linux-stable/drivers/tty/serial/atmel_serial.c
Rob Herring 5bb221b0ad serial: atmel: Use platform_get_irq() to get the interrupt
Accessing platform device resources directly has long been deprecated for
DT as IRQ resources may not be available at device creation time. Drivers
continuing to use static IRQ resources is blocking removing the static setup
from the DT core code.

Signed-off-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20211215224832.1985402-1-robh@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-17 17:57:37 +01:00

3017 lines
79 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Atmel AT91 Serial ports
* Copyright (C) 2003 Rick Bronson
*
* Based on drivers/char/serial_sa1100.c, by Deep Blue Solutions Ltd.
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
*
* DMA support added by Chip Coldwell.
*/
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/serial.h>
#include <linux/clk.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/tty_flip.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/atmel_pdc.h>
#include <linux/uaccess.h>
#include <linux/platform_data/atmel.h>
#include <linux/timer.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/suspend.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <asm/div64.h>
#include <asm/ioctls.h>
#define PDC_BUFFER_SIZE 512
/* Revisit: We should calculate this based on the actual port settings */
#define PDC_RX_TIMEOUT (3 * 10) /* 3 bytes */
/* The minium number of data FIFOs should be able to contain */
#define ATMEL_MIN_FIFO_SIZE 8
/*
* These two offsets are substracted from the RX FIFO size to define the RTS
* high and low thresholds
*/
#define ATMEL_RTS_HIGH_OFFSET 16
#define ATMEL_RTS_LOW_OFFSET 20
#include <linux/serial_core.h>
#include "serial_mctrl_gpio.h"
#include "atmel_serial.h"
static void atmel_start_rx(struct uart_port *port);
static void atmel_stop_rx(struct uart_port *port);
#ifdef CONFIG_SERIAL_ATMEL_TTYAT
/* Use device name ttyAT, major 204 and minor 154-169. This is necessary if we
* should coexist with the 8250 driver, such as if we have an external 16C550
* UART. */
#define SERIAL_ATMEL_MAJOR 204
#define MINOR_START 154
#define ATMEL_DEVICENAME "ttyAT"
#else
/* Use device name ttyS, major 4, minor 64-68. This is the usual serial port
* name, but it is legally reserved for the 8250 driver. */
#define SERIAL_ATMEL_MAJOR TTY_MAJOR
#define MINOR_START 64
#define ATMEL_DEVICENAME "ttyS"
#endif
#define ATMEL_ISR_PASS_LIMIT 256
struct atmel_dma_buffer {
unsigned char *buf;
dma_addr_t dma_addr;
unsigned int dma_size;
unsigned int ofs;
};
struct atmel_uart_char {
u16 status;
u16 ch;
};
/*
* Be careful, the real size of the ring buffer is
* sizeof(atmel_uart_char) * ATMEL_SERIAL_RINGSIZE. It means that ring buffer
* can contain up to 1024 characters in PIO mode and up to 4096 characters in
* DMA mode.
*/
#define ATMEL_SERIAL_RINGSIZE 1024
/*
* at91: 6 USARTs and one DBGU port (SAM9260)
* samx7: 3 USARTs and 5 UARTs
*/
#define ATMEL_MAX_UART 8
/*
* We wrap our port structure around the generic uart_port.
*/
struct atmel_uart_port {
struct uart_port uart; /* uart */
struct clk *clk; /* uart clock */
int may_wakeup; /* cached value of device_may_wakeup for times we need to disable it */
u32 backup_imr; /* IMR saved during suspend */
int break_active; /* break being received */
bool use_dma_rx; /* enable DMA receiver */
bool use_pdc_rx; /* enable PDC receiver */
short pdc_rx_idx; /* current PDC RX buffer */
struct atmel_dma_buffer pdc_rx[2]; /* PDC receier */
bool use_dma_tx; /* enable DMA transmitter */
bool use_pdc_tx; /* enable PDC transmitter */
struct atmel_dma_buffer pdc_tx; /* PDC transmitter */
spinlock_t lock_tx; /* port lock */
spinlock_t lock_rx; /* port lock */
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
struct dma_async_tx_descriptor *desc_tx;
struct dma_async_tx_descriptor *desc_rx;
dma_cookie_t cookie_tx;
dma_cookie_t cookie_rx;
struct scatterlist sg_tx;
struct scatterlist sg_rx;
struct tasklet_struct tasklet_rx;
struct tasklet_struct tasklet_tx;
atomic_t tasklet_shutdown;
unsigned int irq_status_prev;
unsigned int tx_len;
struct circ_buf rx_ring;
struct mctrl_gpios *gpios;
u32 backup_mode; /* MR saved during iso7816 operations */
u32 backup_brgr; /* BRGR saved during iso7816 operations */
unsigned int tx_done_mask;
u32 fifo_size;
u32 rts_high;
u32 rts_low;
bool ms_irq_enabled;
u32 rtor; /* address of receiver timeout register if it exists */
bool has_frac_baudrate;
bool has_hw_timer;
struct timer_list uart_timer;
bool tx_stopped;
bool suspended;
unsigned int pending;
unsigned int pending_status;
spinlock_t lock_suspended;
bool hd_start_rx; /* can start RX during half-duplex operation */
/* ISO7816 */
unsigned int fidi_min;
unsigned int fidi_max;
#ifdef CONFIG_PM
struct {
u32 cr;
u32 mr;
u32 imr;
u32 brgr;
u32 rtor;
u32 ttgr;
u32 fmr;
u32 fimr;
} cache;
#endif
int (*prepare_rx)(struct uart_port *port);
int (*prepare_tx)(struct uart_port *port);
void (*schedule_rx)(struct uart_port *port);
void (*schedule_tx)(struct uart_port *port);
void (*release_rx)(struct uart_port *port);
void (*release_tx)(struct uart_port *port);
};
static struct atmel_uart_port atmel_ports[ATMEL_MAX_UART];
static DECLARE_BITMAP(atmel_ports_in_use, ATMEL_MAX_UART);
#if defined(CONFIG_OF)
static const struct of_device_id atmel_serial_dt_ids[] = {
{ .compatible = "atmel,at91rm9200-usart-serial" },
{ /* sentinel */ }
};
#endif
static inline struct atmel_uart_port *
to_atmel_uart_port(struct uart_port *uart)
{
return container_of(uart, struct atmel_uart_port, uart);
}
static inline u32 atmel_uart_readl(struct uart_port *port, u32 reg)
{
return __raw_readl(port->membase + reg);
}
static inline void atmel_uart_writel(struct uart_port *port, u32 reg, u32 value)
{
__raw_writel(value, port->membase + reg);
}
static inline u8 atmel_uart_read_char(struct uart_port *port)
{
return __raw_readb(port->membase + ATMEL_US_RHR);
}
static inline void atmel_uart_write_char(struct uart_port *port, u8 value)
{
__raw_writeb(value, port->membase + ATMEL_US_THR);
}
static inline int atmel_uart_is_half_duplex(struct uart_port *port)
{
return ((port->rs485.flags & SER_RS485_ENABLED) &&
!(port->rs485.flags & SER_RS485_RX_DURING_TX)) ||
(port->iso7816.flags & SER_ISO7816_ENABLED);
}
#ifdef CONFIG_SERIAL_ATMEL_PDC
static bool atmel_use_pdc_rx(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
return atmel_port->use_pdc_rx;
}
static bool atmel_use_pdc_tx(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
return atmel_port->use_pdc_tx;
}
#else
static bool atmel_use_pdc_rx(struct uart_port *port)
{
return false;
}
static bool atmel_use_pdc_tx(struct uart_port *port)
{
return false;
}
#endif
static bool atmel_use_dma_tx(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
return atmel_port->use_dma_tx;
}
static bool atmel_use_dma_rx(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
return atmel_port->use_dma_rx;
}
static bool atmel_use_fifo(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
return atmel_port->fifo_size;
}
static void atmel_tasklet_schedule(struct atmel_uart_port *atmel_port,
struct tasklet_struct *t)
{
if (!atomic_read(&atmel_port->tasklet_shutdown))
tasklet_schedule(t);
}
/* Enable or disable the rs485 support */
static int atmel_config_rs485(struct uart_port *port,
struct serial_rs485 *rs485conf)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int mode;
/* Disable interrupts */
atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask);
mode = atmel_uart_readl(port, ATMEL_US_MR);
/* Resetting serial mode to RS232 (0x0) */
mode &= ~ATMEL_US_USMODE;
port->rs485 = *rs485conf;
if (rs485conf->flags & SER_RS485_ENABLED) {
dev_dbg(port->dev, "Setting UART to RS485\n");
if (port->rs485.flags & SER_RS485_RX_DURING_TX)
atmel_port->tx_done_mask = ATMEL_US_TXRDY;
else
atmel_port->tx_done_mask = ATMEL_US_TXEMPTY;
atmel_uart_writel(port, ATMEL_US_TTGR,
rs485conf->delay_rts_after_send);
mode |= ATMEL_US_USMODE_RS485;
} else {
dev_dbg(port->dev, "Setting UART to RS232\n");
if (atmel_use_pdc_tx(port))
atmel_port->tx_done_mask = ATMEL_US_ENDTX |
ATMEL_US_TXBUFE;
else
atmel_port->tx_done_mask = ATMEL_US_TXRDY;
}
atmel_uart_writel(port, ATMEL_US_MR, mode);
/* Enable interrupts */
atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask);
return 0;
}
static unsigned int atmel_calc_cd(struct uart_port *port,
struct serial_iso7816 *iso7816conf)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int cd;
u64 mck_rate;
mck_rate = (u64)clk_get_rate(atmel_port->clk);
do_div(mck_rate, iso7816conf->clk);
cd = mck_rate;
return cd;
}
static unsigned int atmel_calc_fidi(struct uart_port *port,
struct serial_iso7816 *iso7816conf)
{
u64 fidi = 0;
if (iso7816conf->sc_fi && iso7816conf->sc_di) {
fidi = (u64)iso7816conf->sc_fi;
do_div(fidi, iso7816conf->sc_di);
}
return (u32)fidi;
}
/* Enable or disable the iso7816 support */
/* Called with interrupts disabled */
static int atmel_config_iso7816(struct uart_port *port,
struct serial_iso7816 *iso7816conf)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int mode;
unsigned int cd, fidi;
int ret = 0;
/* Disable interrupts */
atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask);
mode = atmel_uart_readl(port, ATMEL_US_MR);
if (iso7816conf->flags & SER_ISO7816_ENABLED) {
mode &= ~ATMEL_US_USMODE;
if (iso7816conf->tg > 255) {
dev_err(port->dev, "ISO7816: Timeguard exceeding 255\n");
memset(iso7816conf, 0, sizeof(struct serial_iso7816));
ret = -EINVAL;
goto err_out;
}
if ((iso7816conf->flags & SER_ISO7816_T_PARAM)
== SER_ISO7816_T(0)) {
mode |= ATMEL_US_USMODE_ISO7816_T0 | ATMEL_US_DSNACK;
} else if ((iso7816conf->flags & SER_ISO7816_T_PARAM)
== SER_ISO7816_T(1)) {
mode |= ATMEL_US_USMODE_ISO7816_T1 | ATMEL_US_INACK;
} else {
dev_err(port->dev, "ISO7816: Type not supported\n");
memset(iso7816conf, 0, sizeof(struct serial_iso7816));
ret = -EINVAL;
goto err_out;
}
mode &= ~(ATMEL_US_USCLKS | ATMEL_US_NBSTOP | ATMEL_US_PAR);
/* select mck clock, and output */
mode |= ATMEL_US_USCLKS_MCK | ATMEL_US_CLKO;
/* set parity for normal/inverse mode + max iterations */
mode |= ATMEL_US_PAR_EVEN | ATMEL_US_NBSTOP_1 | ATMEL_US_MAX_ITER(3);
cd = atmel_calc_cd(port, iso7816conf);
fidi = atmel_calc_fidi(port, iso7816conf);
if (fidi == 0) {
dev_warn(port->dev, "ISO7816 fidi = 0, Generator generates no signal\n");
} else if (fidi < atmel_port->fidi_min
|| fidi > atmel_port->fidi_max) {
dev_err(port->dev, "ISO7816 fidi = %u, value not supported\n", fidi);
memset(iso7816conf, 0, sizeof(struct serial_iso7816));
ret = -EINVAL;
goto err_out;
}
if (!(port->iso7816.flags & SER_ISO7816_ENABLED)) {
/* port not yet in iso7816 mode: store configuration */
atmel_port->backup_mode = atmel_uart_readl(port, ATMEL_US_MR);
atmel_port->backup_brgr = atmel_uart_readl(port, ATMEL_US_BRGR);
}
atmel_uart_writel(port, ATMEL_US_TTGR, iso7816conf->tg);
atmel_uart_writel(port, ATMEL_US_BRGR, cd);
atmel_uart_writel(port, ATMEL_US_FIDI, fidi);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS | ATMEL_US_RXEN);
atmel_port->tx_done_mask = ATMEL_US_TXEMPTY | ATMEL_US_NACK | ATMEL_US_ITERATION;
} else {
dev_dbg(port->dev, "Setting UART back to RS232\n");
/* back to last RS232 settings */
mode = atmel_port->backup_mode;
memset(iso7816conf, 0, sizeof(struct serial_iso7816));
atmel_uart_writel(port, ATMEL_US_TTGR, 0);
atmel_uart_writel(port, ATMEL_US_BRGR, atmel_port->backup_brgr);
atmel_uart_writel(port, ATMEL_US_FIDI, 0x174);
if (atmel_use_pdc_tx(port))
atmel_port->tx_done_mask = ATMEL_US_ENDTX |
ATMEL_US_TXBUFE;
else
atmel_port->tx_done_mask = ATMEL_US_TXRDY;
}
port->iso7816 = *iso7816conf;
atmel_uart_writel(port, ATMEL_US_MR, mode);
err_out:
/* Enable interrupts */
atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask);
return ret;
}
/*
* Return TIOCSER_TEMT when transmitter FIFO and Shift register is empty.
*/
static u_int atmel_tx_empty(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (atmel_port->tx_stopped)
return TIOCSER_TEMT;
return (atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXEMPTY) ?
TIOCSER_TEMT :
0;
}
/*
* Set state of the modem control output lines
*/
static void atmel_set_mctrl(struct uart_port *port, u_int mctrl)
{
unsigned int control = 0;
unsigned int mode = atmel_uart_readl(port, ATMEL_US_MR);
unsigned int rts_paused, rts_ready;
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
/* override mode to RS485 if needed, otherwise keep the current mode */
if (port->rs485.flags & SER_RS485_ENABLED) {
atmel_uart_writel(port, ATMEL_US_TTGR,
port->rs485.delay_rts_after_send);
mode &= ~ATMEL_US_USMODE;
mode |= ATMEL_US_USMODE_RS485;
}
/* set the RTS line state according to the mode */
if ((mode & ATMEL_US_USMODE) == ATMEL_US_USMODE_HWHS) {
/* force RTS line to high level */
rts_paused = ATMEL_US_RTSEN;
/* give the control of the RTS line back to the hardware */
rts_ready = ATMEL_US_RTSDIS;
} else {
/* force RTS line to high level */
rts_paused = ATMEL_US_RTSDIS;
/* force RTS line to low level */
rts_ready = ATMEL_US_RTSEN;
}
if (mctrl & TIOCM_RTS)
control |= rts_ready;
else
control |= rts_paused;
if (mctrl & TIOCM_DTR)
control |= ATMEL_US_DTREN;
else
control |= ATMEL_US_DTRDIS;
atmel_uart_writel(port, ATMEL_US_CR, control);
mctrl_gpio_set(atmel_port->gpios, mctrl);
/* Local loopback mode? */
mode &= ~ATMEL_US_CHMODE;
if (mctrl & TIOCM_LOOP)
mode |= ATMEL_US_CHMODE_LOC_LOOP;
else
mode |= ATMEL_US_CHMODE_NORMAL;
atmel_uart_writel(port, ATMEL_US_MR, mode);
}
/*
* Get state of the modem control input lines
*/
static u_int atmel_get_mctrl(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int ret = 0, status;
status = atmel_uart_readl(port, ATMEL_US_CSR);
/*
* The control signals are active low.
*/
if (!(status & ATMEL_US_DCD))
ret |= TIOCM_CD;
if (!(status & ATMEL_US_CTS))
ret |= TIOCM_CTS;
if (!(status & ATMEL_US_DSR))
ret |= TIOCM_DSR;
if (!(status & ATMEL_US_RI))
ret |= TIOCM_RI;
return mctrl_gpio_get(atmel_port->gpios, &ret);
}
/*
* Stop transmitting.
*/
static void atmel_stop_tx(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (atmel_use_pdc_tx(port)) {
/* disable PDC transmit */
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS);
}
/*
* Disable the transmitter.
* This is mandatory when DMA is used, otherwise the DMA buffer
* is fully transmitted.
*/
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS);
atmel_port->tx_stopped = true;
/* Disable interrupts */
atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask);
if (atmel_uart_is_half_duplex(port))
if (!atomic_read(&atmel_port->tasklet_shutdown))
atmel_start_rx(port);
}
/*
* Start transmitting.
*/
static void atmel_start_tx(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (atmel_use_pdc_tx(port) && (atmel_uart_readl(port, ATMEL_PDC_PTSR)
& ATMEL_PDC_TXTEN))
/* The transmitter is already running. Yes, we
really need this.*/
return;
if (atmel_use_pdc_tx(port) || atmel_use_dma_tx(port))
if (atmel_uart_is_half_duplex(port))
atmel_stop_rx(port);
if (atmel_use_pdc_tx(port))
/* re-enable PDC transmit */
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN);
/* Enable interrupts */
atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask);
/* re-enable the transmitter */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN);
atmel_port->tx_stopped = false;
}
/*
* start receiving - port is in process of being opened.
*/
static void atmel_start_rx(struct uart_port *port)
{
/* reset status and receiver */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RXEN);
if (atmel_use_pdc_rx(port)) {
/* enable PDC controller */
atmel_uart_writel(port, ATMEL_US_IER,
ATMEL_US_ENDRX | ATMEL_US_TIMEOUT |
port->read_status_mask);
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN);
} else {
atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_RXRDY);
}
}
/*
* Stop receiving - port is in process of being closed.
*/
static void atmel_stop_rx(struct uart_port *port)
{
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RXDIS);
if (atmel_use_pdc_rx(port)) {
/* disable PDC receive */
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS);
atmel_uart_writel(port, ATMEL_US_IDR,
ATMEL_US_ENDRX | ATMEL_US_TIMEOUT |
port->read_status_mask);
} else {
atmel_uart_writel(port, ATMEL_US_IDR, ATMEL_US_RXRDY);
}
}
/*
* Enable modem status interrupts
*/
static void atmel_enable_ms(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
uint32_t ier = 0;
/*
* Interrupt should not be enabled twice
*/
if (atmel_port->ms_irq_enabled)
return;
atmel_port->ms_irq_enabled = true;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS))
ier |= ATMEL_US_CTSIC;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DSR))
ier |= ATMEL_US_DSRIC;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_RI))
ier |= ATMEL_US_RIIC;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DCD))
ier |= ATMEL_US_DCDIC;
atmel_uart_writel(port, ATMEL_US_IER, ier);
mctrl_gpio_enable_ms(atmel_port->gpios);
}
/*
* Disable modem status interrupts
*/
static void atmel_disable_ms(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
uint32_t idr = 0;
/*
* Interrupt should not be disabled twice
*/
if (!atmel_port->ms_irq_enabled)
return;
atmel_port->ms_irq_enabled = false;
mctrl_gpio_disable_ms(atmel_port->gpios);
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS))
idr |= ATMEL_US_CTSIC;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DSR))
idr |= ATMEL_US_DSRIC;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_RI))
idr |= ATMEL_US_RIIC;
if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DCD))
idr |= ATMEL_US_DCDIC;
atmel_uart_writel(port, ATMEL_US_IDR, idr);
}
/*
* Control the transmission of a break signal
*/
static void atmel_break_ctl(struct uart_port *port, int break_state)
{
if (break_state != 0)
/* start break */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTBRK);
else
/* stop break */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STPBRK);
}
/*
* Stores the incoming character in the ring buffer
*/
static void
atmel_buffer_rx_char(struct uart_port *port, unsigned int status,
unsigned int ch)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct circ_buf *ring = &atmel_port->rx_ring;
struct atmel_uart_char *c;
if (!CIRC_SPACE(ring->head, ring->tail, ATMEL_SERIAL_RINGSIZE))
/* Buffer overflow, ignore char */
return;
c = &((struct atmel_uart_char *)ring->buf)[ring->head];
c->status = status;
c->ch = ch;
/* Make sure the character is stored before we update head. */
smp_wmb();
ring->head = (ring->head + 1) & (ATMEL_SERIAL_RINGSIZE - 1);
}
/*
* Deal with parity, framing and overrun errors.
*/
static void atmel_pdc_rxerr(struct uart_port *port, unsigned int status)
{
/* clear error */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA);
if (status & ATMEL_US_RXBRK) {
/* ignore side-effect */
status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME);
port->icount.brk++;
}
if (status & ATMEL_US_PARE)
port->icount.parity++;
if (status & ATMEL_US_FRAME)
port->icount.frame++;
if (status & ATMEL_US_OVRE)
port->icount.overrun++;
}
/*
* Characters received (called from interrupt handler)
*/
static void atmel_rx_chars(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int status, ch;
status = atmel_uart_readl(port, ATMEL_US_CSR);
while (status & ATMEL_US_RXRDY) {
ch = atmel_uart_read_char(port);
/*
* note that the error handling code is
* out of the main execution path
*/
if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME
| ATMEL_US_OVRE | ATMEL_US_RXBRK)
|| atmel_port->break_active)) {
/* clear error */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA);
if (status & ATMEL_US_RXBRK
&& !atmel_port->break_active) {
atmel_port->break_active = 1;
atmel_uart_writel(port, ATMEL_US_IER,
ATMEL_US_RXBRK);
} else {
/*
* This is either the end-of-break
* condition or we've received at
* least one character without RXBRK
* being set. In both cases, the next
* RXBRK will indicate start-of-break.
*/
atmel_uart_writel(port, ATMEL_US_IDR,
ATMEL_US_RXBRK);
status &= ~ATMEL_US_RXBRK;
atmel_port->break_active = 0;
}
}
atmel_buffer_rx_char(port, status, ch);
status = atmel_uart_readl(port, ATMEL_US_CSR);
}
atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx);
}
/*
* Transmit characters (called from tasklet with TXRDY interrupt
* disabled)
*/
static void atmel_tx_chars(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (port->x_char &&
(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY)) {
atmel_uart_write_char(port, port->x_char);
port->icount.tx++;
port->x_char = 0;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(port))
return;
while (atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY) {
atmel_uart_write_char(port, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
if (uart_circ_empty(xmit))
break;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (!uart_circ_empty(xmit)) {
/* we still have characters to transmit, so we should continue
* transmitting them when TX is ready, regardless of
* mode or duplexity
*/
atmel_port->tx_done_mask |= ATMEL_US_TXRDY;
/* Enable interrupts */
atmel_uart_writel(port, ATMEL_US_IER,
atmel_port->tx_done_mask);
} else {
if (atmel_uart_is_half_duplex(port))
atmel_port->tx_done_mask &= ~ATMEL_US_TXRDY;
}
}
static void atmel_complete_tx_dma(void *arg)
{
struct atmel_uart_port *atmel_port = arg;
struct uart_port *port = &atmel_port->uart;
struct circ_buf *xmit = &port->state->xmit;
struct dma_chan *chan = atmel_port->chan_tx;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
if (chan)
dmaengine_terminate_all(chan);
xmit->tail += atmel_port->tx_len;
xmit->tail &= UART_XMIT_SIZE - 1;
port->icount.tx += atmel_port->tx_len;
spin_lock_irq(&atmel_port->lock_tx);
async_tx_ack(atmel_port->desc_tx);
atmel_port->cookie_tx = -EINVAL;
atmel_port->desc_tx = NULL;
spin_unlock_irq(&atmel_port->lock_tx);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
/*
* xmit is a circular buffer so, if we have just send data from
* xmit->tail to the end of xmit->buf, now we have to transmit the
* remaining data from the beginning of xmit->buf to xmit->head.
*/
if (!uart_circ_empty(xmit))
atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_tx);
else if (atmel_uart_is_half_duplex(port)) {
/*
* DMA done, re-enable TXEMPTY and signal that we can stop
* TX and start RX for RS485
*/
atmel_port->hd_start_rx = true;
atmel_uart_writel(port, ATMEL_US_IER,
atmel_port->tx_done_mask);
}
spin_unlock_irqrestore(&port->lock, flags);
}
static void atmel_release_tx_dma(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct dma_chan *chan = atmel_port->chan_tx;
if (chan) {
dmaengine_terminate_all(chan);
dma_release_channel(chan);
dma_unmap_sg(port->dev, &atmel_port->sg_tx, 1,
DMA_TO_DEVICE);
}
atmel_port->desc_tx = NULL;
atmel_port->chan_tx = NULL;
atmel_port->cookie_tx = -EINVAL;
}
/*
* Called from tasklet with TXRDY interrupt is disabled.
*/
static void atmel_tx_dma(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct circ_buf *xmit = &port->state->xmit;
struct dma_chan *chan = atmel_port->chan_tx;
struct dma_async_tx_descriptor *desc;
struct scatterlist sgl[2], *sg, *sg_tx = &atmel_port->sg_tx;
unsigned int tx_len, part1_len, part2_len, sg_len;
dma_addr_t phys_addr;
/* Make sure we have an idle channel */
if (atmel_port->desc_tx != NULL)
return;
if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) {
/*
* DMA is idle now.
* Port xmit buffer is already mapped,
* and it is one page... Just adjust
* offsets and lengths. Since it is a circular buffer,
* we have to transmit till the end, and then the rest.
* Take the port lock to get a
* consistent xmit buffer state.
*/
tx_len = CIRC_CNT_TO_END(xmit->head,
xmit->tail,
UART_XMIT_SIZE);
if (atmel_port->fifo_size) {
/* multi data mode */
part1_len = (tx_len & ~0x3); /* DWORD access */
part2_len = (tx_len & 0x3); /* BYTE access */
} else {
/* single data (legacy) mode */
part1_len = 0;
part2_len = tx_len; /* BYTE access only */
}
sg_init_table(sgl, 2);
sg_len = 0;
phys_addr = sg_dma_address(sg_tx) + xmit->tail;
if (part1_len) {
sg = &sgl[sg_len++];
sg_dma_address(sg) = phys_addr;
sg_dma_len(sg) = part1_len;
phys_addr += part1_len;
}
if (part2_len) {
sg = &sgl[sg_len++];
sg_dma_address(sg) = phys_addr;
sg_dma_len(sg) = part2_len;
}
/*
* save tx_len so atmel_complete_tx_dma() will increase
* xmit->tail correctly
*/
atmel_port->tx_len = tx_len;
desc = dmaengine_prep_slave_sg(chan,
sgl,
sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
if (!desc) {
dev_err(port->dev, "Failed to send via dma!\n");
return;
}
dma_sync_sg_for_device(port->dev, sg_tx, 1, DMA_TO_DEVICE);
atmel_port->desc_tx = desc;
desc->callback = atmel_complete_tx_dma;
desc->callback_param = atmel_port;
atmel_port->cookie_tx = dmaengine_submit(desc);
if (dma_submit_error(atmel_port->cookie_tx)) {
dev_err(port->dev, "dma_submit_error %d\n",
atmel_port->cookie_tx);
return;
}
dma_async_issue_pending(chan);
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
}
static int atmel_prepare_tx_dma(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct device *mfd_dev = port->dev->parent;
dma_cap_mask_t mask;
struct dma_slave_config config;
int ret, nent;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
atmel_port->chan_tx = dma_request_slave_channel(mfd_dev, "tx");
if (atmel_port->chan_tx == NULL)
goto chan_err;
dev_info(port->dev, "using %s for tx DMA transfers\n",
dma_chan_name(atmel_port->chan_tx));
spin_lock_init(&atmel_port->lock_tx);
sg_init_table(&atmel_port->sg_tx, 1);
/* UART circular tx buffer is an aligned page. */
BUG_ON(!PAGE_ALIGNED(port->state->xmit.buf));
sg_set_page(&atmel_port->sg_tx,
virt_to_page(port->state->xmit.buf),
UART_XMIT_SIZE,
offset_in_page(port->state->xmit.buf));
nent = dma_map_sg(port->dev,
&atmel_port->sg_tx,
1,
DMA_TO_DEVICE);
if (!nent) {
dev_dbg(port->dev, "need to release resource of dma\n");
goto chan_err;
} else {
dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__,
sg_dma_len(&atmel_port->sg_tx),
port->state->xmit.buf,
&sg_dma_address(&atmel_port->sg_tx));
}
/* Configure the slave DMA */
memset(&config, 0, sizeof(config));
config.direction = DMA_MEM_TO_DEV;
config.dst_addr_width = (atmel_port->fifo_size) ?
DMA_SLAVE_BUSWIDTH_4_BYTES :
DMA_SLAVE_BUSWIDTH_1_BYTE;
config.dst_addr = port->mapbase + ATMEL_US_THR;
config.dst_maxburst = 1;
ret = dmaengine_slave_config(atmel_port->chan_tx,
&config);
if (ret) {
dev_err(port->dev, "DMA tx slave configuration failed\n");
goto chan_err;
}
return 0;
chan_err:
dev_err(port->dev, "TX channel not available, switch to pio\n");
atmel_port->use_dma_tx = false;
if (atmel_port->chan_tx)
atmel_release_tx_dma(port);
return -EINVAL;
}
static void atmel_complete_rx_dma(void *arg)
{
struct uart_port *port = arg;
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx);
}
static void atmel_release_rx_dma(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct dma_chan *chan = atmel_port->chan_rx;
if (chan) {
dmaengine_terminate_all(chan);
dma_release_channel(chan);
dma_unmap_sg(port->dev, &atmel_port->sg_rx, 1,
DMA_FROM_DEVICE);
}
atmel_port->desc_rx = NULL;
atmel_port->chan_rx = NULL;
atmel_port->cookie_rx = -EINVAL;
}
static void atmel_rx_from_dma(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct tty_port *tport = &port->state->port;
struct circ_buf *ring = &atmel_port->rx_ring;
struct dma_chan *chan = atmel_port->chan_rx;
struct dma_tx_state state;
enum dma_status dmastat;
size_t count;
/* Reset the UART timeout early so that we don't miss one */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO);
dmastat = dmaengine_tx_status(chan,
atmel_port->cookie_rx,
&state);
/* Restart a new tasklet if DMA status is error */
if (dmastat == DMA_ERROR) {
dev_dbg(port->dev, "Get residue error, restart tasklet\n");
atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_TIMEOUT);
atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx);
return;
}
/* CPU claims ownership of RX DMA buffer */
dma_sync_sg_for_cpu(port->dev,
&atmel_port->sg_rx,
1,
DMA_FROM_DEVICE);
/*
* ring->head points to the end of data already written by the DMA.
* ring->tail points to the beginning of data to be read by the
* framework.
* The current transfer size should not be larger than the dma buffer
* length.
*/
ring->head = sg_dma_len(&atmel_port->sg_rx) - state.residue;
BUG_ON(ring->head > sg_dma_len(&atmel_port->sg_rx));
/*
* At this point ring->head may point to the first byte right after the
* last byte of the dma buffer:
* 0 <= ring->head <= sg_dma_len(&atmel_port->sg_rx)
*
* However ring->tail must always points inside the dma buffer:
* 0 <= ring->tail <= sg_dma_len(&atmel_port->sg_rx) - 1
*
* Since we use a ring buffer, we have to handle the case
* where head is lower than tail. In such a case, we first read from
* tail to the end of the buffer then reset tail.
*/
if (ring->head < ring->tail) {
count = sg_dma_len(&atmel_port->sg_rx) - ring->tail;
tty_insert_flip_string(tport, ring->buf + ring->tail, count);
ring->tail = 0;
port->icount.rx += count;
}
/* Finally we read data from tail to head */
if (ring->tail < ring->head) {
count = ring->head - ring->tail;
tty_insert_flip_string(tport, ring->buf + ring->tail, count);
/* Wrap ring->head if needed */
if (ring->head >= sg_dma_len(&atmel_port->sg_rx))
ring->head = 0;
ring->tail = ring->head;
port->icount.rx += count;
}
/* USART retreives ownership of RX DMA buffer */
dma_sync_sg_for_device(port->dev,
&atmel_port->sg_rx,
1,
DMA_FROM_DEVICE);
tty_flip_buffer_push(tport);
atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_TIMEOUT);
}
static int atmel_prepare_rx_dma(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct device *mfd_dev = port->dev->parent;
struct dma_async_tx_descriptor *desc;
dma_cap_mask_t mask;
struct dma_slave_config config;
struct circ_buf *ring;
int ret, nent;
ring = &atmel_port->rx_ring;
dma_cap_zero(mask);
dma_cap_set(DMA_CYCLIC, mask);
atmel_port->chan_rx = dma_request_slave_channel(mfd_dev, "rx");
if (atmel_port->chan_rx == NULL)
goto chan_err;
dev_info(port->dev, "using %s for rx DMA transfers\n",
dma_chan_name(atmel_port->chan_rx));
spin_lock_init(&atmel_port->lock_rx);
sg_init_table(&atmel_port->sg_rx, 1);
/* UART circular rx buffer is an aligned page. */
BUG_ON(!PAGE_ALIGNED(ring->buf));
sg_set_page(&atmel_port->sg_rx,
virt_to_page(ring->buf),
sizeof(struct atmel_uart_char) * ATMEL_SERIAL_RINGSIZE,
offset_in_page(ring->buf));
nent = dma_map_sg(port->dev,
&atmel_port->sg_rx,
1,
DMA_FROM_DEVICE);
if (!nent) {
dev_dbg(port->dev, "need to release resource of dma\n");
goto chan_err;
} else {
dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__,
sg_dma_len(&atmel_port->sg_rx),
ring->buf,
&sg_dma_address(&atmel_port->sg_rx));
}
/* Configure the slave DMA */
memset(&config, 0, sizeof(config));
config.direction = DMA_DEV_TO_MEM;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.src_addr = port->mapbase + ATMEL_US_RHR;
config.src_maxburst = 1;
ret = dmaengine_slave_config(atmel_port->chan_rx,
&config);
if (ret) {
dev_err(port->dev, "DMA rx slave configuration failed\n");
goto chan_err;
}
/*
* Prepare a cyclic dma transfer, assign 2 descriptors,
* each one is half ring buffer size
*/
desc = dmaengine_prep_dma_cyclic(atmel_port->chan_rx,
sg_dma_address(&atmel_port->sg_rx),
sg_dma_len(&atmel_port->sg_rx),
sg_dma_len(&atmel_port->sg_rx)/2,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(port->dev, "Preparing DMA cyclic failed\n");
goto chan_err;
}
desc->callback = atmel_complete_rx_dma;
desc->callback_param = port;
atmel_port->desc_rx = desc;
atmel_port->cookie_rx = dmaengine_submit(desc);
if (dma_submit_error(atmel_port->cookie_rx)) {
dev_err(port->dev, "dma_submit_error %d\n",
atmel_port->cookie_rx);
goto chan_err;
}
dma_async_issue_pending(atmel_port->chan_rx);
return 0;
chan_err:
dev_err(port->dev, "RX channel not available, switch to pio\n");
atmel_port->use_dma_rx = false;
if (atmel_port->chan_rx)
atmel_release_rx_dma(port);
return -EINVAL;
}
static void atmel_uart_timer_callback(struct timer_list *t)
{
struct atmel_uart_port *atmel_port = from_timer(atmel_port, t,
uart_timer);
struct uart_port *port = &atmel_port->uart;
if (!atomic_read(&atmel_port->tasklet_shutdown)) {
tasklet_schedule(&atmel_port->tasklet_rx);
mod_timer(&atmel_port->uart_timer,
jiffies + uart_poll_timeout(port));
}
}
/*
* receive interrupt handler.
*/
static void
atmel_handle_receive(struct uart_port *port, unsigned int pending)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (atmel_use_pdc_rx(port)) {
/*
* PDC receive. Just schedule the tasklet and let it
* figure out the details.
*
* TODO: We're not handling error flags correctly at
* the moment.
*/
if (pending & (ATMEL_US_ENDRX | ATMEL_US_TIMEOUT)) {
atmel_uart_writel(port, ATMEL_US_IDR,
(ATMEL_US_ENDRX | ATMEL_US_TIMEOUT));
atmel_tasklet_schedule(atmel_port,
&atmel_port->tasklet_rx);
}
if (pending & (ATMEL_US_RXBRK | ATMEL_US_OVRE |
ATMEL_US_FRAME | ATMEL_US_PARE))
atmel_pdc_rxerr(port, pending);
}
if (atmel_use_dma_rx(port)) {
if (pending & ATMEL_US_TIMEOUT) {
atmel_uart_writel(port, ATMEL_US_IDR,
ATMEL_US_TIMEOUT);
atmel_tasklet_schedule(atmel_port,
&atmel_port->tasklet_rx);
}
}
/* Interrupt receive */
if (pending & ATMEL_US_RXRDY)
atmel_rx_chars(port);
else if (pending & ATMEL_US_RXBRK) {
/*
* End of break detected. If it came along with a
* character, atmel_rx_chars will handle it.
*/
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA);
atmel_uart_writel(port, ATMEL_US_IDR, ATMEL_US_RXBRK);
atmel_port->break_active = 0;
}
}
/*
* transmit interrupt handler. (Transmit is IRQF_NODELAY safe)
*/
static void
atmel_handle_transmit(struct uart_port *port, unsigned int pending)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (pending & atmel_port->tx_done_mask) {
atmel_uart_writel(port, ATMEL_US_IDR,
atmel_port->tx_done_mask);
/* Start RX if flag was set and FIFO is empty */
if (atmel_port->hd_start_rx) {
if (!(atmel_uart_readl(port, ATMEL_US_CSR)
& ATMEL_US_TXEMPTY))
dev_warn(port->dev, "Should start RX, but TX fifo is not empty\n");
atmel_port->hd_start_rx = false;
atmel_start_rx(port);
}
atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_tx);
}
}
/*
* status flags interrupt handler.
*/
static void
atmel_handle_status(struct uart_port *port, unsigned int pending,
unsigned int status)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int status_change;
if (pending & (ATMEL_US_RIIC | ATMEL_US_DSRIC | ATMEL_US_DCDIC
| ATMEL_US_CTSIC)) {
status_change = status ^ atmel_port->irq_status_prev;
atmel_port->irq_status_prev = status;
if (status_change & (ATMEL_US_RI | ATMEL_US_DSR
| ATMEL_US_DCD | ATMEL_US_CTS)) {
/* TODO: All reads to CSR will clear these interrupts! */
if (status_change & ATMEL_US_RI)
port->icount.rng++;
if (status_change & ATMEL_US_DSR)
port->icount.dsr++;
if (status_change & ATMEL_US_DCD)
uart_handle_dcd_change(port, !(status & ATMEL_US_DCD));
if (status_change & ATMEL_US_CTS)
uart_handle_cts_change(port, !(status & ATMEL_US_CTS));
wake_up_interruptible(&port->state->port.delta_msr_wait);
}
}
if (pending & (ATMEL_US_NACK | ATMEL_US_ITERATION))
dev_dbg(port->dev, "ISO7816 ERROR (0x%08x)\n", pending);
}
/*
* Interrupt handler
*/
static irqreturn_t atmel_interrupt(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int status, pending, mask, pass_counter = 0;
spin_lock(&atmel_port->lock_suspended);
do {
status = atmel_uart_readl(port, ATMEL_US_CSR);
mask = atmel_uart_readl(port, ATMEL_US_IMR);
pending = status & mask;
if (!pending)
break;
if (atmel_port->suspended) {
atmel_port->pending |= pending;
atmel_port->pending_status = status;
atmel_uart_writel(port, ATMEL_US_IDR, mask);
pm_system_wakeup();
break;
}
atmel_handle_receive(port, pending);
atmel_handle_status(port, pending, status);
atmel_handle_transmit(port, pending);
} while (pass_counter++ < ATMEL_ISR_PASS_LIMIT);
spin_unlock(&atmel_port->lock_suspended);
return pass_counter ? IRQ_HANDLED : IRQ_NONE;
}
static void atmel_release_tx_pdc(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx;
dma_unmap_single(port->dev,
pdc->dma_addr,
pdc->dma_size,
DMA_TO_DEVICE);
}
/*
* Called from tasklet with ENDTX and TXBUFE interrupts disabled.
*/
static void atmel_tx_pdc(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct circ_buf *xmit = &port->state->xmit;
struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx;
int count;
/* nothing left to transmit? */
if (atmel_uart_readl(port, ATMEL_PDC_TCR))
return;
xmit->tail += pdc->ofs;
xmit->tail &= UART_XMIT_SIZE - 1;
port->icount.tx += pdc->ofs;
pdc->ofs = 0;
/* more to transmit - setup next transfer */
/* disable PDC transmit */
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS);
if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) {
dma_sync_single_for_device(port->dev,
pdc->dma_addr,
pdc->dma_size,
DMA_TO_DEVICE);
count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
pdc->ofs = count;
atmel_uart_writel(port, ATMEL_PDC_TPR,
pdc->dma_addr + xmit->tail);
atmel_uart_writel(port, ATMEL_PDC_TCR, count);
/* re-enable PDC transmit */
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN);
/* Enable interrupts */
atmel_uart_writel(port, ATMEL_US_IER,
atmel_port->tx_done_mask);
} else {
if (atmel_uart_is_half_duplex(port)) {
/* DMA done, stop TX, start RX for RS485 */
atmel_start_rx(port);
}
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
}
static int atmel_prepare_tx_pdc(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx;
struct circ_buf *xmit = &port->state->xmit;
pdc->buf = xmit->buf;
pdc->dma_addr = dma_map_single(port->dev,
pdc->buf,
UART_XMIT_SIZE,
DMA_TO_DEVICE);
pdc->dma_size = UART_XMIT_SIZE;
pdc->ofs = 0;
return 0;
}
static void atmel_rx_from_ring(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct circ_buf *ring = &atmel_port->rx_ring;
unsigned int flg;
unsigned int status;
while (ring->head != ring->tail) {
struct atmel_uart_char c;
/* Make sure c is loaded after head. */
smp_rmb();
c = ((struct atmel_uart_char *)ring->buf)[ring->tail];
ring->tail = (ring->tail + 1) & (ATMEL_SERIAL_RINGSIZE - 1);
port->icount.rx++;
status = c.status;
flg = TTY_NORMAL;
/*
* note that the error handling code is
* out of the main execution path
*/
if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME
| ATMEL_US_OVRE | ATMEL_US_RXBRK))) {
if (status & ATMEL_US_RXBRK) {
/* ignore side-effect */
status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME);
port->icount.brk++;
if (uart_handle_break(port))
continue;
}
if (status & ATMEL_US_PARE)
port->icount.parity++;
if (status & ATMEL_US_FRAME)
port->icount.frame++;
if (status & ATMEL_US_OVRE)
port->icount.overrun++;
status &= port->read_status_mask;
if (status & ATMEL_US_RXBRK)
flg = TTY_BREAK;
else if (status & ATMEL_US_PARE)
flg = TTY_PARITY;
else if (status & ATMEL_US_FRAME)
flg = TTY_FRAME;
}
if (uart_handle_sysrq_char(port, c.ch))
continue;
uart_insert_char(port, status, ATMEL_US_OVRE, c.ch, flg);
}
tty_flip_buffer_push(&port->state->port);
}
static void atmel_release_rx_pdc(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
int i;
for (i = 0; i < 2; i++) {
struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i];
dma_unmap_single(port->dev,
pdc->dma_addr,
pdc->dma_size,
DMA_FROM_DEVICE);
kfree(pdc->buf);
}
}
static void atmel_rx_from_pdc(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
struct tty_port *tport = &port->state->port;
struct atmel_dma_buffer *pdc;
int rx_idx = atmel_port->pdc_rx_idx;
unsigned int head;
unsigned int tail;
unsigned int count;
do {
/* Reset the UART timeout early so that we don't miss one */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO);
pdc = &atmel_port->pdc_rx[rx_idx];
head = atmel_uart_readl(port, ATMEL_PDC_RPR) - pdc->dma_addr;
tail = pdc->ofs;
/* If the PDC has switched buffers, RPR won't contain
* any address within the current buffer. Since head
* is unsigned, we just need a one-way comparison to
* find out.
*
* In this case, we just need to consume the entire
* buffer and resubmit it for DMA. This will clear the
* ENDRX bit as well, so that we can safely re-enable
* all interrupts below.
*/
head = min(head, pdc->dma_size);
if (likely(head != tail)) {
dma_sync_single_for_cpu(port->dev, pdc->dma_addr,
pdc->dma_size, DMA_FROM_DEVICE);
/*
* head will only wrap around when we recycle
* the DMA buffer, and when that happens, we
* explicitly set tail to 0. So head will
* always be greater than tail.
*/
count = head - tail;
tty_insert_flip_string(tport, pdc->buf + pdc->ofs,
count);
dma_sync_single_for_device(port->dev, pdc->dma_addr,
pdc->dma_size, DMA_FROM_DEVICE);
port->icount.rx += count;
pdc->ofs = head;
}
/*
* If the current buffer is full, we need to check if
* the next one contains any additional data.
*/
if (head >= pdc->dma_size) {
pdc->ofs = 0;
atmel_uart_writel(port, ATMEL_PDC_RNPR, pdc->dma_addr);
atmel_uart_writel(port, ATMEL_PDC_RNCR, pdc->dma_size);
rx_idx = !rx_idx;
atmel_port->pdc_rx_idx = rx_idx;
}
} while (head >= pdc->dma_size);
tty_flip_buffer_push(tport);
atmel_uart_writel(port, ATMEL_US_IER,
ATMEL_US_ENDRX | ATMEL_US_TIMEOUT);
}
static int atmel_prepare_rx_pdc(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
int i;
for (i = 0; i < 2; i++) {
struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i];
pdc->buf = kmalloc(PDC_BUFFER_SIZE, GFP_KERNEL);
if (pdc->buf == NULL) {
if (i != 0) {
dma_unmap_single(port->dev,
atmel_port->pdc_rx[0].dma_addr,
PDC_BUFFER_SIZE,
DMA_FROM_DEVICE);
kfree(atmel_port->pdc_rx[0].buf);
}
atmel_port->use_pdc_rx = false;
return -ENOMEM;
}
pdc->dma_addr = dma_map_single(port->dev,
pdc->buf,
PDC_BUFFER_SIZE,
DMA_FROM_DEVICE);
pdc->dma_size = PDC_BUFFER_SIZE;
pdc->ofs = 0;
}
atmel_port->pdc_rx_idx = 0;
atmel_uart_writel(port, ATMEL_PDC_RPR, atmel_port->pdc_rx[0].dma_addr);
atmel_uart_writel(port, ATMEL_PDC_RCR, PDC_BUFFER_SIZE);
atmel_uart_writel(port, ATMEL_PDC_RNPR,
atmel_port->pdc_rx[1].dma_addr);
atmel_uart_writel(port, ATMEL_PDC_RNCR, PDC_BUFFER_SIZE);
return 0;
}
/*
* tasklet handling tty stuff outside the interrupt handler.
*/
static void atmel_tasklet_rx_func(struct tasklet_struct *t)
{
struct atmel_uart_port *atmel_port = from_tasklet(atmel_port, t,
tasklet_rx);
struct uart_port *port = &atmel_port->uart;
/* The interrupt handler does not take the lock */
spin_lock(&port->lock);
atmel_port->schedule_rx(port);
spin_unlock(&port->lock);
}
static void atmel_tasklet_tx_func(struct tasklet_struct *t)
{
struct atmel_uart_port *atmel_port = from_tasklet(atmel_port, t,
tasklet_tx);
struct uart_port *port = &atmel_port->uart;
/* The interrupt handler does not take the lock */
spin_lock(&port->lock);
atmel_port->schedule_tx(port);
spin_unlock(&port->lock);
}
static void atmel_init_property(struct atmel_uart_port *atmel_port,
struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
/* DMA/PDC usage specification */
if (of_property_read_bool(np, "atmel,use-dma-rx")) {
if (of_property_read_bool(np, "dmas")) {
atmel_port->use_dma_rx = true;
atmel_port->use_pdc_rx = false;
} else {
atmel_port->use_dma_rx = false;
atmel_port->use_pdc_rx = true;
}
} else {
atmel_port->use_dma_rx = false;
atmel_port->use_pdc_rx = false;
}
if (of_property_read_bool(np, "atmel,use-dma-tx")) {
if (of_property_read_bool(np, "dmas")) {
atmel_port->use_dma_tx = true;
atmel_port->use_pdc_tx = false;
} else {
atmel_port->use_dma_tx = false;
atmel_port->use_pdc_tx = true;
}
} else {
atmel_port->use_dma_tx = false;
atmel_port->use_pdc_tx = false;
}
}
static void atmel_set_ops(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (atmel_use_dma_rx(port)) {
atmel_port->prepare_rx = &atmel_prepare_rx_dma;
atmel_port->schedule_rx = &atmel_rx_from_dma;
atmel_port->release_rx = &atmel_release_rx_dma;
} else if (atmel_use_pdc_rx(port)) {
atmel_port->prepare_rx = &atmel_prepare_rx_pdc;
atmel_port->schedule_rx = &atmel_rx_from_pdc;
atmel_port->release_rx = &atmel_release_rx_pdc;
} else {
atmel_port->prepare_rx = NULL;
atmel_port->schedule_rx = &atmel_rx_from_ring;
atmel_port->release_rx = NULL;
}
if (atmel_use_dma_tx(port)) {
atmel_port->prepare_tx = &atmel_prepare_tx_dma;
atmel_port->schedule_tx = &atmel_tx_dma;
atmel_port->release_tx = &atmel_release_tx_dma;
} else if (atmel_use_pdc_tx(port)) {
atmel_port->prepare_tx = &atmel_prepare_tx_pdc;
atmel_port->schedule_tx = &atmel_tx_pdc;
atmel_port->release_tx = &atmel_release_tx_pdc;
} else {
atmel_port->prepare_tx = NULL;
atmel_port->schedule_tx = &atmel_tx_chars;
atmel_port->release_tx = NULL;
}
}
/*
* Get ip name usart or uart
*/
static void atmel_get_ip_name(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
int name = atmel_uart_readl(port, ATMEL_US_NAME);
u32 version;
u32 usart, dbgu_uart, new_uart;
/* ASCII decoding for IP version */
usart = 0x55534152; /* USAR(T) */
dbgu_uart = 0x44424755; /* DBGU */
new_uart = 0x55415254; /* UART */
/*
* Only USART devices from at91sam9260 SOC implement fractional
* baudrate. It is available for all asynchronous modes, with the
* following restriction: the sampling clock's duty cycle is not
* constant.
*/
atmel_port->has_frac_baudrate = false;
atmel_port->has_hw_timer = false;
if (name == new_uart) {
dev_dbg(port->dev, "Uart with hw timer");
atmel_port->has_hw_timer = true;
atmel_port->rtor = ATMEL_UA_RTOR;
} else if (name == usart) {
dev_dbg(port->dev, "Usart\n");
atmel_port->has_frac_baudrate = true;
atmel_port->has_hw_timer = true;
atmel_port->rtor = ATMEL_US_RTOR;
version = atmel_uart_readl(port, ATMEL_US_VERSION);
switch (version) {
case 0x814: /* sama5d2 */
fallthrough;
case 0x701: /* sama5d4 */
atmel_port->fidi_min = 3;
atmel_port->fidi_max = 65535;
break;
case 0x502: /* sam9x5, sama5d3 */
atmel_port->fidi_min = 3;
atmel_port->fidi_max = 2047;
break;
default:
atmel_port->fidi_min = 1;
atmel_port->fidi_max = 2047;
}
} else if (name == dbgu_uart) {
dev_dbg(port->dev, "Dbgu or uart without hw timer\n");
} else {
/* fallback for older SoCs: use version field */
version = atmel_uart_readl(port, ATMEL_US_VERSION);
switch (version) {
case 0x302:
case 0x10213:
case 0x10302:
dev_dbg(port->dev, "This version is usart\n");
atmel_port->has_frac_baudrate = true;
atmel_port->has_hw_timer = true;
atmel_port->rtor = ATMEL_US_RTOR;
break;
case 0x203:
case 0x10202:
dev_dbg(port->dev, "This version is uart\n");
break;
default:
dev_err(port->dev, "Not supported ip name nor version, set to uart\n");
}
}
}
/*
* Perform initialization and enable port for reception
*/
static int atmel_startup(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
int retval;
/*
* Ensure that no interrupts are enabled otherwise when
* request_irq() is called we could get stuck trying to
* handle an unexpected interrupt
*/
atmel_uart_writel(port, ATMEL_US_IDR, -1);
atmel_port->ms_irq_enabled = false;
/*
* Allocate the IRQ
*/
retval = request_irq(port->irq, atmel_interrupt,
IRQF_SHARED | IRQF_COND_SUSPEND,
dev_name(&pdev->dev), port);
if (retval) {
dev_err(port->dev, "atmel_startup - Can't get irq\n");
return retval;
}
atomic_set(&atmel_port->tasklet_shutdown, 0);
tasklet_setup(&atmel_port->tasklet_rx, atmel_tasklet_rx_func);
tasklet_setup(&atmel_port->tasklet_tx, atmel_tasklet_tx_func);
/*
* Initialize DMA (if necessary)
*/
atmel_init_property(atmel_port, pdev);
atmel_set_ops(port);
if (atmel_port->prepare_rx) {
retval = atmel_port->prepare_rx(port);
if (retval < 0)
atmel_set_ops(port);
}
if (atmel_port->prepare_tx) {
retval = atmel_port->prepare_tx(port);
if (retval < 0)
atmel_set_ops(port);
}
/*
* Enable FIFO when available
*/
if (atmel_port->fifo_size) {
unsigned int txrdym = ATMEL_US_ONE_DATA;
unsigned int rxrdym = ATMEL_US_ONE_DATA;
unsigned int fmr;
atmel_uart_writel(port, ATMEL_US_CR,
ATMEL_US_FIFOEN |
ATMEL_US_RXFCLR |
ATMEL_US_TXFLCLR);
if (atmel_use_dma_tx(port))
txrdym = ATMEL_US_FOUR_DATA;
fmr = ATMEL_US_TXRDYM(txrdym) | ATMEL_US_RXRDYM(rxrdym);
if (atmel_port->rts_high &&
atmel_port->rts_low)
fmr |= ATMEL_US_FRTSC |
ATMEL_US_RXFTHRES(atmel_port->rts_high) |
ATMEL_US_RXFTHRES2(atmel_port->rts_low);
atmel_uart_writel(port, ATMEL_US_FMR, fmr);
}
/* Save current CSR for comparison in atmel_tasklet_func() */
atmel_port->irq_status_prev = atmel_uart_readl(port, ATMEL_US_CSR);
/*
* Finally, enable the serial port
*/
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);
/* enable xmit & rcvr */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN);
atmel_port->tx_stopped = false;
timer_setup(&atmel_port->uart_timer, atmel_uart_timer_callback, 0);
if (atmel_use_pdc_rx(port)) {
/* set UART timeout */
if (!atmel_port->has_hw_timer) {
mod_timer(&atmel_port->uart_timer,
jiffies + uart_poll_timeout(port));
/* set USART timeout */
} else {
atmel_uart_writel(port, atmel_port->rtor,
PDC_RX_TIMEOUT);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO);
atmel_uart_writel(port, ATMEL_US_IER,
ATMEL_US_ENDRX | ATMEL_US_TIMEOUT);
}
/* enable PDC controller */
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN);
} else if (atmel_use_dma_rx(port)) {
/* set UART timeout */
if (!atmel_port->has_hw_timer) {
mod_timer(&atmel_port->uart_timer,
jiffies + uart_poll_timeout(port));
/* set USART timeout */
} else {
atmel_uart_writel(port, atmel_port->rtor,
PDC_RX_TIMEOUT);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO);
atmel_uart_writel(port, ATMEL_US_IER,
ATMEL_US_TIMEOUT);
}
} else {
/* enable receive only */
atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_RXRDY);
}
return 0;
}
/*
* Flush any TX data submitted for DMA. Called when the TX circular
* buffer is reset.
*/
static void atmel_flush_buffer(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (atmel_use_pdc_tx(port)) {
atmel_uart_writel(port, ATMEL_PDC_TCR, 0);
atmel_port->pdc_tx.ofs = 0;
}
/*
* in uart_flush_buffer(), the xmit circular buffer has just
* been cleared, so we have to reset tx_len accordingly.
*/
atmel_port->tx_len = 0;
}
/*
* Disable the port
*/
static void atmel_shutdown(struct uart_port *port)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
/* Disable modem control lines interrupts */
atmel_disable_ms(port);
/* Disable interrupts at device level */
atmel_uart_writel(port, ATMEL_US_IDR, -1);
/* Prevent spurious interrupts from scheduling the tasklet */
atomic_inc(&atmel_port->tasklet_shutdown);
/*
* Prevent any tasklets being scheduled during
* cleanup
*/
del_timer_sync(&atmel_port->uart_timer);
/* Make sure that no interrupt is on the fly */
synchronize_irq(port->irq);
/*
* Clear out any scheduled tasklets before
* we destroy the buffers
*/
tasklet_kill(&atmel_port->tasklet_rx);
tasklet_kill(&atmel_port->tasklet_tx);
/*
* Ensure everything is stopped and
* disable port and break condition.
*/
atmel_stop_rx(port);
atmel_stop_tx(port);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA);
/*
* Shut-down the DMA.
*/
if (atmel_port->release_rx)
atmel_port->release_rx(port);
if (atmel_port->release_tx)
atmel_port->release_tx(port);
/*
* Reset ring buffer pointers
*/
atmel_port->rx_ring.head = 0;
atmel_port->rx_ring.tail = 0;
/*
* Free the interrupts
*/
free_irq(port->irq, port);
atmel_flush_buffer(port);
}
/*
* Power / Clock management.
*/
static void atmel_serial_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
switch (state) {
case UART_PM_STATE_ON:
/*
* Enable the peripheral clock for this serial port.
* This is called on uart_open() or a resume event.
*/
clk_prepare_enable(atmel_port->clk);
/* re-enable interrupts if we disabled some on suspend */
atmel_uart_writel(port, ATMEL_US_IER, atmel_port->backup_imr);
break;
case UART_PM_STATE_OFF:
/* Back up the interrupt mask and disable all interrupts */
atmel_port->backup_imr = atmel_uart_readl(port, ATMEL_US_IMR);
atmel_uart_writel(port, ATMEL_US_IDR, -1);
/*
* Disable the peripheral clock for this serial port.
* This is called on uart_close() or a suspend event.
*/
clk_disable_unprepare(atmel_port->clk);
break;
default:
dev_err(port->dev, "atmel_serial: unknown pm %d\n", state);
}
}
/*
* Change the port parameters
*/
static void atmel_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned long flags;
unsigned int old_mode, mode, imr, quot, baud, div, cd, fp = 0;
/* save the current mode register */
mode = old_mode = atmel_uart_readl(port, ATMEL_US_MR);
/* reset the mode, clock divisor, parity, stop bits and data size */
mode &= ~(ATMEL_US_USCLKS | ATMEL_US_CHRL | ATMEL_US_NBSTOP |
ATMEL_US_PAR | ATMEL_US_USMODE);
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);
/* byte size */
switch (termios->c_cflag & CSIZE) {
case CS5:
mode |= ATMEL_US_CHRL_5;
break;
case CS6:
mode |= ATMEL_US_CHRL_6;
break;
case CS7:
mode |= ATMEL_US_CHRL_7;
break;
default:
mode |= ATMEL_US_CHRL_8;
break;
}
/* stop bits */
if (termios->c_cflag & CSTOPB)
mode |= ATMEL_US_NBSTOP_2;
/* parity */
if (termios->c_cflag & PARENB) {
/* Mark or Space parity */
if (termios->c_cflag & CMSPAR) {
if (termios->c_cflag & PARODD)
mode |= ATMEL_US_PAR_MARK;
else
mode |= ATMEL_US_PAR_SPACE;
} else if (termios->c_cflag & PARODD)
mode |= ATMEL_US_PAR_ODD;
else
mode |= ATMEL_US_PAR_EVEN;
} else
mode |= ATMEL_US_PAR_NONE;
spin_lock_irqsave(&port->lock, flags);
port->read_status_mask = ATMEL_US_OVRE;
if (termios->c_iflag & INPCK)
port->read_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);
if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
port->read_status_mask |= ATMEL_US_RXBRK;
if (atmel_use_pdc_rx(port))
/* need to enable error interrupts */
atmel_uart_writel(port, ATMEL_US_IER, port->read_status_mask);
/*
* Characters to ignore
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= ATMEL_US_RXBRK;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= ATMEL_US_OVRE;
}
/* TODO: Ignore all characters if CREAD is set.*/
/* update the per-port timeout */
uart_update_timeout(port, termios->c_cflag, baud);
/*
* save/disable interrupts. The tty layer will ensure that the
* transmitter is empty if requested by the caller, so there's
* no need to wait for it here.
*/
imr = atmel_uart_readl(port, ATMEL_US_IMR);
atmel_uart_writel(port, ATMEL_US_IDR, -1);
/* disable receiver and transmitter */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS | ATMEL_US_RXDIS);
atmel_port->tx_stopped = true;
/* mode */
if (port->rs485.flags & SER_RS485_ENABLED) {
atmel_uart_writel(port, ATMEL_US_TTGR,
port->rs485.delay_rts_after_send);
mode |= ATMEL_US_USMODE_RS485;
} else if (port->iso7816.flags & SER_ISO7816_ENABLED) {
atmel_uart_writel(port, ATMEL_US_TTGR, port->iso7816.tg);
/* select mck clock, and output */
mode |= ATMEL_US_USCLKS_MCK | ATMEL_US_CLKO;
/* set max iterations */
mode |= ATMEL_US_MAX_ITER(3);
if ((port->iso7816.flags & SER_ISO7816_T_PARAM)
== SER_ISO7816_T(0))
mode |= ATMEL_US_USMODE_ISO7816_T0;
else
mode |= ATMEL_US_USMODE_ISO7816_T1;
} else if (termios->c_cflag & CRTSCTS) {
/* RS232 with hardware handshake (RTS/CTS) */
if (atmel_use_fifo(port) &&
!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) {
/*
* with ATMEL_US_USMODE_HWHS set, the controller will
* be able to drive the RTS pin high/low when the RX
* FIFO is above RXFTHRES/below RXFTHRES2.
* It will also disable the transmitter when the CTS
* pin is high.
* This mode is not activated if CTS pin is a GPIO
* because in this case, the transmitter is always
* disabled (there must be an internal pull-up
* responsible for this behaviour).
* If the RTS pin is a GPIO, the controller won't be
* able to drive it according to the FIFO thresholds,
* but it will be handled by the driver.
*/
mode |= ATMEL_US_USMODE_HWHS;
} else {
/*
* For platforms without FIFO, the flow control is
* handled by the driver.
*/
mode |= ATMEL_US_USMODE_NORMAL;
}
} else {
/* RS232 without hadware handshake */
mode |= ATMEL_US_USMODE_NORMAL;
}
/*
* Set the baud rate:
* Fractional baudrate allows to setup output frequency more
* accurately. This feature is enabled only when using normal mode.
* baudrate = selected clock / (8 * (2 - OVER) * (CD + FP / 8))
* Currently, OVER is always set to 0 so we get
* baudrate = selected clock / (16 * (CD + FP / 8))
* then
* 8 CD + FP = selected clock / (2 * baudrate)
*/
if (atmel_port->has_frac_baudrate) {
div = DIV_ROUND_CLOSEST(port->uartclk, baud * 2);
cd = div >> 3;
fp = div & ATMEL_US_FP_MASK;
} else {
cd = uart_get_divisor(port, baud);
}
if (cd > 65535) { /* BRGR is 16-bit, so switch to slower clock */
cd /= 8;
mode |= ATMEL_US_USCLKS_MCK_DIV8;
}
quot = cd | fp << ATMEL_US_FP_OFFSET;
if (!(port->iso7816.flags & SER_ISO7816_ENABLED))
atmel_uart_writel(port, ATMEL_US_BRGR, quot);
/* set the mode, clock divisor, parity, stop bits and data size */
atmel_uart_writel(port, ATMEL_US_MR, mode);
/*
* when switching the mode, set the RTS line state according to the
* new mode, otherwise keep the former state
*/
if ((old_mode & ATMEL_US_USMODE) != (mode & ATMEL_US_USMODE)) {
unsigned int rts_state;
if ((mode & ATMEL_US_USMODE) == ATMEL_US_USMODE_HWHS) {
/* let the hardware control the RTS line */
rts_state = ATMEL_US_RTSDIS;
} else {
/* force RTS line to low level */
rts_state = ATMEL_US_RTSEN;
}
atmel_uart_writel(port, ATMEL_US_CR, rts_state);
}
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN);
atmel_port->tx_stopped = false;
/* restore interrupts */
atmel_uart_writel(port, ATMEL_US_IER, imr);
/* CTS flow-control and modem-status interrupts */
if (UART_ENABLE_MS(port, termios->c_cflag))
atmel_enable_ms(port);
else
atmel_disable_ms(port);
spin_unlock_irqrestore(&port->lock, flags);
}
static void atmel_set_ldisc(struct uart_port *port, struct ktermios *termios)
{
if (termios->c_line == N_PPS) {
port->flags |= UPF_HARDPPS_CD;
spin_lock_irq(&port->lock);
atmel_enable_ms(port);
spin_unlock_irq(&port->lock);
} else {
port->flags &= ~UPF_HARDPPS_CD;
if (!UART_ENABLE_MS(port, termios->c_cflag)) {
spin_lock_irq(&port->lock);
atmel_disable_ms(port);
spin_unlock_irq(&port->lock);
}
}
}
/*
* Return string describing the specified port
*/
static const char *atmel_type(struct uart_port *port)
{
return (port->type == PORT_ATMEL) ? "ATMEL_SERIAL" : NULL;
}
/*
* Release the memory region(s) being used by 'port'.
*/
static void atmel_release_port(struct uart_port *port)
{
struct platform_device *mpdev = to_platform_device(port->dev->parent);
int size = resource_size(mpdev->resource);
release_mem_region(port->mapbase, size);
if (port->flags & UPF_IOREMAP) {
iounmap(port->membase);
port->membase = NULL;
}
}
/*
* Request the memory region(s) being used by 'port'.
*/
static int atmel_request_port(struct uart_port *port)
{
struct platform_device *mpdev = to_platform_device(port->dev->parent);
int size = resource_size(mpdev->resource);
if (!request_mem_region(port->mapbase, size, "atmel_serial"))
return -EBUSY;
if (port->flags & UPF_IOREMAP) {
port->membase = ioremap(port->mapbase, size);
if (port->membase == NULL) {
release_mem_region(port->mapbase, size);
return -ENOMEM;
}
}
return 0;
}
/*
* Configure/autoconfigure the port.
*/
static void atmel_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_ATMEL;
atmel_request_port(port);
}
}
/*
* Verify the new serial_struct (for TIOCSSERIAL).
*/
static int atmel_verify_port(struct uart_port *port, struct serial_struct *ser)
{
int ret = 0;
if (ser->type != PORT_UNKNOWN && ser->type != PORT_ATMEL)
ret = -EINVAL;
if (port->irq != ser->irq)
ret = -EINVAL;
if (ser->io_type != SERIAL_IO_MEM)
ret = -EINVAL;
if (port->uartclk / 16 != ser->baud_base)
ret = -EINVAL;
if (port->mapbase != (unsigned long)ser->iomem_base)
ret = -EINVAL;
if (port->iobase != ser->port)
ret = -EINVAL;
if (ser->hub6 != 0)
ret = -EINVAL;
return ret;
}
#ifdef CONFIG_CONSOLE_POLL
static int atmel_poll_get_char(struct uart_port *port)
{
while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_RXRDY))
cpu_relax();
return atmel_uart_read_char(port);
}
static void atmel_poll_put_char(struct uart_port *port, unsigned char ch)
{
while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY))
cpu_relax();
atmel_uart_write_char(port, ch);
}
#endif
static const struct uart_ops atmel_pops = {
.tx_empty = atmel_tx_empty,
.set_mctrl = atmel_set_mctrl,
.get_mctrl = atmel_get_mctrl,
.stop_tx = atmel_stop_tx,
.start_tx = atmel_start_tx,
.stop_rx = atmel_stop_rx,
.enable_ms = atmel_enable_ms,
.break_ctl = atmel_break_ctl,
.startup = atmel_startup,
.shutdown = atmel_shutdown,
.flush_buffer = atmel_flush_buffer,
.set_termios = atmel_set_termios,
.set_ldisc = atmel_set_ldisc,
.type = atmel_type,
.release_port = atmel_release_port,
.request_port = atmel_request_port,
.config_port = atmel_config_port,
.verify_port = atmel_verify_port,
.pm = atmel_serial_pm,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = atmel_poll_get_char,
.poll_put_char = atmel_poll_put_char,
#endif
};
/*
* Configure the port from the platform device resource info.
*/
static int atmel_init_port(struct atmel_uart_port *atmel_port,
struct platform_device *pdev)
{
int ret;
struct uart_port *port = &atmel_port->uart;
struct platform_device *mpdev = to_platform_device(pdev->dev.parent);
atmel_init_property(atmel_port, pdev);
atmel_set_ops(port);
port->iotype = UPIO_MEM;
port->flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
port->ops = &atmel_pops;
port->fifosize = 1;
port->dev = &pdev->dev;
port->mapbase = mpdev->resource[0].start;
port->irq = platform_get_irq(mpdev, 0);
port->rs485_config = atmel_config_rs485;
port->iso7816_config = atmel_config_iso7816;
port->membase = NULL;
memset(&atmel_port->rx_ring, 0, sizeof(atmel_port->rx_ring));
ret = uart_get_rs485_mode(port);
if (ret)
return ret;
/* for console, the clock could already be configured */
if (!atmel_port->clk) {
atmel_port->clk = clk_get(&mpdev->dev, "usart");
if (IS_ERR(atmel_port->clk)) {
ret = PTR_ERR(atmel_port->clk);
atmel_port->clk = NULL;
return ret;
}
ret = clk_prepare_enable(atmel_port->clk);
if (ret) {
clk_put(atmel_port->clk);
atmel_port->clk = NULL;
return ret;
}
port->uartclk = clk_get_rate(atmel_port->clk);
clk_disable_unprepare(atmel_port->clk);
/* only enable clock when USART is in use */
}
/*
* Use TXEMPTY for interrupt when rs485 or ISO7816 else TXRDY or
* ENDTX|TXBUFE
*/
if (atmel_uart_is_half_duplex(port))
atmel_port->tx_done_mask = ATMEL_US_TXEMPTY;
else if (atmel_use_pdc_tx(port)) {
port->fifosize = PDC_BUFFER_SIZE;
atmel_port->tx_done_mask = ATMEL_US_ENDTX | ATMEL_US_TXBUFE;
} else {
atmel_port->tx_done_mask = ATMEL_US_TXRDY;
}
return 0;
}
#ifdef CONFIG_SERIAL_ATMEL_CONSOLE
static void atmel_console_putchar(struct uart_port *port, int ch)
{
while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY))
cpu_relax();
atmel_uart_write_char(port, ch);
}
/*
* Interrupts are disabled on entering
*/
static void atmel_console_write(struct console *co, const char *s, u_int count)
{
struct uart_port *port = &atmel_ports[co->index].uart;
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned int status, imr;
unsigned int pdc_tx;
/*
* First, save IMR and then disable interrupts
*/
imr = atmel_uart_readl(port, ATMEL_US_IMR);
atmel_uart_writel(port, ATMEL_US_IDR,
ATMEL_US_RXRDY | atmel_port->tx_done_mask);
/* Store PDC transmit status and disable it */
pdc_tx = atmel_uart_readl(port, ATMEL_PDC_PTSR) & ATMEL_PDC_TXTEN;
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS);
/* Make sure that tx path is actually able to send characters */
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN);
atmel_port->tx_stopped = false;
uart_console_write(port, s, count, atmel_console_putchar);
/*
* Finally, wait for transmitter to become empty
* and restore IMR
*/
do {
status = atmel_uart_readl(port, ATMEL_US_CSR);
} while (!(status & ATMEL_US_TXRDY));
/* Restore PDC transmit status */
if (pdc_tx)
atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN);
/* set interrupts back the way they were */
atmel_uart_writel(port, ATMEL_US_IER, imr);
}
/*
* If the port was already initialised (eg, by a boot loader),
* try to determine the current setup.
*/
static void __init atmel_console_get_options(struct uart_port *port, int *baud,
int *parity, int *bits)
{
unsigned int mr, quot;
/*
* If the baud rate generator isn't running, the port wasn't
* initialized by the boot loader.
*/
quot = atmel_uart_readl(port, ATMEL_US_BRGR) & ATMEL_US_CD;
if (!quot)
return;
mr = atmel_uart_readl(port, ATMEL_US_MR) & ATMEL_US_CHRL;
if (mr == ATMEL_US_CHRL_8)
*bits = 8;
else
*bits = 7;
mr = atmel_uart_readl(port, ATMEL_US_MR) & ATMEL_US_PAR;
if (mr == ATMEL_US_PAR_EVEN)
*parity = 'e';
else if (mr == ATMEL_US_PAR_ODD)
*parity = 'o';
/*
* The serial core only rounds down when matching this to a
* supported baud rate. Make sure we don't end up slightly
* lower than one of those, as it would make us fall through
* to a much lower baud rate than we really want.
*/
*baud = port->uartclk / (16 * (quot - 1));
}
static int __init atmel_console_setup(struct console *co, char *options)
{
int ret;
struct uart_port *port = &atmel_ports[co->index].uart;
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (port->membase == NULL) {
/* Port not initialized yet - delay setup */
return -ENODEV;
}
ret = clk_prepare_enable(atmel_ports[co->index].clk);
if (ret)
return ret;
atmel_uart_writel(port, ATMEL_US_IDR, -1);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN);
atmel_port->tx_stopped = false;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
atmel_console_get_options(port, &baud, &parity, &bits);
return uart_set_options(port, co, baud, parity, bits, flow);
}
static struct uart_driver atmel_uart;
static struct console atmel_console = {
.name = ATMEL_DEVICENAME,
.write = atmel_console_write,
.device = uart_console_device,
.setup = atmel_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &atmel_uart,
};
#define ATMEL_CONSOLE_DEVICE (&atmel_console)
#else
#define ATMEL_CONSOLE_DEVICE NULL
#endif
static struct uart_driver atmel_uart = {
.owner = THIS_MODULE,
.driver_name = "atmel_serial",
.dev_name = ATMEL_DEVICENAME,
.major = SERIAL_ATMEL_MAJOR,
.minor = MINOR_START,
.nr = ATMEL_MAX_UART,
.cons = ATMEL_CONSOLE_DEVICE,
};
#ifdef CONFIG_PM
static bool atmel_serial_clk_will_stop(void)
{
#ifdef CONFIG_ARCH_AT91
return at91_suspend_entering_slow_clock();
#else
return false;
#endif
}
static int atmel_serial_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct uart_port *port = platform_get_drvdata(pdev);
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
if (uart_console(port) && console_suspend_enabled) {
/* Drain the TX shifter */
while (!(atmel_uart_readl(port, ATMEL_US_CSR) &
ATMEL_US_TXEMPTY))
cpu_relax();
}
if (uart_console(port) && !console_suspend_enabled) {
/* Cache register values as we won't get a full shutdown/startup
* cycle
*/
atmel_port->cache.mr = atmel_uart_readl(port, ATMEL_US_MR);
atmel_port->cache.imr = atmel_uart_readl(port, ATMEL_US_IMR);
atmel_port->cache.brgr = atmel_uart_readl(port, ATMEL_US_BRGR);
atmel_port->cache.rtor = atmel_uart_readl(port,
atmel_port->rtor);
atmel_port->cache.ttgr = atmel_uart_readl(port, ATMEL_US_TTGR);
atmel_port->cache.fmr = atmel_uart_readl(port, ATMEL_US_FMR);
atmel_port->cache.fimr = atmel_uart_readl(port, ATMEL_US_FIMR);
}
/* we can not wake up if we're running on slow clock */
atmel_port->may_wakeup = device_may_wakeup(&pdev->dev);
if (atmel_serial_clk_will_stop()) {
unsigned long flags;
spin_lock_irqsave(&atmel_port->lock_suspended, flags);
atmel_port->suspended = true;
spin_unlock_irqrestore(&atmel_port->lock_suspended, flags);
device_set_wakeup_enable(&pdev->dev, 0);
}
uart_suspend_port(&atmel_uart, port);
return 0;
}
static int atmel_serial_resume(struct platform_device *pdev)
{
struct uart_port *port = platform_get_drvdata(pdev);
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
unsigned long flags;
if (uart_console(port) && !console_suspend_enabled) {
atmel_uart_writel(port, ATMEL_US_MR, atmel_port->cache.mr);
atmel_uart_writel(port, ATMEL_US_IER, atmel_port->cache.imr);
atmel_uart_writel(port, ATMEL_US_BRGR, atmel_port->cache.brgr);
atmel_uart_writel(port, atmel_port->rtor,
atmel_port->cache.rtor);
atmel_uart_writel(port, ATMEL_US_TTGR, atmel_port->cache.ttgr);
if (atmel_port->fifo_size) {
atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_FIFOEN |
ATMEL_US_RXFCLR | ATMEL_US_TXFLCLR);
atmel_uart_writel(port, ATMEL_US_FMR,
atmel_port->cache.fmr);
atmel_uart_writel(port, ATMEL_US_FIER,
atmel_port->cache.fimr);
}
atmel_start_rx(port);
}
spin_lock_irqsave(&atmel_port->lock_suspended, flags);
if (atmel_port->pending) {
atmel_handle_receive(port, atmel_port->pending);
atmel_handle_status(port, atmel_port->pending,
atmel_port->pending_status);
atmel_handle_transmit(port, atmel_port->pending);
atmel_port->pending = 0;
}
atmel_port->suspended = false;
spin_unlock_irqrestore(&atmel_port->lock_suspended, flags);
uart_resume_port(&atmel_uart, port);
device_set_wakeup_enable(&pdev->dev, atmel_port->may_wakeup);
return 0;
}
#else
#define atmel_serial_suspend NULL
#define atmel_serial_resume NULL
#endif
static void atmel_serial_probe_fifos(struct atmel_uart_port *atmel_port,
struct platform_device *pdev)
{
atmel_port->fifo_size = 0;
atmel_port->rts_low = 0;
atmel_port->rts_high = 0;
if (of_property_read_u32(pdev->dev.of_node,
"atmel,fifo-size",
&atmel_port->fifo_size))
return;
if (!atmel_port->fifo_size)
return;
if (atmel_port->fifo_size < ATMEL_MIN_FIFO_SIZE) {
atmel_port->fifo_size = 0;
dev_err(&pdev->dev, "Invalid FIFO size\n");
return;
}
/*
* 0 <= rts_low <= rts_high <= fifo_size
* Once their CTS line asserted by the remote peer, some x86 UARTs tend
* to flush their internal TX FIFO, commonly up to 16 data, before
* actually stopping to send new data. So we try to set the RTS High
* Threshold to a reasonably high value respecting this 16 data
* empirical rule when possible.
*/
atmel_port->rts_high = max_t(int, atmel_port->fifo_size >> 1,
atmel_port->fifo_size - ATMEL_RTS_HIGH_OFFSET);
atmel_port->rts_low = max_t(int, atmel_port->fifo_size >> 2,
atmel_port->fifo_size - ATMEL_RTS_LOW_OFFSET);
dev_info(&pdev->dev, "Using FIFO (%u data)\n",
atmel_port->fifo_size);
dev_dbg(&pdev->dev, "RTS High Threshold : %2u data\n",
atmel_port->rts_high);
dev_dbg(&pdev->dev, "RTS Low Threshold : %2u data\n",
atmel_port->rts_low);
}
static int atmel_serial_probe(struct platform_device *pdev)
{
struct atmel_uart_port *atmel_port;
struct device_node *np = pdev->dev.parent->of_node;
void *data;
int ret;
bool rs485_enabled;
BUILD_BUG_ON(ATMEL_SERIAL_RINGSIZE & (ATMEL_SERIAL_RINGSIZE - 1));
/*
* In device tree there is no node with "atmel,at91rm9200-usart-serial"
* as compatible string. This driver is probed by at91-usart mfd driver
* which is just a wrapper over the atmel_serial driver and
* spi-at91-usart driver. All attributes needed by this driver are
* found in of_node of parent.
*/
pdev->dev.of_node = np;
ret = of_alias_get_id(np, "serial");
if (ret < 0)
/* port id not found in platform data nor device-tree aliases:
* auto-enumerate it */
ret = find_first_zero_bit(atmel_ports_in_use, ATMEL_MAX_UART);
if (ret >= ATMEL_MAX_UART) {
ret = -ENODEV;
goto err;
}
if (test_and_set_bit(ret, atmel_ports_in_use)) {
/* port already in use */
ret = -EBUSY;
goto err;
}
atmel_port = &atmel_ports[ret];
atmel_port->backup_imr = 0;
atmel_port->uart.line = ret;
atmel_port->uart.has_sysrq = IS_ENABLED(CONFIG_SERIAL_ATMEL_CONSOLE);
atmel_serial_probe_fifos(atmel_port, pdev);
atomic_set(&atmel_port->tasklet_shutdown, 0);
spin_lock_init(&atmel_port->lock_suspended);
ret = atmel_init_port(atmel_port, pdev);
if (ret)
goto err_clear_bit;
atmel_port->gpios = mctrl_gpio_init(&atmel_port->uart, 0);
if (IS_ERR(atmel_port->gpios)) {
ret = PTR_ERR(atmel_port->gpios);
goto err_clear_bit;
}
if (!atmel_use_pdc_rx(&atmel_port->uart)) {
ret = -ENOMEM;
data = kmalloc_array(ATMEL_SERIAL_RINGSIZE,
sizeof(struct atmel_uart_char),
GFP_KERNEL);
if (!data)
goto err_alloc_ring;
atmel_port->rx_ring.buf = data;
}
rs485_enabled = atmel_port->uart.rs485.flags & SER_RS485_ENABLED;
ret = uart_add_one_port(&atmel_uart, &atmel_port->uart);
if (ret)
goto err_add_port;
#ifdef CONFIG_SERIAL_ATMEL_CONSOLE
if (uart_console(&atmel_port->uart)
&& ATMEL_CONSOLE_DEVICE->flags & CON_ENABLED) {
/*
* The serial core enabled the clock for us, so undo
* the clk_prepare_enable() in atmel_console_setup()
*/
clk_disable_unprepare(atmel_port->clk);
}
#endif
device_init_wakeup(&pdev->dev, 1);
platform_set_drvdata(pdev, atmel_port);
/*
* The peripheral clock has been disabled by atmel_init_port():
* enable it before accessing I/O registers
*/
clk_prepare_enable(atmel_port->clk);
if (rs485_enabled) {
atmel_uart_writel(&atmel_port->uart, ATMEL_US_MR,
ATMEL_US_USMODE_NORMAL);
atmel_uart_writel(&atmel_port->uart, ATMEL_US_CR,
ATMEL_US_RTSEN);
}
/*
* Get port name of usart or uart
*/
atmel_get_ip_name(&atmel_port->uart);
/*
* The peripheral clock can now safely be disabled till the port
* is used
*/
clk_disable_unprepare(atmel_port->clk);
return 0;
err_add_port:
kfree(atmel_port->rx_ring.buf);
atmel_port->rx_ring.buf = NULL;
err_alloc_ring:
if (!uart_console(&atmel_port->uart)) {
clk_put(atmel_port->clk);
atmel_port->clk = NULL;
}
err_clear_bit:
clear_bit(atmel_port->uart.line, atmel_ports_in_use);
err:
return ret;
}
/*
* Even if the driver is not modular, it makes sense to be able to
* unbind a device: there can be many bound devices, and there are
* situations where dynamic binding and unbinding can be useful.
*
* For example, a connected device can require a specific firmware update
* protocol that needs bitbanging on IO lines, but use the regular serial
* port in the normal case.
*/
static int atmel_serial_remove(struct platform_device *pdev)
{
struct uart_port *port = platform_get_drvdata(pdev);
struct atmel_uart_port *atmel_port = to_atmel_uart_port(port);
int ret = 0;
tasklet_kill(&atmel_port->tasklet_rx);
tasklet_kill(&atmel_port->tasklet_tx);
device_init_wakeup(&pdev->dev, 0);
ret = uart_remove_one_port(&atmel_uart, port);
kfree(atmel_port->rx_ring.buf);
/* "port" is allocated statically, so we shouldn't free it */
clear_bit(port->line, atmel_ports_in_use);
clk_put(atmel_port->clk);
atmel_port->clk = NULL;
pdev->dev.of_node = NULL;
return ret;
}
static struct platform_driver atmel_serial_driver = {
.probe = atmel_serial_probe,
.remove = atmel_serial_remove,
.suspend = atmel_serial_suspend,
.resume = atmel_serial_resume,
.driver = {
.name = "atmel_usart_serial",
.of_match_table = of_match_ptr(atmel_serial_dt_ids),
},
};
static int __init atmel_serial_init(void)
{
int ret;
ret = uart_register_driver(&atmel_uart);
if (ret)
return ret;
ret = platform_driver_register(&atmel_serial_driver);
if (ret)
uart_unregister_driver(&atmel_uart);
return ret;
}
device_initcall(atmel_serial_init);