linux-stable/drivers/net/ethernet/intel/ice/ice_devlink.c

1058 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020, Intel Corporation. */
#include <linux/vmalloc.h>
#include "ice.h"
#include "ice_lib.h"
#include "ice_devlink.h"
#include "ice_eswitch.h"
#include "ice_fw_update.h"
/* context for devlink info version reporting */
struct ice_info_ctx {
char buf[128];
struct ice_orom_info pending_orom;
struct ice_nvm_info pending_nvm;
struct ice_netlist_info pending_netlist;
struct ice_hw_dev_caps dev_caps;
};
/* The following functions are used to format specific strings for various
* devlink info versions. The ctx parameter is used to provide the storage
* buffer, as well as any ancillary information calculated when the info
* request was made.
*
* If a version does not exist, for example when attempting to get the
* inactive version of flash when there is no pending update, the function
* should leave the buffer in the ctx structure empty.
*/
static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
u8 dsn[8];
/* Copy the DSN into an array in Big Endian format */
put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
}
static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
int status;
status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
if (status)
/* We failed to locate the PBA, so just skip this entry */
dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
status);
}
static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
}
static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
hw->api_min_ver, hw->api_patch);
}
static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
}
static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_orom_info *orom = &pf->hw.flash.orom;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
orom->major, orom->build, orom->patch);
}
static void
ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_orom_info *orom = &ctx->pending_orom;
if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
orom->major, orom->build, orom->patch);
}
static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
}
static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &ctx->pending_nvm;
if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
nvm->major, nvm->minor);
}
static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
}
static void
ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &ctx->pending_nvm;
if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
}
static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
}
static void
ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
pkg->major, pkg->minor, pkg->update, pkg->draft);
}
static void
ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
}
static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
/* The netlist version fields are BCD formatted */
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
netlist->major, netlist->minor,
netlist->type >> 16, netlist->type & 0xFFFF,
netlist->rev, netlist->cust_ver);
}
static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
}
static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &ctx->pending_netlist;
/* The netlist version fields are BCD formatted */
if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
netlist->major, netlist->minor,
netlist->type >> 16, netlist->type & 0xFFFF,
netlist->rev, netlist->cust_ver);
}
static void
ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &ctx->pending_netlist;
if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
}
#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
/* The combined() macro inserts both the running entry as well as a stored
* entry. The running entry will always report the version from the active
* handler. The stored entry will first try the pending handler, and fallback
* to the active handler if the pending function does not report a version.
* The pending handler should check the status of a pending update for the
* relevant flash component. It should only fill in the buffer in the case
* where a valid pending version is available. This ensures that the related
* stored and running versions remain in sync, and that stored versions are
* correctly reported as expected.
*/
#define combined(key, active, pending) \
running(key, active), \
stored(key, pending, active)
enum ice_version_type {
ICE_VERSION_FIXED,
ICE_VERSION_RUNNING,
ICE_VERSION_STORED,
};
static const struct ice_devlink_version {
enum ice_version_type type;
const char *key;
void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
} ice_devlink_versions[] = {
fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
running("fw.mgmt.api", ice_info_fw_api),
running("fw.mgmt.build", ice_info_fw_build),
combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
running("fw.app.name", ice_info_ddp_pkg_name),
running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
};
/**
* ice_devlink_info_get - .info_get devlink handler
* @devlink: devlink instance structure
* @req: the devlink info request
* @extack: extended netdev ack structure
*
* Callback for the devlink .info_get operation. Reports information about the
* device.
*
* Return: zero on success or an error code on failure.
*/
static int ice_devlink_info_get(struct devlink *devlink,
struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_info_ctx *ctx;
size_t i;
int err;
err = ice_wait_for_reset(pf, 10 * HZ);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
return err;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
/* discover capabilities first */
err = ice_discover_dev_caps(hw, &ctx->dev_caps);
if (err) {
dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
goto out_free_ctx;
}
if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
if (err) {
dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
/* disable display of pending Option ROM */
ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
}
}
if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
if (err) {
dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
/* disable display of pending Option ROM */
ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
}
}
if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
if (err) {
dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
/* disable display of pending Option ROM */
ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
}
}
err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set driver name");
goto out_free_ctx;
}
ice_info_get_dsn(pf, ctx);
err = devlink_info_serial_number_put(req, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
goto out_free_ctx;
}
for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
enum ice_version_type type = ice_devlink_versions[i].type;
const char *key = ice_devlink_versions[i].key;
memset(ctx->buf, 0, sizeof(ctx->buf));
ice_devlink_versions[i].getter(pf, ctx);
/* If the default getter doesn't report a version, use the
* fallback function. This is primarily useful in the case of
* "stored" versions that want to report the same value as the
* running version in the normal case of no pending update.
*/
if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
ice_devlink_versions[i].fallback(pf, ctx);
/* Do not report missing versions */
if (ctx->buf[0] == '\0')
continue;
switch (type) {
case ICE_VERSION_FIXED:
err = devlink_info_version_fixed_put(req, key, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
goto out_free_ctx;
}
break;
case ICE_VERSION_RUNNING:
err = devlink_info_version_running_put(req, key, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
goto out_free_ctx;
}
break;
case ICE_VERSION_STORED:
err = devlink_info_version_stored_put(req, key, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
goto out_free_ctx;
}
break;
}
}
out_free_ctx:
kfree(ctx);
return err;
}
/**
* ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
* @devlink: pointer to the devlink instance to reload
* @netns_change: if true, the network namespace is changing
* @action: the action to perform. Must be DEVLINK_RELOAD_ACTION_FW_ACTIVATE
* @limit: limits on what reload should do, such as not resetting
* @extack: netlink extended ACK structure
*
* Allow user to activate new Embedded Management Processor firmware by
* issuing device specific EMP reset. Called in response to
* a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
*
* Note that teardown and rebuild of the driver state happens automatically as
* part of an interrupt and watchdog task. This is because all physical
* functions on the device must be able to reset when an EMP reset occurs from
* any source.
*/
static int
ice_devlink_reload_empr_start(struct devlink *devlink, bool netns_change,
enum devlink_reload_action action,
enum devlink_reload_limit limit,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u8 pending;
int err;
err = ice_get_pending_updates(pf, &pending, extack);
if (err)
return err;
/* pending is a bitmask of which flash banks have a pending update,
* including the main NVM bank, the Option ROM bank, and the netlist
* bank. If any of these bits are set, then there is a pending update
* waiting to be activated.
*/
if (!pending) {
NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
return -ECANCELED;
}
if (pf->fw_emp_reset_disabled) {
NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
return -ECANCELED;
}
dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
err = ice_aq_nvm_update_empr(hw);
if (err) {
dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
return err;
}
return 0;
}
/**
* ice_devlink_reload_empr_finish - Wait for EMP reset to finish
* @devlink: pointer to the devlink instance reloading
* @action: the action requested
* @limit: limits imposed by userspace, such as not resetting
* @actions_performed: on return, indicate what actions actually performed
* @extack: netlink extended ACK structure
*
* Wait for driver to finish rebuilding after EMP reset is completed. This
* includes time to wait for both the actual device reset as well as the time
* for the driver's rebuild to complete.
*/
static int
ice_devlink_reload_empr_finish(struct devlink *devlink,
enum devlink_reload_action action,
enum devlink_reload_limit limit,
u32 *actions_performed,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
int err;
*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
err = ice_wait_for_reset(pf, 60 * HZ);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
return err;
}
return 0;
}
static const struct devlink_ops ice_devlink_ops = {
.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
.reload_actions = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
/* The ice driver currently does not support driver reinit */
.reload_down = ice_devlink_reload_empr_start,
.reload_up = ice_devlink_reload_empr_finish,
.eswitch_mode_get = ice_eswitch_mode_get,
.eswitch_mode_set = ice_eswitch_mode_set,
.info_get = ice_devlink_info_get,
.flash_update = ice_devlink_flash_update,
};
static int
ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
return 0;
}
static int
ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
bool roce_ena = ctx->val.vbool;
int ret;
if (!roce_ena) {
ice_unplug_aux_dev(pf);
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
return 0;
}
pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
ret = ice_plug_aux_dev(pf);
if (ret)
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
return ret;
}
static int
ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
union devlink_param_value val,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
return -EOPNOTSUPP;
if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
return -EOPNOTSUPP;
}
return 0;
}
static int
ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
return 0;
}
static int
ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
bool iw_ena = ctx->val.vbool;
int ret;
if (!iw_ena) {
ice_unplug_aux_dev(pf);
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
return 0;
}
pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
ret = ice_plug_aux_dev(pf);
if (ret)
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
return ret;
}
static int
ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
union devlink_param_value val,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
return -EOPNOTSUPP;
if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
return -EOPNOTSUPP;
}
return 0;
}
static const struct devlink_param ice_devlink_params[] = {
DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
ice_devlink_enable_roce_get,
ice_devlink_enable_roce_set,
ice_devlink_enable_roce_validate),
DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
ice_devlink_enable_iw_get,
ice_devlink_enable_iw_set,
ice_devlink_enable_iw_validate),
};
static void ice_devlink_free(void *devlink_ptr)
{
devlink_free((struct devlink *)devlink_ptr);
}
/**
* ice_allocate_pf - Allocate devlink and return PF structure pointer
* @dev: the device to allocate for
*
* Allocate a devlink instance for this device and return the private area as
* the PF structure. The devlink memory is kept track of through devres by
* adding an action to remove it when unwinding.
*/
struct ice_pf *ice_allocate_pf(struct device *dev)
{
struct devlink *devlink;
devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
if (!devlink)
return NULL;
/* Add an action to teardown the devlink when unwinding the driver */
if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
return NULL;
return devlink_priv(devlink);
}
/**
* ice_devlink_register - Register devlink interface for this PF
* @pf: the PF to register the devlink for.
*
* Register the devlink instance associated with this physical function.
*
* Return: zero on success or an error code on failure.
*/
void ice_devlink_register(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
devlink_set_features(devlink, DEVLINK_F_RELOAD);
devlink_register(devlink);
}
/**
* ice_devlink_unregister - Unregister devlink resources for this PF.
* @pf: the PF structure to cleanup
*
* Releases resources used by devlink and cleans up associated memory.
*/
void ice_devlink_unregister(struct ice_pf *pf)
{
devlink_unregister(priv_to_devlink(pf));
}
/**
* ice_devlink_set_switch_id - Set unique switch id based on pci dsn
* @pf: the PF to create a devlink port for
* @ppid: struct with switch id information
*/
static void
ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
{
struct pci_dev *pdev = pf->pdev;
u64 id;
id = pci_get_dsn(pdev);
ppid->id_len = sizeof(id);
put_unaligned_be64(id, &ppid->id);
}
int ice_devlink_register_params(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
union devlink_param_value value;
int err;
err = devlink_params_register(devlink, ice_devlink_params,
ARRAY_SIZE(ice_devlink_params));
if (err)
return err;
value.vbool = false;
devlink_param_driverinit_value_set(devlink,
DEVLINK_PARAM_GENERIC_ID_ENABLE_IWARP,
value);
value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags) ? true : false;
devlink_param_driverinit_value_set(devlink,
DEVLINK_PARAM_GENERIC_ID_ENABLE_ROCE,
value);
return 0;
}
void ice_devlink_unregister_params(struct ice_pf *pf)
{
devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
ARRAY_SIZE(ice_devlink_params));
}
/**
* ice_devlink_create_pf_port - Create a devlink port for this PF
* @pf: the PF to create a devlink port for
*
* Create and register a devlink_port for this PF.
*
* Return: zero on success or an error code on failure.
*/
int ice_devlink_create_pf_port(struct ice_pf *pf)
{
struct devlink_port_attrs attrs = {};
struct devlink_port *devlink_port;
struct devlink *devlink;
struct ice_vsi *vsi;
struct device *dev;
int err;
dev = ice_pf_to_dev(pf);
devlink_port = &pf->devlink_port;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return -EIO;
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
attrs.phys.port_number = pf->hw.bus.func;
ice_devlink_set_switch_id(pf, &attrs.switch_id);
devlink_port_attrs_set(devlink_port, &attrs);
devlink = priv_to_devlink(pf);
err = devlink_port_register(devlink, devlink_port, vsi->idx);
if (err) {
dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
pf->hw.pf_id, err);
return err;
}
return 0;
}
/**
* ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
* @pf: the PF to cleanup
*
* Unregisters the devlink_port structure associated with this PF.
*/
void ice_devlink_destroy_pf_port(struct ice_pf *pf)
{
struct devlink_port *devlink_port;
devlink_port = &pf->devlink_port;
devlink_port_type_clear(devlink_port);
devlink_port_unregister(devlink_port);
}
/**
* ice_devlink_create_vf_port - Create a devlink port for this VF
* @vf: the VF to create a port for
*
* Create and register a devlink_port for this VF.
*
* Return: zero on success or an error code on failure.
*/
int ice_devlink_create_vf_port(struct ice_vf *vf)
{
struct devlink_port_attrs attrs = {};
struct devlink_port *devlink_port;
struct devlink *devlink;
struct ice_vsi *vsi;
struct device *dev;
struct ice_pf *pf;
int err;
pf = vf->pf;
dev = ice_pf_to_dev(pf);
devlink_port = &vf->devlink_port;
vsi = ice_get_vf_vsi(vf);
if (!vsi)
return -EINVAL;
attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
attrs.pci_vf.pf = pf->hw.bus.func;
attrs.pci_vf.vf = vf->vf_id;
ice_devlink_set_switch_id(pf, &attrs.switch_id);
devlink_port_attrs_set(devlink_port, &attrs);
devlink = priv_to_devlink(pf);
err = devlink_port_register(devlink, devlink_port, vsi->idx);
if (err) {
dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
vf->vf_id, err);
return err;
}
return 0;
}
/**
* ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
* @vf: the VF to cleanup
*
* Unregisters the devlink_port structure associated with this VF.
*/
void ice_devlink_destroy_vf_port(struct ice_vf *vf)
{
struct devlink_port *devlink_port;
devlink_port = &vf->devlink_port;
devlink_port_type_clear(devlink_port);
devlink_port_unregister(devlink_port);
}
/**
* ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
* @devlink: the devlink instance
* @ops: the devlink region being snapshotted
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
* the nvm-flash devlink region. It captures a snapshot of the full NVM flash
* contents, including both banks of flash. This snapshot can later be viewed
* via the devlink-region interface.
*
* It captures the flash using the FLASH_ONLY bit set when reading via
* firmware, so it does not read the current Shadow RAM contents. For that,
* use the shadow-ram region.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int ice_devlink_nvm_snapshot(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
void *nvm_data;
u32 nvm_size;
int status;
nvm_size = hw->flash.flash_size;
nvm_data = vzalloc(nvm_size);
if (!nvm_data)
return -ENOMEM;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status) {
dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
vfree(nvm_data);
return status;
}
status = ice_read_flat_nvm(hw, 0, &nvm_size, nvm_data, false);
if (status) {
dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
nvm_size, status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
ice_release_nvm(hw);
vfree(nvm_data);
return status;
}
ice_release_nvm(hw);
*data = nvm_data;
return 0;
}
/**
* ice_devlink_sram_snapshot - Capture a snapshot of the Shadow RAM contents
* @devlink: the devlink instance
* @ops: the devlink region being snapshotted
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
* the shadow-ram devlink region. It captures a snapshot of the shadow ram
* contents. This snapshot can later be viewed via the devlink-region
* interface.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int
ice_devlink_sram_snapshot(struct devlink *devlink,
const struct devlink_region_ops __always_unused *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u8 *sram_data;
u32 sram_size;
int err;
sram_size = hw->flash.sr_words * 2u;
sram_data = vzalloc(sram_size);
if (!sram_data)
return -ENOMEM;
err = ice_acquire_nvm(hw, ICE_RES_READ);
if (err) {
dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
err, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
vfree(sram_data);
return err;
}
/* Read from the Shadow RAM, rather than directly from NVM */
err = ice_read_flat_nvm(hw, 0, &sram_size, sram_data, true);
if (err) {
dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
sram_size, err, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack,
"Failed to read Shadow RAM contents");
ice_release_nvm(hw);
vfree(sram_data);
return err;
}
ice_release_nvm(hw);
*data = sram_data;
return 0;
}
/**
* ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
* @devlink: the devlink instance
* @ops: the devlink region being snapshotted
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
* the device-caps devlink region. It captures a snapshot of the device
* capabilities reported by firmware.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int
ice_devlink_devcaps_snapshot(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
void *devcaps;
int status;
devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
if (!devcaps)
return -ENOMEM;
status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
ice_aqc_opc_list_dev_caps, NULL);
if (status) {
dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
vfree(devcaps);
return status;
}
*data = (u8 *)devcaps;
return 0;
}
static const struct devlink_region_ops ice_nvm_region_ops = {
.name = "nvm-flash",
.destructor = vfree,
.snapshot = ice_devlink_nvm_snapshot,
};
static const struct devlink_region_ops ice_sram_region_ops = {
.name = "shadow-ram",
.destructor = vfree,
.snapshot = ice_devlink_sram_snapshot,
};
static const struct devlink_region_ops ice_devcaps_region_ops = {
.name = "device-caps",
.destructor = vfree,
.snapshot = ice_devlink_devcaps_snapshot,
};
/**
* ice_devlink_init_regions - Initialize devlink regions
* @pf: the PF device structure
*
* Create devlink regions used to enable access to dump the contents of the
* flash memory on the device.
*/
void ice_devlink_init_regions(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
struct device *dev = ice_pf_to_dev(pf);
u64 nvm_size, sram_size;
nvm_size = pf->hw.flash.flash_size;
pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
nvm_size);
if (IS_ERR(pf->nvm_region)) {
dev_err(dev, "failed to create NVM devlink region, err %ld\n",
PTR_ERR(pf->nvm_region));
pf->nvm_region = NULL;
}
sram_size = pf->hw.flash.sr_words * 2u;
pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1, sram_size);
if (IS_ERR(pf->sram_region)) {
dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
PTR_ERR(pf->sram_region));
pf->sram_region = NULL;
}
pf->devcaps_region = devlink_region_create(devlink,
&ice_devcaps_region_ops, 10,
ICE_AQ_MAX_BUF_LEN);
if (IS_ERR(pf->devcaps_region)) {
dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
PTR_ERR(pf->devcaps_region));
pf->devcaps_region = NULL;
}
}
/**
* ice_devlink_destroy_regions - Destroy devlink regions
* @pf: the PF device structure
*
* Remove previously created regions for this PF.
*/
void ice_devlink_destroy_regions(struct ice_pf *pf)
{
if (pf->nvm_region)
devlink_region_destroy(pf->nvm_region);
if (pf->sram_region)
devlink_region_destroy(pf->sram_region);
if (pf->devcaps_region)
devlink_region_destroy(pf->devcaps_region);
}