linux-stable/sound/soc/sh/rz-ssi.c
Uwe Kleine-König b89438c71d
ASoC: sh: rz-ssi: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com>
Link: https://lore.kernel.org/r/20230315150745.67084-134-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-20 13:09:00 +00:00

1108 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Renesas RZ/G2L ASoC Serial Sound Interface (SSIF-2) Driver
//
// Copyright (C) 2021 Renesas Electronics Corp.
// Copyright (C) 2019 Chris Brandt.
//
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <sound/soc.h>
/* REGISTER OFFSET */
#define SSICR 0x000
#define SSISR 0x004
#define SSIFCR 0x010
#define SSIFSR 0x014
#define SSIFTDR 0x018
#define SSIFRDR 0x01c
#define SSIOFR 0x020
#define SSISCR 0x024
/* SSI REGISTER BITS */
#define SSICR_DWL(x) (((x) & 0x7) << 19)
#define SSICR_SWL(x) (((x) & 0x7) << 16)
#define SSICR_CKS BIT(30)
#define SSICR_TUIEN BIT(29)
#define SSICR_TOIEN BIT(28)
#define SSICR_RUIEN BIT(27)
#define SSICR_ROIEN BIT(26)
#define SSICR_MST BIT(14)
#define SSICR_BCKP BIT(13)
#define SSICR_LRCKP BIT(12)
#define SSICR_CKDV(x) (((x) & 0xf) << 4)
#define SSICR_TEN BIT(1)
#define SSICR_REN BIT(0)
#define SSISR_TUIRQ BIT(29)
#define SSISR_TOIRQ BIT(28)
#define SSISR_RUIRQ BIT(27)
#define SSISR_ROIRQ BIT(26)
#define SSISR_IIRQ BIT(25)
#define SSIFCR_AUCKE BIT(31)
#define SSIFCR_SSIRST BIT(16)
#define SSIFCR_TIE BIT(3)
#define SSIFCR_RIE BIT(2)
#define SSIFCR_TFRST BIT(1)
#define SSIFCR_RFRST BIT(0)
#define SSIFSR_TDC_MASK 0x3f
#define SSIFSR_TDC_SHIFT 24
#define SSIFSR_RDC_MASK 0x3f
#define SSIFSR_RDC_SHIFT 8
#define SSIFSR_TDE BIT(16)
#define SSIFSR_RDF BIT(0)
#define SSIOFR_LRCONT BIT(8)
#define SSISCR_TDES(x) (((x) & 0x1f) << 8)
#define SSISCR_RDFS(x) (((x) & 0x1f) << 0)
/* Pre allocated buffers sizes */
#define PREALLOC_BUFFER (SZ_32K)
#define PREALLOC_BUFFER_MAX (SZ_32K)
#define SSI_RATES SNDRV_PCM_RATE_8000_48000 /* 8k-44.1kHz */
#define SSI_FMTS SNDRV_PCM_FMTBIT_S16_LE
#define SSI_CHAN_MIN 2
#define SSI_CHAN_MAX 2
#define SSI_FIFO_DEPTH 32
struct rz_ssi_priv;
struct rz_ssi_stream {
struct rz_ssi_priv *priv;
struct snd_pcm_substream *substream;
int fifo_sample_size; /* sample capacity of SSI FIFO */
int dma_buffer_pos; /* The address for the next DMA descriptor */
int period_counter; /* for keeping track of periods transferred */
int sample_width;
int buffer_pos; /* current frame position in the buffer */
int running; /* 0=stopped, 1=running */
int uerr_num;
int oerr_num;
struct dma_chan *dma_ch;
int (*transfer)(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm);
};
struct rz_ssi_priv {
void __iomem *base;
struct platform_device *pdev;
struct reset_control *rstc;
struct device *dev;
struct clk *sfr_clk;
struct clk *clk;
phys_addr_t phys;
int irq_int;
int irq_tx;
int irq_rx;
int irq_rt;
spinlock_t lock;
/*
* The SSI supports full-duplex transmission and reception.
* However, if an error occurs, channel reset (both transmission
* and reception reset) is required.
* So it is better to use as half-duplex (playing and recording
* should be done on separate channels).
*/
struct rz_ssi_stream playback;
struct rz_ssi_stream capture;
/* clock */
unsigned long audio_mck;
unsigned long audio_clk_1;
unsigned long audio_clk_2;
bool lrckp_fsync_fall; /* LR clock polarity (SSICR.LRCKP) */
bool bckp_rise; /* Bit clock polarity (SSICR.BCKP) */
bool dma_rt;
};
static void rz_ssi_dma_complete(void *data);
static void rz_ssi_reg_writel(struct rz_ssi_priv *priv, uint reg, u32 data)
{
writel(data, (priv->base + reg));
}
static u32 rz_ssi_reg_readl(struct rz_ssi_priv *priv, uint reg)
{
return readl(priv->base + reg);
}
static void rz_ssi_reg_mask_setl(struct rz_ssi_priv *priv, uint reg,
u32 bclr, u32 bset)
{
u32 val;
val = readl(priv->base + reg);
val = (val & ~bclr) | bset;
writel(val, (priv->base + reg));
}
static inline struct snd_soc_dai *
rz_ssi_get_dai(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
return asoc_rtd_to_cpu(rtd, 0);
}
static inline bool rz_ssi_stream_is_play(struct rz_ssi_priv *ssi,
struct snd_pcm_substream *substream)
{
return substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
}
static inline struct rz_ssi_stream *
rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream)
{
struct rz_ssi_stream *stream = &ssi->playback;
if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
stream = &ssi->capture;
return stream;
}
static inline bool rz_ssi_is_dma_enabled(struct rz_ssi_priv *ssi)
{
return (ssi->playback.dma_ch && (ssi->dma_rt || ssi->capture.dma_ch));
}
static void rz_ssi_set_substream(struct rz_ssi_stream *strm,
struct snd_pcm_substream *substream)
{
struct rz_ssi_priv *ssi = strm->priv;
unsigned long flags;
spin_lock_irqsave(&ssi->lock, flags);
strm->substream = substream;
spin_unlock_irqrestore(&ssi->lock, flags);
}
static bool rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi,
struct rz_ssi_stream *strm)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(&ssi->lock, flags);
ret = strm->substream && strm->substream->runtime;
spin_unlock_irqrestore(&ssi->lock, flags);
return ret;
}
static void rz_ssi_stream_init(struct rz_ssi_stream *strm,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
rz_ssi_set_substream(strm, substream);
strm->sample_width = samples_to_bytes(runtime, 1);
strm->dma_buffer_pos = 0;
strm->period_counter = 0;
strm->buffer_pos = 0;
strm->oerr_num = 0;
strm->uerr_num = 0;
strm->running = 0;
/* fifo init */
strm->fifo_sample_size = SSI_FIFO_DEPTH;
}
static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi,
struct rz_ssi_stream *strm)
{
struct snd_soc_dai *dai = rz_ssi_get_dai(strm->substream);
rz_ssi_set_substream(strm, NULL);
if (strm->oerr_num > 0)
dev_info(dai->dev, "overrun = %d\n", strm->oerr_num);
if (strm->uerr_num > 0)
dev_info(dai->dev, "underrun = %d\n", strm->uerr_num);
}
static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate,
unsigned int channels)
{
static s8 ckdv[16] = { 1, 2, 4, 8, 16, 32, 64, 128,
6, 12, 24, 48, 96, -1, -1, -1 };
unsigned int channel_bits = 32; /* System Word Length */
unsigned long bclk_rate = rate * channels * channel_bits;
unsigned int div;
unsigned int i;
u32 ssicr = 0;
u32 clk_ckdv;
/* Clear AUCKE so we can set MST */
rz_ssi_reg_writel(ssi, SSIFCR, 0);
/* Continue to output LRCK pin even when idle */
rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT);
if (ssi->audio_clk_1 && ssi->audio_clk_2) {
if (ssi->audio_clk_1 % bclk_rate)
ssi->audio_mck = ssi->audio_clk_2;
else
ssi->audio_mck = ssi->audio_clk_1;
}
/* Clock setting */
ssicr |= SSICR_MST;
if (ssi->audio_mck == ssi->audio_clk_1)
ssicr |= SSICR_CKS;
if (ssi->bckp_rise)
ssicr |= SSICR_BCKP;
if (ssi->lrckp_fsync_fall)
ssicr |= SSICR_LRCKP;
/* Determine the clock divider */
clk_ckdv = 0;
div = ssi->audio_mck / bclk_rate;
/* try to find an match */
for (i = 0; i < ARRAY_SIZE(ckdv); i++) {
if (ckdv[i] == div) {
clk_ckdv = i;
break;
}
}
if (i == ARRAY_SIZE(ckdv)) {
dev_err(ssi->dev, "Rate not divisible by audio clock source\n");
return -EINVAL;
}
/*
* DWL: Data Word Length = 16 bits
* SWL: System Word Length = 32 bits
*/
ssicr |= SSICR_CKDV(clk_ckdv);
ssicr |= SSICR_DWL(1) | SSICR_SWL(3);
rz_ssi_reg_writel(ssi, SSICR, ssicr);
rz_ssi_reg_writel(ssi, SSIFCR,
(SSIFCR_AUCKE | SSIFCR_TFRST | SSIFCR_RFRST));
return 0;
}
static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
bool is_play = rz_ssi_stream_is_play(ssi, strm->substream);
u32 ssicr, ssifcr;
ssicr = rz_ssi_reg_readl(ssi, SSICR);
ssifcr = rz_ssi_reg_readl(ssi, SSIFCR) & ~0xF;
/* FIFO interrupt thresholds */
if (rz_ssi_is_dma_enabled(ssi))
rz_ssi_reg_writel(ssi, SSISCR, 0);
else
rz_ssi_reg_writel(ssi, SSISCR,
SSISCR_TDES(strm->fifo_sample_size / 2 - 1) |
SSISCR_RDFS(0));
/* enable IRQ */
if (is_play) {
ssicr |= SSICR_TUIEN | SSICR_TOIEN;
ssifcr |= SSIFCR_TIE | SSIFCR_RFRST;
} else {
ssicr |= SSICR_RUIEN | SSICR_ROIEN;
ssifcr |= SSIFCR_RIE | SSIFCR_TFRST;
}
rz_ssi_reg_writel(ssi, SSICR, ssicr);
rz_ssi_reg_writel(ssi, SSIFCR, ssifcr);
/* Clear all error flags */
rz_ssi_reg_mask_setl(ssi, SSISR,
(SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
SSISR_RUIRQ), 0);
strm->running = 1;
ssicr |= is_play ? SSICR_TEN : SSICR_REN;
rz_ssi_reg_writel(ssi, SSICR, ssicr);
return 0;
}
static int rz_ssi_stop(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
int timeout;
strm->running = 0;
/* Disable TX/RX */
rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0);
/* Cancel all remaining DMA transactions */
if (rz_ssi_is_dma_enabled(ssi))
dmaengine_terminate_async(strm->dma_ch);
/* Disable irqs */
rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TUIEN | SSICR_TOIEN |
SSICR_RUIEN | SSICR_ROIEN, 0);
rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_TIE | SSIFCR_RIE, 0);
/* Clear all error flags */
rz_ssi_reg_mask_setl(ssi, SSISR,
(SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
SSISR_RUIRQ), 0);
/* Wait for idle */
timeout = 100;
while (--timeout) {
if (rz_ssi_reg_readl(ssi, SSISR) & SSISR_IIRQ)
break;
udelay(1);
}
if (!timeout)
dev_info(ssi->dev, "timeout waiting for SSI idle\n");
/* Hold FIFOs in reset */
rz_ssi_reg_mask_setl(ssi, SSIFCR, 0,
SSIFCR_TFRST | SSIFCR_RFRST);
return 0;
}
static void rz_ssi_pointer_update(struct rz_ssi_stream *strm, int frames)
{
struct snd_pcm_substream *substream = strm->substream;
struct snd_pcm_runtime *runtime;
int current_period;
if (!strm->running || !substream || !substream->runtime)
return;
runtime = substream->runtime;
strm->buffer_pos += frames;
WARN_ON(strm->buffer_pos > runtime->buffer_size);
/* ring buffer */
if (strm->buffer_pos == runtime->buffer_size)
strm->buffer_pos = 0;
current_period = strm->buffer_pos / runtime->period_size;
if (strm->period_counter != current_period) {
snd_pcm_period_elapsed(strm->substream);
strm->period_counter = current_period;
}
}
static int rz_ssi_pio_recv(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
struct snd_pcm_substream *substream = strm->substream;
struct snd_pcm_runtime *runtime;
u16 *buf;
int fifo_samples;
int frames_left;
int samples;
int i;
if (!rz_ssi_stream_is_valid(ssi, strm))
return -EINVAL;
runtime = substream->runtime;
do {
/* frames left in this period */
frames_left = runtime->period_size -
(strm->buffer_pos % runtime->period_size);
if (!frames_left)
frames_left = runtime->period_size;
/* Samples in RX FIFO */
fifo_samples = (rz_ssi_reg_readl(ssi, SSIFSR) >>
SSIFSR_RDC_SHIFT) & SSIFSR_RDC_MASK;
/* Only read full frames at a time */
samples = 0;
while (frames_left && (fifo_samples >= runtime->channels)) {
samples += runtime->channels;
fifo_samples -= runtime->channels;
frames_left--;
}
/* not enough samples yet */
if (!samples)
break;
/* calculate new buffer index */
buf = (u16 *)runtime->dma_area;
buf += strm->buffer_pos * runtime->channels;
/* Note, only supports 16-bit samples */
for (i = 0; i < samples; i++)
*buf++ = (u16)(rz_ssi_reg_readl(ssi, SSIFRDR) >> 16);
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
rz_ssi_pointer_update(strm, samples / runtime->channels);
} while (!frames_left && fifo_samples >= runtime->channels);
return 0;
}
static int rz_ssi_pio_send(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
struct snd_pcm_substream *substream = strm->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
int sample_space;
int samples = 0;
int frames_left;
int i;
u32 ssifsr;
u16 *buf;
if (!rz_ssi_stream_is_valid(ssi, strm))
return -EINVAL;
/* frames left in this period */
frames_left = runtime->period_size - (strm->buffer_pos %
runtime->period_size);
if (frames_left == 0)
frames_left = runtime->period_size;
sample_space = strm->fifo_sample_size;
ssifsr = rz_ssi_reg_readl(ssi, SSIFSR);
sample_space -= (ssifsr >> SSIFSR_TDC_SHIFT) & SSIFSR_TDC_MASK;
/* Only add full frames at a time */
while (frames_left && (sample_space >= runtime->channels)) {
samples += runtime->channels;
sample_space -= runtime->channels;
frames_left--;
}
/* no space to send anything right now */
if (samples == 0)
return 0;
/* calculate new buffer index */
buf = (u16 *)(runtime->dma_area);
buf += strm->buffer_pos * runtime->channels;
/* Note, only supports 16-bit samples */
for (i = 0; i < samples; i++)
rz_ssi_reg_writel(ssi, SSIFTDR, ((u32)(*buf++) << 16));
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_TDE, 0);
rz_ssi_pointer_update(strm, samples / runtime->channels);
return 0;
}
static irqreturn_t rz_ssi_interrupt(int irq, void *data)
{
struct rz_ssi_stream *strm = NULL;
struct rz_ssi_priv *ssi = data;
u32 ssisr = rz_ssi_reg_readl(ssi, SSISR);
if (ssi->playback.substream)
strm = &ssi->playback;
else if (ssi->capture.substream)
strm = &ssi->capture;
else
return IRQ_HANDLED; /* Left over TX/RX interrupt */
if (irq == ssi->irq_int) { /* error or idle */
if (ssisr & SSISR_TUIRQ)
strm->uerr_num++;
if (ssisr & SSISR_TOIRQ)
strm->oerr_num++;
if (ssisr & SSISR_RUIRQ)
strm->uerr_num++;
if (ssisr & SSISR_ROIRQ)
strm->oerr_num++;
if (ssisr & (SSISR_TUIRQ | SSISR_TOIRQ | SSISR_RUIRQ |
SSISR_ROIRQ)) {
/* Error handling */
/* You must reset (stop/restart) after each interrupt */
rz_ssi_stop(ssi, strm);
/* Clear all flags */
rz_ssi_reg_mask_setl(ssi, SSISR, SSISR_TOIRQ |
SSISR_TUIRQ | SSISR_ROIRQ |
SSISR_RUIRQ, 0);
/* Add/remove more data */
strm->transfer(ssi, strm);
/* Resume */
rz_ssi_start(ssi, strm);
}
}
if (!strm->running)
return IRQ_HANDLED;
/* tx data empty */
if (irq == ssi->irq_tx)
strm->transfer(ssi, &ssi->playback);
/* rx data full */
if (irq == ssi->irq_rx) {
strm->transfer(ssi, &ssi->capture);
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
}
if (irq == ssi->irq_rt) {
struct snd_pcm_substream *substream = strm->substream;
if (rz_ssi_stream_is_play(ssi, substream)) {
strm->transfer(ssi, &ssi->playback);
} else {
strm->transfer(ssi, &ssi->capture);
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
}
}
return IRQ_HANDLED;
}
static int rz_ssi_dma_slave_config(struct rz_ssi_priv *ssi,
struct dma_chan *dma_ch, bool is_play)
{
struct dma_slave_config cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.direction = is_play ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
cfg.dst_addr = ssi->phys + SSIFTDR;
cfg.src_addr = ssi->phys + SSIFRDR;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
return dmaengine_slave_config(dma_ch, &cfg);
}
static int rz_ssi_dma_transfer(struct rz_ssi_priv *ssi,
struct rz_ssi_stream *strm)
{
struct snd_pcm_substream *substream = strm->substream;
struct dma_async_tx_descriptor *desc;
struct snd_pcm_runtime *runtime;
enum dma_transfer_direction dir;
u32 dma_paddr, dma_size;
int amount;
if (!rz_ssi_stream_is_valid(ssi, strm))
return -EINVAL;
runtime = substream->runtime;
if (runtime->state == SNDRV_PCM_STATE_DRAINING)
/*
* Stream is ending, so do not queue up any more DMA
* transfers otherwise we play partial sound clips
* because we can't shut off the DMA quick enough.
*/
return 0;
dir = rz_ssi_stream_is_play(ssi, substream) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
/* Always transfer 1 period */
amount = runtime->period_size;
/* DMA physical address and size */
dma_paddr = runtime->dma_addr + frames_to_bytes(runtime,
strm->dma_buffer_pos);
dma_size = frames_to_bytes(runtime, amount);
desc = dmaengine_prep_slave_single(strm->dma_ch, dma_paddr, dma_size,
dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(ssi->dev, "dmaengine_prep_slave_single() fail\n");
return -ENOMEM;
}
desc->callback = rz_ssi_dma_complete;
desc->callback_param = strm;
if (dmaengine_submit(desc) < 0) {
dev_err(ssi->dev, "dmaengine_submit() fail\n");
return -EIO;
}
/* Update DMA pointer */
strm->dma_buffer_pos += amount;
if (strm->dma_buffer_pos >= runtime->buffer_size)
strm->dma_buffer_pos = 0;
/* Start DMA */
dma_async_issue_pending(strm->dma_ch);
return 0;
}
static void rz_ssi_dma_complete(void *data)
{
struct rz_ssi_stream *strm = (struct rz_ssi_stream *)data;
if (!strm->running || !strm->substream || !strm->substream->runtime)
return;
/* Note that next DMA transaction has probably already started */
rz_ssi_pointer_update(strm, strm->substream->runtime->period_size);
/* Queue up another DMA transaction */
rz_ssi_dma_transfer(strm->priv, strm);
}
static void rz_ssi_release_dma_channels(struct rz_ssi_priv *ssi)
{
if (ssi->playback.dma_ch) {
dma_release_channel(ssi->playback.dma_ch);
ssi->playback.dma_ch = NULL;
if (ssi->dma_rt)
ssi->dma_rt = false;
}
if (ssi->capture.dma_ch) {
dma_release_channel(ssi->capture.dma_ch);
ssi->capture.dma_ch = NULL;
}
}
static int rz_ssi_dma_request(struct rz_ssi_priv *ssi, struct device *dev)
{
ssi->playback.dma_ch = dma_request_chan(dev, "tx");
if (IS_ERR(ssi->playback.dma_ch))
ssi->playback.dma_ch = NULL;
ssi->capture.dma_ch = dma_request_chan(dev, "rx");
if (IS_ERR(ssi->capture.dma_ch))
ssi->capture.dma_ch = NULL;
if (!ssi->playback.dma_ch && !ssi->capture.dma_ch) {
ssi->playback.dma_ch = dma_request_chan(dev, "rt");
if (IS_ERR(ssi->playback.dma_ch)) {
ssi->playback.dma_ch = NULL;
goto no_dma;
}
ssi->dma_rt = true;
}
if (!rz_ssi_is_dma_enabled(ssi))
goto no_dma;
if (ssi->playback.dma_ch &&
(rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, true) < 0))
goto no_dma;
if (ssi->capture.dma_ch &&
(rz_ssi_dma_slave_config(ssi, ssi->capture.dma_ch, false) < 0))
goto no_dma;
return 0;
no_dma:
rz_ssi_release_dma_channels(ssi);
return -ENODEV;
}
static int rz_ssi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
int ret = 0, i, num_transfer = 1;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
/* Soft Reset */
rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_SSIRST);
rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_SSIRST, 0);
udelay(5);
rz_ssi_stream_init(strm, substream);
if (ssi->dma_rt) {
bool is_playback;
is_playback = rz_ssi_stream_is_play(ssi, substream);
ret = rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch,
is_playback);
/* Fallback to pio */
if (ret < 0) {
ssi->playback.transfer = rz_ssi_pio_send;
ssi->capture.transfer = rz_ssi_pio_recv;
rz_ssi_release_dma_channels(ssi);
}
}
/* For DMA, queue up multiple DMA descriptors */
if (rz_ssi_is_dma_enabled(ssi))
num_transfer = 4;
for (i = 0; i < num_transfer; i++) {
ret = strm->transfer(ssi, strm);
if (ret)
goto done;
}
ret = rz_ssi_start(ssi, strm);
break;
case SNDRV_PCM_TRIGGER_STOP:
rz_ssi_stop(ssi, strm);
rz_ssi_stream_quit(ssi, strm);
break;
}
done:
return ret;
}
static int rz_ssi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_BP_FP:
break;
default:
dev_err(ssi->dev, "Codec should be clk and frame consumer\n");
return -EINVAL;
}
/*
* set clock polarity
*
* "normal" BCLK = Signal is available at rising edge of BCLK
* "normal" FSYNC = (I2S) Left ch starts with falling FSYNC edge
*/
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
ssi->bckp_rise = false;
ssi->lrckp_fsync_fall = false;
break;
case SND_SOC_DAIFMT_NB_IF:
ssi->bckp_rise = false;
ssi->lrckp_fsync_fall = true;
break;
case SND_SOC_DAIFMT_IB_NF:
ssi->bckp_rise = true;
ssi->lrckp_fsync_fall = false;
break;
case SND_SOC_DAIFMT_IB_IF:
ssi->bckp_rise = true;
ssi->lrckp_fsync_fall = true;
break;
default:
return -EINVAL;
}
/* only i2s support */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
default:
dev_err(ssi->dev, "Only I2S mode is supported.\n");
return -EINVAL;
}
return 0;
}
static int rz_ssi_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
unsigned int sample_bits = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS)->min;
unsigned int channels = params_channels(params);
if (sample_bits != 16) {
dev_err(ssi->dev, "Unsupported sample width: %d\n",
sample_bits);
return -EINVAL;
}
if (channels != 2) {
dev_err(ssi->dev, "Number of channels not matched: %d\n",
channels);
return -EINVAL;
}
return rz_ssi_clk_setup(ssi, params_rate(params),
params_channels(params));
}
static const struct snd_soc_dai_ops rz_ssi_dai_ops = {
.trigger = rz_ssi_dai_trigger,
.set_fmt = rz_ssi_dai_set_fmt,
.hw_params = rz_ssi_dai_hw_params,
};
static const struct snd_pcm_hardware rz_ssi_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID,
.buffer_bytes_max = PREALLOC_BUFFER,
.period_bytes_min = 32,
.period_bytes_max = 8192,
.channels_min = SSI_CHAN_MIN,
.channels_max = SSI_CHAN_MAX,
.periods_min = 1,
.periods_max = 32,
.fifo_size = 32 * 2,
};
static int rz_ssi_pcm_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
snd_soc_set_runtime_hwparams(substream, &rz_ssi_pcm_hardware);
return snd_pcm_hw_constraint_integer(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
}
static snd_pcm_uframes_t rz_ssi_pcm_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_dai *dai = rz_ssi_get_dai(substream);
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
return strm->buffer_pos;
}
static int rz_ssi_pcm_new(struct snd_soc_component *component,
struct snd_soc_pcm_runtime *rtd)
{
snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV,
rtd->card->snd_card->dev,
PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
return 0;
}
static struct snd_soc_dai_driver rz_ssi_soc_dai[] = {
{
.name = "rz-ssi-dai",
.playback = {
.rates = SSI_RATES,
.formats = SSI_FMTS,
.channels_min = SSI_CHAN_MIN,
.channels_max = SSI_CHAN_MAX,
},
.capture = {
.rates = SSI_RATES,
.formats = SSI_FMTS,
.channels_min = SSI_CHAN_MIN,
.channels_max = SSI_CHAN_MAX,
},
.ops = &rz_ssi_dai_ops,
},
};
static const struct snd_soc_component_driver rz_ssi_soc_component = {
.name = "rz-ssi",
.open = rz_ssi_pcm_open,
.pointer = rz_ssi_pcm_pointer,
.pcm_construct = rz_ssi_pcm_new,
.legacy_dai_naming = 1,
};
static int rz_ssi_probe(struct platform_device *pdev)
{
struct rz_ssi_priv *ssi;
struct clk *audio_clk;
struct resource *res;
int ret;
ssi = devm_kzalloc(&pdev->dev, sizeof(*ssi), GFP_KERNEL);
if (!ssi)
return -ENOMEM;
ssi->pdev = pdev;
ssi->dev = &pdev->dev;
ssi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(ssi->base))
return PTR_ERR(ssi->base);
ssi->phys = res->start;
ssi->clk = devm_clk_get(&pdev->dev, "ssi");
if (IS_ERR(ssi->clk))
return PTR_ERR(ssi->clk);
ssi->sfr_clk = devm_clk_get(&pdev->dev, "ssi_sfr");
if (IS_ERR(ssi->sfr_clk))
return PTR_ERR(ssi->sfr_clk);
audio_clk = devm_clk_get(&pdev->dev, "audio_clk1");
if (IS_ERR(audio_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
"no audio clk1");
ssi->audio_clk_1 = clk_get_rate(audio_clk);
audio_clk = devm_clk_get(&pdev->dev, "audio_clk2");
if (IS_ERR(audio_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
"no audio clk2");
ssi->audio_clk_2 = clk_get_rate(audio_clk);
if (!(ssi->audio_clk_1 || ssi->audio_clk_2))
return dev_err_probe(&pdev->dev, -EINVAL,
"no audio clk1 or audio clk2");
ssi->audio_mck = ssi->audio_clk_1 ? ssi->audio_clk_1 : ssi->audio_clk_2;
/* Detect DMA support */
ret = rz_ssi_dma_request(ssi, &pdev->dev);
if (ret < 0) {
dev_warn(&pdev->dev, "DMA not available, using PIO\n");
ssi->playback.transfer = rz_ssi_pio_send;
ssi->capture.transfer = rz_ssi_pio_recv;
} else {
dev_info(&pdev->dev, "DMA enabled");
ssi->playback.transfer = rz_ssi_dma_transfer;
ssi->capture.transfer = rz_ssi_dma_transfer;
}
ssi->playback.priv = ssi;
ssi->capture.priv = ssi;
spin_lock_init(&ssi->lock);
dev_set_drvdata(&pdev->dev, ssi);
/* Error Interrupt */
ssi->irq_int = platform_get_irq_byname(pdev, "int_req");
if (ssi->irq_int < 0) {
rz_ssi_release_dma_channels(ssi);
return ssi->irq_int;
}
ret = devm_request_irq(&pdev->dev, ssi->irq_int, &rz_ssi_interrupt,
0, dev_name(&pdev->dev), ssi);
if (ret < 0) {
rz_ssi_release_dma_channels(ssi);
return dev_err_probe(&pdev->dev, ret,
"irq request error (int_req)\n");
}
if (!rz_ssi_is_dma_enabled(ssi)) {
/* Tx and Rx interrupts (pio only) */
ssi->irq_tx = platform_get_irq_byname(pdev, "dma_tx");
ssi->irq_rx = platform_get_irq_byname(pdev, "dma_rx");
if (ssi->irq_tx == -ENXIO && ssi->irq_rx == -ENXIO) {
ssi->irq_rt = platform_get_irq_byname(pdev, "dma_rt");
if (ssi->irq_rt < 0)
return ssi->irq_rt;
ret = devm_request_irq(&pdev->dev, ssi->irq_rt,
&rz_ssi_interrupt, 0,
dev_name(&pdev->dev), ssi);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"irq request error (dma_tx)\n");
} else {
if (ssi->irq_tx < 0)
return ssi->irq_tx;
if (ssi->irq_rx < 0)
return ssi->irq_rx;
ret = devm_request_irq(&pdev->dev, ssi->irq_tx,
&rz_ssi_interrupt, 0,
dev_name(&pdev->dev), ssi);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"irq request error (dma_tx)\n");
ret = devm_request_irq(&pdev->dev, ssi->irq_rx,
&rz_ssi_interrupt, 0,
dev_name(&pdev->dev), ssi);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"irq request error (dma_rx)\n");
}
}
ssi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(ssi->rstc)) {
ret = PTR_ERR(ssi->rstc);
goto err_reset;
}
reset_control_deassert(ssi->rstc);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "pm_runtime_resume_and_get failed\n");
goto err_pm;
}
ret = devm_snd_soc_register_component(&pdev->dev, &rz_ssi_soc_component,
rz_ssi_soc_dai,
ARRAY_SIZE(rz_ssi_soc_dai));
if (ret < 0) {
dev_err(&pdev->dev, "failed to register snd component\n");
goto err_snd_soc;
}
return 0;
err_snd_soc:
pm_runtime_put(ssi->dev);
err_pm:
pm_runtime_disable(ssi->dev);
reset_control_assert(ssi->rstc);
err_reset:
rz_ssi_release_dma_channels(ssi);
return ret;
}
static void rz_ssi_remove(struct platform_device *pdev)
{
struct rz_ssi_priv *ssi = dev_get_drvdata(&pdev->dev);
rz_ssi_release_dma_channels(ssi);
pm_runtime_put(ssi->dev);
pm_runtime_disable(ssi->dev);
reset_control_assert(ssi->rstc);
}
static const struct of_device_id rz_ssi_of_match[] = {
{ .compatible = "renesas,rz-ssi", },
{/* Sentinel */},
};
MODULE_DEVICE_TABLE(of, rz_ssi_of_match);
static struct platform_driver rz_ssi_driver = {
.driver = {
.name = "rz-ssi-pcm-audio",
.of_match_table = rz_ssi_of_match,
},
.probe = rz_ssi_probe,
.remove_new = rz_ssi_remove,
};
module_platform_driver(rz_ssi_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Renesas RZ/G2L ASoC Serial Sound Interface Driver");
MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");