + 0x3c, 0x00000001);
gr_def(ctx, offset + 0x40, 0x00000001);
gr_def(ctx, offset + 0x50, 0x00000001);
gr_def(ctx, offset + 0x54, 0x003fffff);
gr_def(ctx, offset + 0x58, 0x00001fff);
gr_def(ctx, offset + 0x60, 0x00000001);
gr_def(ctx, offset + 0x64, 0x00000001);
gr_def(ctx, offset + 0x6c, 0x00000001);
gr_def(ctx, offset + 0x70, 0x00000001);
gr_def(ctx, offset + 0x74, 0x00000001);
gr_def(ctx, offset + 0x78, 0x00000004);
gr_def(ctx, offset + 0x7c, 0x00000001);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
offset += 4;
gr_def(ctx, offset + 0x80, 0x00000001);
gr_def(ctx, offset + 0x84, 0x00000001);
gr_def(ctx, offset + 0x88, 0x00000007);
gr_def(ctx, offset + 0x8c, 0x00000001);
gr_def(ctx, offset + 0x90, 0x00000007);
gr_def(ctx, offset + 0x94, 0x00000001);
gr_def(ctx, offset + 0x98, 0x00000001);
gr_def(ctx, offset + 0x9c, 0x00000001);
if (dev_priv->chipset == 0x50) {
gr_def(ctx, offset + 0xb0, 0x00000001);
gr_def(ctx, offset + 0xb4, 0x00000001);
gr_def(ctx, offset + 0xbc, 0x00000001);
gr_def(ctx, offset + 0xc0, 0x0000000a);
gr_def(ctx, offset + 0xd0, 0x00000040);
gr_def(ctx, offset + 0xd8, 0x00000002);
gr_def(ctx, offset + 0xdc, 0x00000100);
gr_def(ctx, offset + 0xe0, 0x00000001);
gr_def(ctx, offset + 0xe4, 0x00000100);
gr_def(ctx, offset + 0x100, 0x00000001);
gr_def(ctx, offset + 0x124, 0x00000004);
gr_def(ctx, offset + 0x13c, 0x00000001);
gr_def(ctx, offset + 0x140, 0x00000100);
gr_def(ctx, offset + 0x148, 0x00000001);
gr_def(ctx, offset + 0x154, 0x00000100);
gr_def(ctx, offset + 0x158, 0x00000001);
gr_def(ctx, offset + 0x15c, 0x00000100);
gr_def(ctx, offset + 0x164, 0x00000001);
gr_def(ctx, offset + 0x170, 0x00000100);
gr_def(ctx, offset + 0x174, 0x00000001);
gr_def(ctx, offset + 0x17c, 0x00000001);
gr_def(ctx, offset + 0x188, 0x00000002);
gr_def(ctx, offset + 0x190, 0x00000001);
gr_def(ctx, offset + 0x198, 0x00000001);
gr_def(ctx, offset + 0x1ac, 0x00000003);
offset += 0xd0;
} else {
gr_def(ctx, offset + 0xb0, 0x00000001);
gr_def(ctx, offset + 0xb4, 0x00000100);
gr_def(ctx, offset + 0xbc, 0x00000001);
gr_def(ctx, offset + 0xc8, 0x00000100);
gr_def(ctx, offset + 0xcc, 0x00000001);
gr_def(ctx, offset + 0xd0, 0x00000100);
gr_def(ctx, offset + 0xd8, 0x00000001);
gr_def(ctx, offset + 0xe4, 0x00000100);
}
gr_def(ctx, offset + 0xf8, 0x00000004);
gr_def(ctx, offset + 0xfc, 0x00000070);
gr_def(ctx, offset + 0x100, 0x00000080);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
offset += 4;
gr_def(ctx, offset + 0x114, 0x0000000c);
if (dev_priv->chipset == 0x50)
offset -= 4;
gr_def(ctx, offset + 0x11c, 0x00000008);
gr_def(ctx, offset + 0x120, 0x00000014);
if (dev_priv->chipset == 0x50) {
gr_def(ctx, offset + 0x124, 0x00000026);
offset -= 0x18;
} else {
gr_def(ctx, offset + 0x128, 0x00000029);
gr_def(ctx, offset + 0x12c, 0x00000027);
gr_def(ctx, offset + 0x130, 0x00000026);
gr_def(ctx, offset + 0x134, 0x00000008);
gr_def(ctx, offset + 0x138, 0x00000004);
gr_def(ctx, offset + 0x13c, 0x00000027);
}
gr_def(ctx, offset + 0x148, 0x00000001);
gr_def(ctx, offset + 0x14c, 0x00000002);
gr_def(ctx, offset + 0x150, 0x00000003);
gr_def(ctx, offset + 0x154, 0x00000004);
gr_def(ctx, offset + 0x158, 0x00000005);
gr_def(ctx, offset + 0x15c, 0x00000006);
gr_def(ctx, offset + 0x160, 0x00000007);
gr_def(ctx, offset + 0x164, 0x00000001);
gr_def(ctx, offset + 0x1a8, 0x000000cf);
if (dev_priv->chipset == 0x50)
offset -= 4;
gr_def(ctx, offset + 0x1d8, 0x00000080);
gr_def(ctx, offset + 0x1dc, 0x00000004);
gr_def(ctx, offset + 0x1e0, 0x00000004);
if (dev_priv->chipset == 0x50)
offset -= 4;
else
gr_def(ctx, offset + 0x1e4, 0x00000003);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
gr_def(ctx, offset + 0x1ec, 0x00000003);
offset += 8;
}
gr_def(ctx, offset + 0x1e8, 0x00000001);
if (dev_priv->chipset == 0x50)
offset -= 4;
gr_def(ctx, offset + 0x1f4, 0x00000012);
gr_def(ctx, offset + 0x1f8, 0x00000010);
gr_def(ctx, offset + 0x1fc, 0x0000000c);
gr_def(ctx, offset + 0x200, 0x00000001);
gr_def(ctx, offset + 0x210, 0x00000004);
gr_def(ctx, offset + 0x214, 0x00000002);
gr_def(ctx, offset + 0x218, 0x00000004);
if (dev_priv->chipset >= 0xa0)
offset += 4;
gr_def(ctx, offset + 0x224, 0x003fffff);
gr_def(ctx, offset + 0x228, 0x00001fff);
if (dev_priv->chipset == 0x50)
offset -= 0x20;
else if (dev_priv->chipset >= 0xa0) {
gr_def(ctx, offset + 0x250, 0x00000001);
gr_def(ctx, offset + 0x254, 0x00000001);
gr_def(ctx, offset + 0x258, 0x00000002);
offset += 0x10;
}
gr_def(ctx, offset + 0x250, 0x00000004);
gr_def(ctx, offset + 0x254, 0x00000014);
gr_def(ctx, offset + 0x258, 0x00000001);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
offset += 4;
gr_def(ctx, offset + 0x264, 0x00000002);
if (dev_priv->chipset >= 0xa0)
offset += 8;
gr_def(ctx, offset + 0x270, 0x00000001);
gr_def(ctx, offset + 0x278, 0x00000002);
gr_def(ctx, offset + 0x27c, 0x00001000);
if (dev_priv->chipset == 0x50)
offset -= 0xc;
else {
gr_def(ctx, offset + 0x280, 0x00000e00);
gr_def(ctx, offset + 0x284, 0x00001000);
gr_def(ctx, offset + 0x288, 0x00001e00);
}
gr_def(ctx, offset + 0x290, 0x00000001);
gr_def(ctx, offset + 0x294, 0x00000001);
gr_def(ctx, offset + 0x298, 0x00000001);
gr_def(ctx, offset + 0x29c, 0x00000001);
gr_def(ctx, offset + 0x2a0, 0x00000001);
gr_def(ctx, offset + 0x2b0, 0x00000200);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
gr_def(ctx, offset + 0x2b4, 0x00000200);
offset += 4;
}
if (dev_priv->chipset < 0xa0) {
gr_def(ctx, offset + 0x2b8, 0x00000001);
gr_def(ctx, offset + 0x2bc, 0x00000070);
gr_def(ctx, offset + 0x2c0, 0x00000080);
gr_def(ctx, offset + 0x2cc, 0x00000001);
gr_def(ctx, offset + 0x2d0, 0x00000070);
gr_def(ctx, offset + 0x2d4, 0x00000080);
} else {
gr_def(ctx, offset + 0x2b8, 0x00000001);
gr_def(ctx, offset + 0x2bc, 0x000000f0);
gr_def(ctx, offset + 0x2c0, 0x000000ff);
gr_def(ctx, offset + 0x2cc, 0x00000001);
gr_def(ctx, offset + 0x2d0, 0x000000f0);
gr_def(ctx, offset + 0x2d4, 0x000000ff);
gr_def(ctx, offset + 0x2dc, 0x00000009);
offset += 4;
}
gr_def(ctx, offset + 0x2e4, 0x00000001);
gr_def(ctx, offset + 0x2e8, 0x000000cf);
gr_def(ctx, offset + 0x2f0, 0x00000001);
gr_def(ctx, offset + 0x300, 0x000000cf);
gr_def(ctx, offset + 0x308, 0x00000002);
gr_def(ctx, offset + 0x310, 0x00000001);
gr_def(ctx, offset + 0x318, 0x00000001);
gr_def(ctx, offset + 0x320, 0x000000cf);
gr_def(ctx, offset + 0x324, 0x000000cf);
gr_def(ctx, offset + 0x328, 0x00000001);
/* 6000? */
if (dev_priv->chipset == 0x50)
cp_ctx(ctx, 0x4063e0, 0x1);
/* 6800: M2MF */
if (dev_priv->chipset < 0x90) {
cp_ctx(ctx, 0x406814, 0x2b);
gr_def(ctx, 0x406818, 0x00000f80);
gr_def(ctx, 0x406860, 0x007f0080);
gr_def(ctx, 0x40689c, 0x007f0080);
} else {
cp_ctx(ctx, 0x406814, 0x4);
if (dev_priv->chipset == 0x98)
gr_def(ctx, 0x406818, 0x00000f80);
else
gr_def(ctx, 0x406818, 0x00001f80);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
gr_def(ctx, 0x40681c, 0x00000030);
cp_ctx(ctx, 0x406830, 0x3);
}
/* 7000: per-ROP group state */
for (i = 0; i < 8; i++) {
if (units & (1<<(i+16))) {
cp_ctx(ctx, 0x407000 + (i<<8), 3);
if (dev_priv->chipset == 0x50)
gr_def(ctx, 0x407000 + (i<<8), 0x1b74f820);
else if (dev_priv->chipset != 0xa5)
gr_def(ctx, 0x407000 + (i<<8), 0x3b74f821);
else
gr_def(ctx, 0x407000 + (i<<8), 0x7b74f821);
gr_def(ctx, 0x407004 + (i<<8), 0x89058001);
if (dev_priv->chipset == 0x50) {
cp_ctx(ctx, 0x407010 + (i<<8), 1);
} else if (dev_priv->chipset < 0xa0) {
cp_ctx(ctx, 0x407010 + (i<<8), 2);
gr_def(ctx, 0x407010 + (i<<8), 0x00001000);
gr_def(ctx, 0x407014 + (i<<8), 0x0000001f);
} else {
cp_ctx(ctx, 0x407010 + (i<<8), 3);
gr_def(ctx, 0x407010 + (i<<8), 0x00001000);
if (dev_priv->chipset != 0xa5)
gr_def(ctx, 0x407014 + (i<<8), 0x000000ff);
else
gr_def(ctx, 0x407014 + (i<<8), 0x000001ff);
}
cp_ctx(ctx, 0x407080 + (i<<8), 4);
if (dev_priv->chipset != 0xa5)
gr_def(ctx, 0x407080 + (i<<8), 0x027c10fa);
else
gr_def(ctx, 0x407080 + (i<<8), 0x827c10fa);
if (dev_priv->chipset == 0x50)
gr_def(ctx, 0x407084 + (i<<8), 0x000000c0);
else
gr_def(ctx, 0x407084 + (i<<8), 0x400000c0);
gr_def(ctx, 0x407088 + (i<<8), 0xb7892080);
if (dev_priv->chipset < 0xa0)
cp_ctx(ctx, 0x407094 + (i<<8), 1);
else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa)
cp_ctx(ctx, 0x407094 + (i<<8), 3);
else {
cp_ctx(ctx, 0x407094 + (i<<8), 4);
gr_def(ctx, 0x4070a0 + (i<<8), 1);
}
}
}
cp_ctx(ctx, 0x407c00, 0x3);
if (dev_priv->chipset < 0x90)
gr_def(ctx, 0x407c00, 0x00010040);
else if (dev_priv->chipset < 0xa0)
gr_def(ctx, 0x407c00, 0x00390040);
else
gr_def(ctx, 0x407c00, 0x003d0040);
gr_def(ctx, 0x407c08, 0x00000022);
if (dev_priv->chipset >= 0xa0) {
cp_ctx(ctx, 0x407c10, 0x3);
cp_ctx(ctx, 0x407c20, 0x1);
cp_ctx(ctx, 0x407c2c, 0x1);
}
if (dev_priv->chipset < 0xa0) {
cp_ctx(ctx, 0x407d00, 0x9);
} else {
cp_ctx(ctx, 0x407d00, 0x15);
}
if (dev_priv->chipset == 0x98)
gr_def(ctx, 0x407d08, 0x00380040);
else {
if (dev_priv->chipset < 0x90)
gr_def(ctx, 0x407d08, 0x00010040);
else if (dev_priv->chipset < 0xa0)
gr_def(ctx, 0x407d08, 0x00390040);
else
gr_def(ctx, 0x407d08, 0x003d0040);
gr_def(ctx, 0x407d0c, 0x00000022);
}
/* 8000+: per-TP state */
for (i = 0; i < 10; i++) {
if (units & (1<<i)) {
if (dev_priv->chipset < 0xa0)
base = 0x408000 + (i<<12);
else
base = 0x408000 + (i<<11);
if (dev_priv->chipset < 0xa0)
offset = base + 0xc00;
else
offset = base + 0x80;
cp_ctx(ctx, offset + 0x00, 1);
gr_def(ctx, offset + 0x00, 0x0000ff0a);
cp_ctx(ctx, offset + 0x08, 1);
/* per-MP state */
for (j = 0; j < (dev_priv->chipset < 0xa0 ? 2 : 4); j++) {
if (!(units & (1 << (j+24)))) continue;
if (dev_priv->chipset < 0xa0)
offset = base + 0x200 + (j<<7);
else
offset = base + 0x100 + (j<<7);
cp_ctx(ctx, offset, 0x20);
gr_def(ctx, offset + 0x00, 0x01800000);
gr_def(ctx, offset + 0x04, 0x00160000);
gr_def(ctx, offset + 0x08, 0x01800000);
gr_def(ctx, offset + 0x18, 0x0003ffff);
switch (dev_priv->chipset) {
case 0x50:
gr_def(ctx, offset + 0x1c, 0x00080000);
break;
case 0x84:
gr_def(ctx, offset + 0x1c, 0x00880000);
break;
case 0x86:
gr_def(ctx, offset + 0x1c, 0x008c0000);
break;
case 0x92:
case 0x96:
case 0x98:
gr_def(ctx, offset + 0x1c, 0x118c0000);
break;
case 0x94:
gr_def(ctx, offset + 0x1c, 0x10880000);
break;
case 0xa0:
case 0xa5:
gr_def(ctx, offset + 0x1c, 0x310c0000);
break;
case 0xa3:
case 0xa8:
case 0xaa:
case 0xac:
gr_def(ctx, offset + 0x1c, 0x300c0000);
break;
}
gr_def(ctx, offset + 0x40, 0x00010401);
if (dev_priv->chipset == 0x50)
gr_def(ctx, offset + 0x48, 0x00000040);
else
gr_def(ctx, offset + 0x48, 0x00000078);
gr_def(ctx, offset + 0x50, 0x000000bf);
gr_def(ctx, offset + 0x58, 0x00001210);
if (dev_priv->chipset == 0x50)
gr_def(ctx, offset + 0x5c, 0x00000080);
else
gr_def(ctx, offset + 0x5c, 0x08000080);
if (dev_priv->chipset >= 0xa0)
gr_def(ctx, offset + 0x68, 0x0000003e);
}
if (dev_priv->chipset < 0xa0)
cp_ctx(ctx, base + 0x300, 0x4);
else
cp_ctx(ctx, base + 0x300, 0x5);
if (dev_priv->chipset == 0x50)
gr_def(ctx, base + 0x304, 0x00007070);
else if (dev_priv->chipset < 0xa0)
gr_def(ctx, base + 0x304, 0x00027070);
else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa)
gr_def(ctx, base + 0x304, 0x01127070);
else
gr_def(ctx, base + 0x304, 0x05127070);
if (dev_priv->chipset < 0xa0)
cp_ctx(ctx, base + 0x318, 1);
else
cp_ctx(ctx, base + 0x320, 1);
if (dev_priv->chipset == 0x50)
gr_def(ctx, base + 0x318, 0x0003ffff);
else if (dev_priv->chipset < 0xa0)
gr_def(ctx, base + 0x318, 0x03ffffff);
else
gr_def(ctx, base + 0x320, 0x07ffffff);
if (dev_priv->chipset < 0xa0)
cp_ctx(ctx, base + 0x324, 5);
else
cp_ctx(ctx, base + 0x328, 4);
if (dev_priv->chipset < 0xa0) {
cp_ctx(ctx, base + 0x340, 9);
offset = base + 0x340;
} else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) {
cp_ctx(ctx, base + 0x33c, 0xb);
offset = base + 0x344;
} else {
cp_ctx(ctx, base + 0x33c, 0xd);
offset = base + 0x344;
}
gr_def(ctx, offset + 0x0, 0x00120407);
gr_def(ctx, offset + 0x4, 0x05091507);
if (dev_priv->chipset == 0x84)
gr_def(ctx, offset + 0x8, 0x05100202);
else
gr_def(ctx, offset + 0x8, 0x05010202);
gr_def(ctx, offset + 0xc, 0x00030201);
if (dev_priv->chipset == 0xa3)
cp_ctx(ctx, base + 0x36c, 1);
cp_ctx(ctx, base + 0x400, 2);
gr_def(ctx, base + 0x404, 0x00000040);
cp_ctx(ctx, base + 0x40c, 2);
gr_def(ctx, base + 0x40c, 0x0d0c0b0a);
gr_def(ctx, base + 0x410, 0x00141210);
if (dev_priv->chipset < 0xa0)
offset = base + 0x800;
else
offset = base + 0x500;
cp_ctx(ctx, offset, 6);
gr_def(ctx, offset + 0x0, 0x000001f0);
gr_def(ctx, offset + 0x4, 0x00000001);
gr_def(ctx, offset + 0x8, 0x00000003);
if (dev_priv->chipset == 0x50 || dev_priv->chipset >= 0xaa)
gr_def(ctx, offset + 0xc, 0x00008000);
gr_def(ctx, offset + 0x14, 0x00039e00);
cp_ctx(ctx, offset + 0x1c, 2);
if (dev_priv->chipset == 0x50)
gr_def(ctx, offset + 0x1c, 0x00000040);
else
gr_def(ctx, offset + 0x1c, 0x00000100);
gr_def(ctx, offset + 0x20, 0x00003800);
if (dev_priv->chipset >= 0xa0) {
cp_ctx(ctx, base + 0x54c, 2);
if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa)
gr_def(ctx, base + 0x54c, 0x003fe006);
else
gr_def(ctx, base + 0x54c, 0x003fe007);
gr_def(ctx, base + 0x550, 0x003fe000);
}
if (dev_priv->chipset < 0xa0)
offset = base + 0xa00;
else
offset = base + 0x680;
cp_ctx(ctx, offset, 1);
gr_def(ctx, offset, 0x00404040);
if (dev_priv->chipset < 0xa0)
offset = base + 0xe00;
else
offset = base + 0x700;
cp_ctx(ctx, offset, 2);
if (dev_priv->chipset < 0xa0)
gr_def(ctx, offset, 0x0077f005);
else if (dev_priv->chipset == 0xa5)
gr_def(ctx, offset, 0x6cf7f007);
else if (dev_priv->chipset == 0xa8)
gr_def(ctx, offset, 0x6cfff007);
else if (dev_priv->chipset == 0xac)
gr_def(ctx, offset, 0x0cfff007);
else
gr_def(ctx, offset, 0x0cf7f007);
if (dev_priv->chipset == 0x50)
gr_def(ctx, offset + 0x4, 0x00007fff);
else if (dev_priv->chipset < 0xa0)
gr_def(ctx, offset + 0x4, 0x003f7fff);
else
gr_def(ctx, offset + 0x4, 0x02bf7fff);
cp_ctx(ctx, offset + 0x2c, 1);
if (dev_priv->chipset == 0x50) {
cp_ctx(ctx, offset + 0x50, 9);
gr_def(ctx, offset + 0x54, 0x000003ff);
gr_def(ctx, offset + 0x58, 0x00000003);
gr_def(ctx, offset + 0x5c, 0x00000003);
gr_def(ctx, offset + 0x60, 0x000001ff);
gr_def(ctx, offset + 0x64, 0x0000001f);
gr_def(ctx, offset + 0x68, 0x0000000f);
gr_def(ctx, offset + 0x6c, 0x0000000f);
} else if(dev_priv->chipset < 0xa0) {
cp_ctx(ctx, offset + 0x50, 1);
cp_ctx(ctx, offset + 0x70, 1);
} else {
cp_ctx(ctx, offset + 0x50, 1);
cp_ctx(ctx, offset + 0x60, 5);
}
}
}
}
/*
* xfer areas. These are a pain.
*
* There are 2 xfer areas: the first one is big and contains all sorts of
* stuff, the second is small and contains some per-TP context.
*
* Each area is split into 8 "strands". The areas, when saved to grctx,
* are made of 8-word blocks. Each block contains a single word from
* each strand. The strands are independent of each other, their
* addresses are unrelated to each other, and data in them is closely
* packed together. The strand layout varies a bit between cards: here
* and there, a single word is thrown out in the middle and the whole
* strand is offset by a bit from corresponding one on another chipset.
* For this reason, addresses of stuff in strands are almost useless.
* Knowing sequence of stuff and size of gaps between them is much more
* useful, and that's how we build the strands in our generator.
*
* NVA0 takes this mess to a whole new level by cutting the old strands
* into a few dozen pieces [known as genes], rearranging them randomly,
* and putting them back together to make new strands. Hopefully these
* genes correspond more or less directly to the same PGRAPH subunits
* as in 400040 register.
*
* The most common value in default context is 0, and when the genes
* are separated by 0's, gene bounduaries are quite speculative...
* some of them can be clearly deduced, others can be guessed, and yet
* others won't be resolved without figuring out the real meaning of
* given ctxval. For the same reason, ending point of each strand
* is unknown. Except for strand 0, which is the longest strand and
* its end corresponds to end of the whole xfer.
*
* An unsolved mystery is the seek instruction: it takes an argument
* in bits 8-18, and that argument is clearly the place in strands to
* seek to... but the offsets don't seem to correspond to offsets as
* seen in grctx. Perhaps there's another, real, not randomly-changing
* addressing in strands, and the xfer insn just happens to skip over
* the unused bits? NV10-NV30 PIPE comes to mind...
*
* As far as I know, there's no way to access the xfer areas directly
* without the help of ctxprog.
*/
static inline void
xf_emit(struct nouveau_grctx *ctx, int num, uint32_t val) {
int i;
if (val && ctx->mode == NOUVEAU_GRCTX_VALS)
for (i = 0; i < num; i++)
nv_wo32(ctx->dev, ctx->data, ctx->ctxvals_pos + (i << 3), val);
ctx->ctxvals_pos += num << 3;
}
/* Gene declarations... */
static void nv50_graph_construct_gene_m2mf(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk1(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk2(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk3(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk4(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk5(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk6(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk7(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk8(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk9(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_unk10(struct nouveau_grctx *ctx);
static void nv50_graph_construct_gene_ropc(struct nouveau_grctx *ctx);
static void nv50_graph_construct_xfer_tp(struct nouveau_grctx *ctx);
static void
nv50_graph_construct_xfer1(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int i;
int offset;
int size = 0;
uint32_t units = nv_rd32 (ctx->dev, 0x1540);
offset = (ctx->ctxvals_pos+0x3f)&~0x3f;
ctx->ctxvals_base = offset;
if (dev_priv->chipset < 0xa0) {
/* Strand 0 */
ctx->ctxvals_pos = offset;
switch (dev_priv->chipset) {
case 0x50:
xf_emit(ctx, 0x99, 0);
break;
case 0x84:
case 0x86:
xf_emit(ctx, 0x384, 0);
break;
case 0x92:
case 0x94:
case 0x96:
case 0x98:
xf_emit(ctx, 0x380, 0);
break;
}
nv50_graph_construct_gene_m2mf (ctx);
switch (dev_priv->chipset) {
case 0x50:
case 0x84:
case 0x86:
case 0x98:
xf_emit(ctx, 0x4c4, 0);
break;
case 0x92:
case 0x94:
case 0x96:
xf_emit(ctx, 0x984, 0);
break;
}
nv50_graph_construct_gene_unk5(ctx);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 0xa, 0);
else
xf_emit(ctx, 0xb, 0);
nv50_graph_construct_gene_unk4(ctx);
nv50_graph_construct_gene_unk3(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 1 */
ctx->ctxvals_pos = offset + 0x1;
nv50_graph_construct_gene_unk6(ctx);
nv50_graph_construct_gene_unk7(ctx);
nv50_graph_construct_gene_unk8(ctx);
switch (dev_priv->chipset) {
case 0x50:
case 0x92:
xf_emit(ctx, 0xfb, 0);
break;
case 0x84:
xf_emit(ctx, 0xd3, 0);
break;
case 0x94:
case 0x96:
xf_emit(ctx, 0xab, 0);
break;
case 0x86:
case 0x98:
xf_emit(ctx, 0x6b, 0);
break;
}
xf_emit(ctx, 2, 0x4e3bfdf);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 0xb, 0);
xf_emit(ctx, 2, 0x4e3bfdf);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 2 */
ctx->ctxvals_pos = offset + 0x2;
switch (dev_priv->chipset) {
case 0x50:
case 0x92:
xf_emit(ctx, 0xa80, 0);
break;
case 0x84:
xf_emit(ctx, 0xa7e, 0);
break;
case 0x94:
case 0x96:
xf_emit(ctx, 0xa7c, 0);
break;
case 0x86:
case 0x98:
xf_emit(ctx, 0xa7a, 0);
break;
}
xf_emit(ctx, 1, 0x3fffff);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x1fff);
xf_emit(ctx, 0xe, 0);
nv50_graph_construct_gene_unk9(ctx);
nv50_graph_construct_gene_unk2(ctx);
nv50_graph_construct_gene_unk1(ctx);
nv50_graph_construct_gene_unk10(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 3: per-ROP group state */
ctx->ctxvals_pos = offset + 3;
for (i = 0; i < 6; i++)
if (units & (1 << (i + 16)))
nv50_graph_construct_gene_ropc(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strands 4-7: per-TP state */
for (i = 0; i < 4; i++) {
ctx->ctxvals_pos = offset + 4 + i;
if (units & (1 << (2 * i)))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << (2 * i + 1)))
nv50_graph_construct_xfer_tp(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
}
} else {
/* Strand 0 */
ctx->ctxvals_pos = offset;
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0x385, 0);
else
xf_emit(ctx, 0x384, 0);
nv50_graph_construct_gene_m2mf(ctx);
xf_emit(ctx, 0x950, 0);
nv50_graph_construct_gene_unk10(ctx);
xf_emit(ctx, 1, 0x0fac6881);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 1, 1);
xf_emit(ctx, 3, 0);
}
nv50_graph_construct_gene_unk8(ctx);
if (dev_priv->chipset == 0xa0)
xf_emit(ctx, 0x189, 0);
else if (dev_priv->chipset == 0xa3)
xf_emit(ctx, 0xd5, 0);
else if (dev_priv->chipset == 0xa5)
xf_emit(ctx, 0x99, 0);
else if (dev_priv->chipset == 0xaa)
xf_emit(ctx, 0x65, 0);
else
xf_emit(ctx, 0x6d, 0);
nv50_graph_construct_gene_unk9(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 1 */
ctx->ctxvals_pos = offset + 1;
nv50_graph_construct_gene_unk1(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 2 */
ctx->ctxvals_pos = offset + 2;
if (dev_priv->chipset == 0xa0) {
nv50_graph_construct_gene_unk2(ctx);
}
xf_emit(ctx, 0x36, 0);
nv50_graph_construct_gene_unk5(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 3 */
ctx->ctxvals_pos = offset + 3;
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
nv50_graph_construct_gene_unk6(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 4 */
ctx->ctxvals_pos = offset + 4;
if (dev_priv->chipset == 0xa0)
xf_emit(ctx, 0xa80, 0);
else if (dev_priv->chipset == 0xa3)
xf_emit(ctx, 0xa7c, 0);
else
xf_emit(ctx, 0xa7a, 0);
xf_emit(ctx, 1, 0x3fffff);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x1fff);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 5 */
ctx->ctxvals_pos = offset + 5;
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 0xb, 0);
xf_emit(ctx, 2, 0x4e3bfdf);
xf_emit(ctx, 3, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 2, 0x4e3bfdf);
xf_emit(ctx, 2, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 0);
for (i = 0; i < 8; i++)
if (units & (1<<(i+16)))
nv50_graph_construct_gene_ropc(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 6 */
ctx->ctxvals_pos = offset + 6;
nv50_graph_construct_gene_unk3(ctx);
xf_emit(ctx, 0xb, 0);
nv50_graph_construct_gene_unk4(ctx);
nv50_graph_construct_gene_unk7(ctx);
if (units & (1 << 0))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 1))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 2))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 3))
nv50_graph_construct_xfer_tp(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 7 */
ctx->ctxvals_pos = offset + 7;
if (dev_priv->chipset == 0xa0) {
if (units & (1 << 4))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 5))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 6))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 7))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 8))
nv50_graph_construct_xfer_tp(ctx);
if (units & (1 << 9))
nv50_graph_construct_xfer_tp(ctx);
} else {
nv50_graph_construct_gene_unk2(ctx);
}
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
}
ctx->ctxvals_pos = offset + size * 8;
ctx->ctxvals_pos = (ctx->ctxvals_pos+0x3f)&~0x3f;
cp_lsr (ctx, offset);
cp_out (ctx, CP_SET_XFER_POINTER);
cp_lsr (ctx, size);
cp_out (ctx, CP_SEEK_1);
cp_out (ctx, CP_XFER_1);
cp_wait(ctx, XFER, BUSY);
}
/*
* non-trivial demagiced parts of ctx init go here
*/
static void
nv50_graph_construct_gene_m2mf(struct nouveau_grctx *ctx)
{
/* m2mf state */
xf_emit (ctx, 1, 0); /* DMA_NOTIFY instance >> 4 */
xf_emit (ctx, 1, 0); /* DMA_BUFFER_IN instance >> 4 */
xf_emit (ctx, 1, 0); /* DMA_BUFFER_OUT instance >> 4 */
xf_emit (ctx, 1, 0); /* OFFSET_IN */
xf_emit (ctx, 1, 0); /* OFFSET_OUT */
xf_emit (ctx, 1, 0); /* PITCH_IN */
xf_emit (ctx, 1, 0); /* PITCH_OUT */
xf_emit (ctx, 1, 0); /* LINE_LENGTH */
xf_emit (ctx, 1, 0); /* LINE_COUNT */
xf_emit (ctx, 1, 0x21); /* FORMAT: bits 0-4 INPUT_INC, bits 5-9 OUTPUT_INC */
xf_emit (ctx, 1, 1); /* LINEAR_IN */
xf_emit (ctx, 1, 0x2); /* TILING_MODE_IN: bits 0-2 y tiling, bits 3-5 z tiling */
xf_emit (ctx, 1, 0x100); /* TILING_PITCH_IN */
xf_emit (ctx, 1, 0x100); /* TILING_HEIGHT_IN */
xf_emit (ctx, 1, 1); /* TILING_DEPTH_IN */
xf_emit (ctx, 1, 0); /* TILING_POSITION_IN_Z */
xf_emit (ctx, 1, 0); /* TILING_POSITION_IN */
xf_emit (ctx, 1, 1); /* LINEAR_OUT */
xf_emit (ctx, 1, 0x2); /* TILING_MODE_OUT: bits 0-2 y tiling, bits 3-5 z tiling */
xf_emit (ctx, 1, 0x100); /* TILING_PITCH_OUT */
xf_emit (ctx, 1, 0x100); /* TILING_HEIGHT_OUT */
xf_emit (ctx, 1, 1); /* TILING_DEPTH_OUT */
xf_emit (ctx, 1, 0); /* TILING_POSITION_OUT_Z */
xf_emit (ctx, 1, 0); /* TILING_POSITION_OUT */
xf_emit (ctx, 1, 0); /* OFFSET_IN_HIGH */
xf_emit (ctx, 1, 0); /* OFFSET_OUT_HIGH */
}
static void
nv50_graph_construct_gene_unk1(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* end of area 2 on pre-NVA0, area 1 on NVAx */
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x80);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0x80c14);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 1, 0x3ff);
else
xf_emit(ctx, 1, 0x7ff);
switch (dev_priv->chipset) {
case 0x50:
case 0x86:
case 0x98:
case 0xaa:
case 0xac:
xf_emit(ctx, 0x542, 0);
break;
case 0x84:
case 0x92:
case 0x94:
case 0x96:
xf_emit(ctx, 0x942, 0);
break;
case 0xa0:
case 0xa3:
xf_emit(ctx, 0x2042, 0);
break;
case 0xa5:
case 0xa8:
xf_emit(ctx, 0x842, 0);
break;
}
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x80);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x27);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x26);
xf_emit(ctx, 3, 0);
}
static void
nv50_graph_construct_gene_unk10(struct nouveau_grctx *ctx)
{
/* end of area 2 on pre-NVA0, area 1 on NVAx */
xf_emit(ctx, 0x10, 0x04000000);
xf_emit(ctx, 0x24, 0);
xf_emit(ctx, 2, 0x04e3bfdf);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x1fe21);
}
static void
nv50_graph_construct_gene_unk2(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* middle of area 2 on pre-NVA0, beginning of area 2 on NVA0, area 7 on >NVA0 */
if (dev_priv->chipset != 0x50) {
xf_emit(ctx, 5, 0);
xf_emit(ctx, 1, 0x80c14);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x804);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0x8100c12);
}
xf_emit(ctx, 1, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x10);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 3, 0);
else
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x804);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x1a);
if (dev_priv->chipset != 0x50)
xf_emit(ctx, 1, 0x7f);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x80c14);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 6, 0);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 1, 0x3ff);
else
xf_emit(ctx, 1, 0x7ff);
xf_emit(ctx, 1, 0x80c14);
xf_emit(ctx, 0x38, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 0x38, 0);
xf_emit(ctx, 2, 0x88);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 0x16, 0);
xf_emit(ctx, 1, 0x26);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x3f800000);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 4, 0);
else
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x1a);
xf_emit(ctx, 1, 0x10);
if (dev_priv->chipset != 0x50)
xf_emit(ctx, 0x28, 0);
else
xf_emit(ctx, 0x25, 0);
xf_emit(ctx, 1, 0x52);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x26);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x1a);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x00ffff00);
xf_emit(ctx, 1, 0);
}
static void
nv50_graph_construct_gene_unk3(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* end of area 0 on pre-NVA0, beginning of area 6 on NVAx */
xf_emit(ctx, 1, 0x3f);
xf_emit(ctx, 0xa, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 0x04000000);
xf_emit(ctx, 8, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 4);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 0x10, 0);
else
xf_emit(ctx, 0x11, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x1001);
xf_emit(ctx, 4, 0xffff);
xf_emit(ctx, 0x20, 0);
xf_emit(ctx, 0x10, 0x3f800000);
xf_emit(ctx, 1, 0x10);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 1, 0);
else
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 3);
xf_emit(ctx, 2, 0);
}
static void
nv50_graph_construct_gene_unk4(struct nouveau_grctx *ctx)
{
/* middle of area 0 on pre-NVA0, middle of area 6 on NVAx */
xf_emit(ctx, 2, 0x04000000);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x80);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x80);
xf_emit(ctx, 1, 0);
}
static void
nv50_graph_construct_gene_unk5(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* middle of area 0 on pre-NVA0 [after m2mf], end of area 2 on NVAx */
xf_emit(ctx, 2, 4);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0x1c4d, 0);
else
xf_emit(ctx, 0x1c4b, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0x8100c12);
if (dev_priv->chipset != 0x50)
xf_emit(ctx, 1, 3);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x80c14);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0x80c14);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 1, 0x27);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x3c1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x16, 0);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 1, 0);
}
static void
nv50_graph_construct_gene_unk6(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* beginning of area 1 on pre-NVA0 [after m2mf], area 3 on NVAx */
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0xf);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 8, 0);
else
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x20);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0x11, 0);
else if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 0xf, 0);
else
xf_emit(ctx, 0xe, 0);
xf_emit(ctx, 1, 0x1a);
xf_emit(ctx, 0xd, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 8);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 1, 0x3ff);
else
xf_emit(ctx, 1, 0x7ff);
if (dev_priv->chipset == 0xa8)
xf_emit(ctx, 1, 0x1e00);
xf_emit(ctx, 0xc, 0);
xf_emit(ctx, 1, 0xf);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 0x125, 0);
else if (dev_priv->chipset < 0xa0)
xf_emit(ctx, 0x126, 0);
else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa)
xf_emit(ctx, 0x124, 0);
else
xf_emit(ctx, 0x1f7, 0);
xf_emit(ctx, 1, 0xf);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 3, 0);
else
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0xa1, 0);
else
xf_emit(ctx, 0x5a, 0);
xf_emit(ctx, 1, 0xf);
if (dev_priv->chipset < 0xa0)
xf_emit(ctx, 0x834, 0);
else if (dev_priv->chipset == 0xa0)
xf_emit(ctx, 0x1873, 0);
else if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0x8ba, 0);
else
xf_emit(ctx, 0x833, 0);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 0xf, 0);
}
static void
nv50_graph_construct_gene_unk7(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* middle of area 1 on pre-NVA0 [after m2mf], middle of area 6 on NVAx */
xf_emit(ctx, 2, 0);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 2, 1);
else
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0x100);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 8);
xf_emit(ctx, 5, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 3, 1);
xf_emit(ctx, 1, 0xcf);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 6, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 3, 1);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x15);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x4444480);
xf_emit(ctx, 0x37, 0);
}
static void
nv50_graph_construct_gene_unk8(struct nouveau_grctx *ctx)
{
/* middle of area 1 on pre-NVA0 [after m2mf], middle of area 0 on NVAx */
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x100);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x10001);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x10001);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x10001);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 2);
}
static void
nv50_graph_construct_gene_unk9(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
/* middle of area 2 on pre-NVA0 [after m2mf], end of area 0 on NVAx */
xf_emit(ctx, 1, 0x3f800000);
xf_emit(ctx, 6, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0x1a);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x12, 0);
xf_emit(ctx, 1, 0x00ffff00);
xf_emit(ctx, 6, 0);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 0xf, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 2, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 3);
else if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 0x04000000);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 5);
xf_emit(ctx, 1, 0x52);
if (dev_priv->chipset == 0x50) {
xf_emit(ctx, 0x13, 0);
} else {
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0x11, 0);
else
xf_emit(ctx, 0x10, 0);
}
xf_emit(ctx, 0x10, 0x3f800000);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 0x26, 0);
xf_emit(ctx, 1, 0x8100c12);
xf_emit(ctx, 1, 5);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 4, 0xffff);
if (dev_priv->chipset != 0x50)
xf_emit(ctx, 1, 3);
if (dev_priv->chipset < 0xa0)
xf_emit(ctx, 0x1f, 0);
else if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0xc, 0);
else
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x00ffff00);
xf_emit(ctx, 1, 0x1a);
if (dev_priv->chipset != 0x50) {
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 3);
}
if (dev_priv->chipset < 0xa0)
xf_emit(ctx, 0x26, 0);
else
xf_emit(ctx, 0x3c, 0);
xf_emit(ctx, 1, 0x102);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 4, 4);
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 8, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 1, 0x3ff);
else
xf_emit(ctx, 1, 0x7ff);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x102);
xf_emit(ctx, 9, 0);
xf_emit(ctx, 4, 4);
xf_emit(ctx, 0x2c, 0);
}
static void
nv50_graph_construct_gene_ropc(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int magic2;
if (dev_priv->chipset == 0x50) {
magic2 = 0x00003e60;
} else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) {
magic2 = 0x001ffe67;
} else {
magic2 = 0x00087e67;
}
xf_emit(ctx, 8, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, magic2);
xf_emit(ctx, 4, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 7, 0);
if (dev_priv->chipset >= 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 0x15);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 4, 0);
if (dev_priv->chipset == 0x86 || dev_priv->chipset == 0x92 || dev_priv->chipset == 0x98 || dev_priv->chipset >= 0xa0) {
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0x400);
xf_emit(ctx, 1, 0x300);
xf_emit(ctx, 1, 0x1001);
if (dev_priv->chipset != 0xa0) {
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 0);
else
xf_emit(ctx, 1, 0x15);
}
xf_emit(ctx, 3, 0);
}
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 8, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x13, 0);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 0x10, 0);
xf_emit(ctx, 0x10, 0x3f800000);
xf_emit(ctx, 0x19, 0);
xf_emit(ctx, 1, 0x10);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x3f);
xf_emit(ctx, 6, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset >= 0xa0) {
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x1001);
xf_emit(ctx, 0xb, 0);
} else {
xf_emit(ctx, 0xc, 0);
}
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x11);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 4, 0);
else
xf_emit(ctx, 6, 0);
xf_emit(ctx, 3, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, magic2);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x0fac6881);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 1, 0);
xf_emit(ctx, 0x18, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 5, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x16, 0);
} else {
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 0x1b, 0);
else
xf_emit(ctx, 0x15, 0);
}
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 1);
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 4, 0);
else
xf_emit(ctx, 3, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 0x10, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 0x10, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 3, 0);
}
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x5b, 0);
}
static void
nv50_graph_construct_xfer_tp_x1(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int magic3;
if (dev_priv->chipset == 0x50)
magic3 = 0x1000;
else if (dev_priv->chipset == 0x86 || dev_priv->chipset == 0x98 || dev_priv->chipset >= 0xa8)
magic3 = 0x1e00;
else
magic3 = 0;
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 4);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0x24, 0);
else if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 0x14, 0);
else
xf_emit(ctx, 0x15, 0);
xf_emit(ctx, 2, 4);
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 1, 0x03020100);
else
xf_emit(ctx, 1, 0x00608080);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 2, 4);
xf_emit(ctx, 1, 0x80);
if (magic3)
xf_emit(ctx, 1, magic3);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 0x24, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0x80);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0x03020100);
xf_emit(ctx, 1, 3);
if (magic3)
xf_emit(ctx, 1, magic3);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 3);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 4);
if (dev_priv->chipset == 0x94 || dev_priv->chipset == 0x96)
xf_emit(ctx, 0x1024, 0);
else if (dev_priv->chipset < 0xa0)
xf_emit(ctx, 0xa24, 0);
else if (dev_priv->chipset == 0xa0 || dev_priv->chipset >= 0xaa)
xf_emit(ctx, 0x214, 0);
else
xf_emit(ctx, 0x414, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 3);
xf_emit(ctx, 2, 0);
}
static void
nv50_graph_construct_xfer_tp_x2(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int magic1, magic2;
if (dev_priv->chipset == 0x50) {
magic1 = 0x3ff;
magic2 = 0x00003e60;
} else if (dev_priv->chipset <= 0xa0 || dev_priv->chipset >= 0xaa) {
magic1 = 0x7ff;
magic2 = 0x001ffe67;
} else {
magic1 = 0x7ff;
magic2 = 0x00087e67;
}
xf_emit(ctx, 3, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0xc, 0);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 0xb, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 4, 0xffff);
xf_emit(ctx, 8, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 5, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 1, 3);
xf_emit(ctx, 1, 0);
} else if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0xa, 0);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 1, 2);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 1, 0);
xf_emit(ctx, 0x18, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 1, 0);
}
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 3, 0xcf);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0xa, 0);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, magic2);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x11);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 2, 1);
else
xf_emit(ctx, 1, 1);
if(dev_priv->chipset == 0x50)
xf_emit(ctx, 1, 0);
else
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 5, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, magic1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x28, 0);
xf_emit(ctx, 8, 8);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 8, 0x400);
xf_emit(ctx, 8, 0x300);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x20);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 0x100);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x40);
xf_emit(ctx, 1, 0x100);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 3);
xf_emit(ctx, 4, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, magic2);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 9, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x400);
xf_emit(ctx, 1, 0x300);
xf_emit(ctx, 1, 0x1001);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 4, 0);
else
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 1, 0xf);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 0x15, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 3, 0);
} else
xf_emit(ctx, 0x17, 0);
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 1, 0x0fac6881);
xf_emit(ctx, 1, magic2);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 3, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 2, 1);
else
xf_emit(ctx, 1, 1);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 2, 0);
else if (dev_priv->chipset != 0x50)
xf_emit(ctx, 1, 0);
}
static void
nv50_graph_construct_xfer_tp_x3(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 2, 0);
else
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0x2a712488);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x4085c000);
xf_emit(ctx, 1, 0x40);
xf_emit(ctx, 1, 0x100);
xf_emit(ctx, 1, 0x10100);
xf_emit(ctx, 1, 0x02800000);
}
static void
nv50_graph_construct_xfer_tp_x4(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
xf_emit(ctx, 2, 0x04e3bfdf);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x00ffff00);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 2, 1);
else
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 0x00ffff00);
xf_emit(ctx, 8, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0x30201000);
xf_emit(ctx, 1, 0x70605040);
xf_emit(ctx, 1, 0xb8a89888);
xf_emit(ctx, 1, 0xf8e8d8c8);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x1a);
}
static void
nv50_graph_construct_xfer_tp_x5(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 0xfac6881);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 2, 0);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 0xb, 0);
else
xf_emit(ctx, 0xa, 0);
xf_emit(ctx, 8, 1);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0xfac6881);
xf_emit(ctx, 1, 0xf);
xf_emit(ctx, 7, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 1);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 6, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 6, 0);
} else {
xf_emit(ctx, 0xb, 0);
}
}
static void
nv50_graph_construct_xfer_tp(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
if (dev_priv->chipset < 0xa0) {
nv50_graph_construct_xfer_tp_x1(ctx);
nv50_graph_construct_xfer_tp_x2(ctx);
nv50_graph_construct_xfer_tp_x3(ctx);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 0xf, 0);
else
xf_emit(ctx, 0x12, 0);
nv50_graph_construct_xfer_tp_x4(ctx);
} else {
nv50_graph_construct_xfer_tp_x3(ctx);
if (dev_priv->chipset < 0xaa)
xf_emit(ctx, 0xc, 0);
else
xf_emit(ctx, 0xa, 0);
nv50_graph_construct_xfer_tp_x2(ctx);
nv50_graph_construct_xfer_tp_x5(ctx);
nv50_graph_construct_xfer_tp_x4(ctx);
nv50_graph_construct_xfer_tp_x1(ctx);
}
}
static void
nv50_graph_construct_xfer_tp2(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int i, mpcnt;
if (dev_priv->chipset == 0x98 || dev_priv->chipset == 0xaa)
mpcnt = 1;
else if (dev_priv->chipset < 0xa0 || dev_priv->chipset >= 0xa8)
mpcnt = 2;
else
mpcnt = 3;
for (i = 0; i < mpcnt; i++) {
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x80);
xf_emit(ctx, 1, 0x80007004);
xf_emit(ctx, 1, 0x04000400);
if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 1, 0xc0);
xf_emit(ctx, 1, 0x1000);
xf_emit(ctx, 2, 0);
if (dev_priv->chipset == 0x86 || dev_priv->chipset == 0x98 || dev_priv->chipset >= 0xa8) {
xf_emit(ctx, 1, 0xe00);
xf_emit(ctx, 1, 0x1e00);
}
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 2, 0x1000);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 2);
if (dev_priv->chipset >= 0xaa)
xf_emit(ctx, 0xb, 0);
else if (dev_priv->chipset >= 0xa0)
xf_emit(ctx, 0xc, 0);
else
xf_emit(ctx, 0xa, 0);
}
xf_emit(ctx, 1, 0x08100c12);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset >= 0xa0) {
xf_emit(ctx, 1, 0x1fe21);
}
xf_emit(ctx, 5, 0);
xf_emit(ctx, 4, 0xffff);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 2, 0x10001);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 0x1fe21);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 1);
xf_emit(ctx, 4, 0);
xf_emit(ctx, 1, 0x08100c12);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 8, 0);
xf_emit(ctx, 1, 0xfac6881);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa)
xf_emit(ctx, 1, 3);
xf_emit(ctx, 3, 0);
xf_emit(ctx, 1, 4);
xf_emit(ctx, 9, 0);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 2, 1);
xf_emit(ctx, 1, 2);
xf_emit(ctx, 3, 1);
xf_emit(ctx, 1, 0);
if (dev_priv->chipset > 0xa0 && dev_priv->chipset < 0xaa) {
xf_emit(ctx, 8, 2);
xf_emit(ctx, 0x10, 1);
xf_emit(ctx, 8, 2);
xf_emit(ctx, 0x18, 1);
xf_emit(ctx, 3, 0);
}
xf_emit(ctx, 1, 4);
if (dev_priv->chipset == 0x50)
xf_emit(ctx, 0x3a0, 0);
else if (dev_priv->chipset < 0x94)
xf_emit(ctx, 0x3a2, 0);
else if (dev_priv->chipset == 0x98 || dev_priv->chipset == 0xaa)
xf_emit(ctx, 0x39f, 0);
else
xf_emit(ctx, 0x3a3, 0);
xf_emit(ctx, 1, 0x11);
xf_emit(ctx, 1, 0);
xf_emit(ctx, 1, 1);
xf_emit(ctx, 0x2d, 0);
}
static void
nv50_graph_construct_xfer2(struct nouveau_grctx *ctx)
{
struct drm_nouveau_private *dev_priv = ctx->dev->dev_private;
int i;
uint32_t offset;
uint32_t units = nv_rd32 (ctx->dev, 0x1540);
int size = 0;
offset = (ctx->ctxvals_pos+0x3f)&~0x3f;
if (dev_priv->chipset < 0xa0) {
for (i = 0; i < 8; i++) {
ctx->ctxvals_pos = offset + i;
if (i == 0)
xf_emit(ctx, 1, 0x08100c12);
if (units & (1 << i))
nv50_graph_construct_xfer_tp2(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
}
} else {
/* Strand 0: TPs 0, 1 */
ctx->ctxvals_pos = offset;
xf_emit(ctx, 1, 0x08100c12);
if (units & (1 << 0))
nv50_graph_construct_xfer_tp2(ctx);
if (units & (1 << 1))
nv50_graph_construct_xfer_tp2(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 0: TPs 2, 3 */
ctx->ctxvals_pos = offset + 1;
if (units & (1 << 2))
nv50_graph_construct_xfer_tp2(ctx);
if (units & (1 << 3))
nv50_graph_construct_xfer_tp2(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 0: TPs 4, 5, 6 */
ctx->ctxvals_pos = offset + 2;
if (units & (1 << 4))
nv50_graph_construct_xfer_tp2(ctx);
if (units & (1 << 5))
nv50_graph_construct_xfer_tp2(ctx);
if (units & (1 << 6))
nv50_graph_construct_xfer_tp2(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
/* Strand 0: TPs 7, 8, 9 */
ctx->ctxvals_pos = offset + 3;
if (units & (1 << 7))
nv50_graph_construct_xfer_tp2(ctx);
if (units & (1 << 8))
nv50_graph_construct_xfer_tp2(ctx);
if (units & (1 << 9))
nv50_graph_construct_xfer_tp2(ctx);
if ((ctx->ctxvals_pos-offset)/8 > size)
size = (ctx->ctxvals_pos-offset)/8;
}
ctx->ctxvals_pos = offset + size * 8;
ctx->ctxvals_pos = (ctx->ctxvals_pos+0x3f)&~0x3f;
cp_lsr (ctx, offset);
cp_out (ctx, CP_SET_XFER_POINTER);
cp_lsr (ctx, size);
cp_out (ctx, CP_SEEK_2);
cp_out (ctx, CP_XFER_2);
cp_wait(ctx, XFER, BUSY);
}