linux-stable/drivers/gpu/drm/i915/intel_atomic_plane.c
Jani Nikula f9a79f9aee drm/i915: extract intel_sprite.h from intel_drv.h
It used to be handy that we only had a couple of headers, but over time
intel_drv.h has become unwieldy. Extract declarations to a separate
header file corresponding to the implementation module, clarifying the
modularity of the driver.

Ensure the new header is self-contained, and do so with minimal further
includes, using forward declarations as needed. Include the new header
only where needed, and sort the modified include directives while at it
and as needed.

No functional changes.

Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/679c857a1933ee3d0706f978ab05ca880cd30a00.1554461791.git.jani.nikula@intel.com
2019-04-08 09:53:30 +03:00

373 lines
11 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: atomic plane helpers
*
* The functions here are used by the atomic plane helper functions to
* implement legacy plane updates (i.e., drm_plane->update_plane() and
* drm_plane->disable_plane()). This allows plane updates to use the
* atomic state infrastructure and perform plane updates as separate
* prepare/check/commit/cleanup steps.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_plane_helper.h>
#include "intel_atomic_plane.h"
#include "intel_drv.h"
#include "intel_pm.h"
#include "intel_sprite.h"
struct intel_plane *intel_plane_alloc(void)
{
struct intel_plane_state *plane_state;
struct intel_plane *plane;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
plane_state = kzalloc(sizeof(*plane_state), GFP_KERNEL);
if (!plane_state) {
kfree(plane);
return ERR_PTR(-ENOMEM);
}
__drm_atomic_helper_plane_reset(&plane->base, &plane_state->base);
plane_state->scaler_id = -1;
return plane;
}
void intel_plane_free(struct intel_plane *plane)
{
intel_plane_destroy_state(&plane->base, plane->base.state);
kfree(plane);
}
/**
* intel_plane_duplicate_state - duplicate plane state
* @plane: drm plane
*
* Allocates and returns a copy of the plane state (both common and
* Intel-specific) for the specified plane.
*
* Returns: The newly allocated plane state, or NULL on failure.
*/
struct drm_plane_state *
intel_plane_duplicate_state(struct drm_plane *plane)
{
struct drm_plane_state *state;
struct intel_plane_state *intel_state;
intel_state = kmemdup(plane->state, sizeof(*intel_state), GFP_KERNEL);
if (!intel_state)
return NULL;
state = &intel_state->base;
__drm_atomic_helper_plane_duplicate_state(plane, state);
intel_state->vma = NULL;
intel_state->flags = 0;
return state;
}
/**
* intel_plane_destroy_state - destroy plane state
* @plane: drm plane
* @state: state object to destroy
*
* Destroys the plane state (both common and Intel-specific) for the
* specified plane.
*/
void
intel_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
WARN_ON(to_intel_plane_state(state)->vma);
drm_atomic_helper_plane_destroy_state(plane, state);
}
int intel_plane_atomic_check_with_state(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state,
const struct intel_plane_state *old_plane_state,
struct intel_plane_state *new_plane_state)
{
struct intel_plane *plane = to_intel_plane(new_plane_state->base.plane);
int ret;
new_crtc_state->active_planes &= ~BIT(plane->id);
new_crtc_state->nv12_planes &= ~BIT(plane->id);
new_crtc_state->c8_planes &= ~BIT(plane->id);
new_plane_state->base.visible = false;
if (!new_plane_state->base.crtc && !old_plane_state->base.crtc)
return 0;
ret = plane->check_plane(new_crtc_state, new_plane_state);
if (ret)
return ret;
/* FIXME pre-g4x don't work like this */
if (new_plane_state->base.visible)
new_crtc_state->active_planes |= BIT(plane->id);
if (new_plane_state->base.visible &&
is_planar_yuv_format(new_plane_state->base.fb->format->format))
new_crtc_state->nv12_planes |= BIT(plane->id);
if (new_plane_state->base.visible &&
new_plane_state->base.fb->format->format == DRM_FORMAT_C8)
new_crtc_state->c8_planes |= BIT(plane->id);
if (new_plane_state->base.visible || old_plane_state->base.visible)
new_crtc_state->update_planes |= BIT(plane->id);
return intel_plane_atomic_calc_changes(old_crtc_state,
&new_crtc_state->base,
old_plane_state,
&new_plane_state->base);
}
static int intel_plane_atomic_check(struct drm_plane *plane,
struct drm_plane_state *new_plane_state)
{
struct drm_atomic_state *state = new_plane_state->state;
const struct drm_plane_state *old_plane_state =
drm_atomic_get_old_plane_state(state, plane);
struct drm_crtc *crtc = new_plane_state->crtc ?: old_plane_state->crtc;
const struct drm_crtc_state *old_crtc_state;
struct drm_crtc_state *new_crtc_state;
new_plane_state->visible = false;
if (!crtc)
return 0;
old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
return intel_plane_atomic_check_with_state(to_intel_crtc_state(old_crtc_state),
to_intel_crtc_state(new_crtc_state),
to_intel_plane_state(old_plane_state),
to_intel_plane_state(new_plane_state));
}
static struct intel_plane *
skl_next_plane_to_commit(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct skl_ddb_entry entries_y[I915_MAX_PLANES],
struct skl_ddb_entry entries_uv[I915_MAX_PLANES],
unsigned int *update_mask)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane_state *plane_state;
struct intel_plane *plane;
int i;
if (*update_mask == 0)
return NULL;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
enum plane_id plane_id = plane->id;
if (crtc->pipe != plane->pipe ||
!(*update_mask & BIT(plane_id)))
continue;
if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_y[plane_id],
entries_y,
I915_MAX_PLANES, plane_id) ||
skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_uv[plane_id],
entries_uv,
I915_MAX_PLANES, plane_id))
continue;
*update_mask &= ~BIT(plane_id);
entries_y[plane_id] = crtc_state->wm.skl.plane_ddb_y[plane_id];
entries_uv[plane_id] = crtc_state->wm.skl.plane_ddb_uv[plane_id];
return plane;
}
/* should never happen */
WARN_ON(1);
return NULL;
}
void intel_update_plane(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
trace_intel_update_plane(&plane->base, crtc);
plane->update_plane(plane, crtc_state, plane_state);
}
void intel_update_slave(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
trace_intel_update_plane(&plane->base, crtc);
plane->update_slave(plane, crtc_state, plane_state);
}
void intel_disable_plane(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
trace_intel_disable_plane(&plane->base, crtc);
plane->disable_plane(plane, crtc_state);
}
void skl_update_planes_on_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct skl_ddb_entry entries_y[I915_MAX_PLANES];
struct skl_ddb_entry entries_uv[I915_MAX_PLANES];
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane *plane;
memcpy(entries_y, old_crtc_state->wm.skl.plane_ddb_y,
sizeof(old_crtc_state->wm.skl.plane_ddb_y));
memcpy(entries_uv, old_crtc_state->wm.skl.plane_ddb_uv,
sizeof(old_crtc_state->wm.skl.plane_ddb_uv));
while ((plane = skl_next_plane_to_commit(state, crtc,
entries_y, entries_uv,
&update_mask))) {
struct intel_plane_state *new_plane_state =
intel_atomic_get_new_plane_state(state, plane);
if (new_plane_state->base.visible) {
intel_update_plane(plane, new_crtc_state, new_plane_state);
} else if (new_plane_state->slave) {
struct intel_plane *master =
new_plane_state->linked_plane;
/*
* We update the slave plane from this function because
* programming it from the master plane's update_plane
* callback runs into issues when the Y plane is
* reassigned, disabled or used by a different plane.
*
* The slave plane is updated with the master plane's
* plane_state.
*/
new_plane_state =
intel_atomic_get_new_plane_state(state, master);
intel_update_slave(plane, new_crtc_state, new_plane_state);
} else {
intel_disable_plane(plane, new_crtc_state);
}
}
}
void i9xx_update_planes_on_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
if (new_plane_state->base.visible)
intel_update_plane(plane, new_crtc_state, new_plane_state);
else
intel_disable_plane(plane, new_crtc_state);
}
}
const struct drm_plane_helper_funcs intel_plane_helper_funcs = {
.prepare_fb = intel_prepare_plane_fb,
.cleanup_fb = intel_cleanup_plane_fb,
.atomic_check = intel_plane_atomic_check,
};
/**
* intel_plane_atomic_get_property - fetch plane property value
* @plane: plane to fetch property for
* @state: state containing the property value
* @property: property to look up
* @val: pointer to write property value into
*
* The DRM core does not store shadow copies of properties for
* atomic-capable drivers. This entrypoint is used to fetch
* the current value of a driver-specific plane property.
*/
int
intel_plane_atomic_get_property(struct drm_plane *plane,
const struct drm_plane_state *state,
struct drm_property *property,
u64 *val)
{
DRM_DEBUG_KMS("Unknown property [PROP:%d:%s]\n",
property->base.id, property->name);
return -EINVAL;
}
/**
* intel_plane_atomic_set_property - set plane property value
* @plane: plane to set property for
* @state: state to update property value in
* @property: property to set
* @val: value to set property to
*
* Writes the specified property value for a plane into the provided atomic
* state object.
*
* Returns 0 on success, -EINVAL on unrecognized properties
*/
int
intel_plane_atomic_set_property(struct drm_plane *plane,
struct drm_plane_state *state,
struct drm_property *property,
u64 val)
{
DRM_DEBUG_KMS("Unknown property [PROP:%d:%s]\n",
property->base.id, property->name);
return -EINVAL;
}