linux-stable/drivers/gpu/drm/imagination/pvr_vm.c

1118 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_vm.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_gem.h"
#include "pvr_mmu.h"
#include "pvr_rogue_fwif.h"
#include "pvr_rogue_heap_config.h"
#include <drm/drm_exec.h>
#include <drm/drm_gem.h>
#include <drm/drm_gpuvm.h>
#include <linux/container_of.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gfp_types.h>
#include <linux/kref.h>
#include <linux/mutex.h>
#include <linux/stddef.h>
/**
* DOC: Memory context
*
* This is the "top level" datatype in the VM code. It's exposed in the public
* API as an opaque handle.
*/
/**
* struct pvr_vm_context - Context type used to represent a single VM.
*/
struct pvr_vm_context {
/**
* @pvr_dev: The PowerVR device to which this context is bound.
* This binding is immutable for the life of the context.
*/
struct pvr_device *pvr_dev;
/** @mmu_ctx: The context for binding to physical memory. */
struct pvr_mmu_context *mmu_ctx;
/** @gpuvm_mgr: GPUVM object associated with this context. */
struct drm_gpuvm gpuvm_mgr;
/** @lock: Global lock on this VM. */
struct mutex lock;
/**
* @fw_mem_ctx_obj: Firmware object representing firmware memory
* context.
*/
struct pvr_fw_object *fw_mem_ctx_obj;
/** @ref_count: Reference count of object. */
struct kref ref_count;
/**
* @dummy_gem: GEM object to enable VM reservation. All private BOs
* should use the @dummy_gem.resv and not their own _resv field.
*/
struct drm_gem_object dummy_gem;
};
static inline
struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
{
return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
}
struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
{
if (vm_ctx)
kref_get(&vm_ctx->ref_count);
return vm_ctx;
}
/**
* pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
* page table structure behind a VM context.
* @vm_ctx: Target VM context.
*/
dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
{
return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
}
/**
* pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
* @vm_ctx: Target VM context.
*
* This is used to allow private BOs to share a dma_resv for faster fence
* updates.
*
* Returns: The dma_resv pointer.
*/
struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
{
return vm_ctx->dummy_gem.resv;
}
/**
* DOC: Memory mappings
*/
/**
* struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
*/
struct pvr_vm_gpuva {
/** @base: The wrapped drm_gpuva object. */
struct drm_gpuva base;
};
static __always_inline
struct pvr_vm_gpuva *to_pvr_vm_gpuva(struct drm_gpuva *gpuva)
{
return container_of(gpuva, struct pvr_vm_gpuva, base);
}
enum pvr_vm_bind_type {
PVR_VM_BIND_TYPE_MAP,
PVR_VM_BIND_TYPE_UNMAP,
};
/**
* struct pvr_vm_bind_op - Context of a map/unmap operation.
*/
struct pvr_vm_bind_op {
/** @type: Map or unmap. */
enum pvr_vm_bind_type type;
/** @pvr_obj: Object associated with mapping (map only). */
struct pvr_gem_object *pvr_obj;
/**
* @vm_ctx: VM context where the mapping will be created or destroyed.
*/
struct pvr_vm_context *vm_ctx;
/** @mmu_op_ctx: MMU op context. */
struct pvr_mmu_op_context *mmu_op_ctx;
/** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
struct drm_gpuvm_bo *gpuvm_bo;
/**
* @new_va: Prealloced VA mapping object (init in callback).
* Used when creating a mapping.
*/
struct pvr_vm_gpuva *new_va;
/**
* @prev_va: Prealloced VA mapping object (init in callback).
* Used when a mapping or unmapping operation overlaps an existing
* mapping and splits away the beginning into a new mapping.
*/
struct pvr_vm_gpuva *prev_va;
/**
* @next_va: Prealloced VA mapping object (init in callback).
* Used when a mapping or unmapping operation overlaps an existing
* mapping and splits away the end into a new mapping.
*/
struct pvr_vm_gpuva *next_va;
/** @offset: Offset into @pvr_obj to begin mapping from. */
u64 offset;
/** @device_addr: Device-virtual address at the start of the mapping. */
u64 device_addr;
/** @size: Size of the desired mapping. */
u64 size;
};
/**
* pvr_vm_bind_op_exec() - Execute a single bind op.
* @bind_op: Bind op context.
*
* Returns:
* * 0 on success,
* * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
* a callback function.
*/
static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
{
switch (bind_op->type) {
case PVR_VM_BIND_TYPE_MAP:
return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
bind_op, bind_op->device_addr,
bind_op->size,
gem_from_pvr_gem(bind_op->pvr_obj),
bind_op->offset);
case PVR_VM_BIND_TYPE_UNMAP:
return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
bind_op, bind_op->device_addr,
bind_op->size);
}
/*
* This shouldn't happen unless something went wrong
* in drm_sched.
*/
WARN_ON(1);
return -EINVAL;
}
static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
{
drm_gpuvm_bo_put(bind_op->gpuvm_bo);
kfree(bind_op->new_va);
kfree(bind_op->prev_va);
kfree(bind_op->next_va);
if (bind_op->pvr_obj)
pvr_gem_object_put(bind_op->pvr_obj);
if (bind_op->mmu_op_ctx)
pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
}
static int
pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
struct pvr_vm_context *vm_ctx,
struct pvr_gem_object *pvr_obj, u64 offset,
u64 device_addr, u64 size)
{
struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
const bool is_user = vm_ctx == vm_ctx->pvr_dev->kernel_vm_ctx;
const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
struct sg_table *sgt;
u64 offset_plus_size;
int err;
if (check_add_overflow(offset, size, &offset_plus_size))
return -EINVAL;
if (is_user &&
!pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
return -EINVAL;
}
if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
offset & ~PAGE_MASK || size & ~PAGE_MASK ||
offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
return -EINVAL;
bind_op->type = PVR_VM_BIND_TYPE_MAP;
dma_resv_lock(obj->resv, NULL);
bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
dma_resv_unlock(obj->resv);
if (IS_ERR(bind_op->gpuvm_bo))
return PTR_ERR(bind_op->gpuvm_bo);
bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
err = -ENOMEM;
goto err_bind_op_fini;
}
/* Pin pages so they're ready for use. */
sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
err = PTR_ERR_OR_ZERO(sgt);
if (err)
goto err_bind_op_fini;
bind_op->mmu_op_ctx =
pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
if (err) {
bind_op->mmu_op_ctx = NULL;
goto err_bind_op_fini;
}
bind_op->pvr_obj = pvr_obj;
bind_op->vm_ctx = vm_ctx;
bind_op->device_addr = device_addr;
bind_op->size = size;
bind_op->offset = offset;
return 0;
err_bind_op_fini:
pvr_vm_bind_op_fini(bind_op);
return err;
}
static int
pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
struct pvr_vm_context *vm_ctx, u64 device_addr,
u64 size)
{
int err;
if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
return -EINVAL;
bind_op->type = PVR_VM_BIND_TYPE_UNMAP;
bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
if (!bind_op->prev_va || !bind_op->next_va) {
err = -ENOMEM;
goto err_bind_op_fini;
}
bind_op->mmu_op_ctx =
pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
if (err) {
bind_op->mmu_op_ctx = NULL;
goto err_bind_op_fini;
}
bind_op->vm_ctx = vm_ctx;
bind_op->device_addr = device_addr;
bind_op->size = size;
return 0;
err_bind_op_fini:
pvr_vm_bind_op_fini(bind_op);
return err;
}
static int
pvr_vm_bind_op_lock_resvs(struct drm_exec *exec, struct pvr_vm_bind_op *bind_op)
{
drm_exec_until_all_locked(exec) {
struct drm_gem_object *r_obj = &bind_op->vm_ctx->dummy_gem;
struct drm_gpuvm *gpuvm = &bind_op->vm_ctx->gpuvm_mgr;
struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;
struct drm_gpuvm_bo *gpuvm_bo;
/* Acquire lock on the vm_context's reserve object. */
int err = drm_exec_lock_obj(exec, r_obj);
drm_exec_retry_on_contention(exec);
if (err)
return err;
/* Acquire lock on all BOs in the context. */
list_for_each_entry(gpuvm_bo, &gpuvm->extobj.list,
list.entry.extobj) {
err = drm_exec_lock_obj(exec, gpuvm_bo->obj);
drm_exec_retry_on_contention(exec);
if (err)
return err;
}
/* Unmap operations don't have an object to lock. */
if (!pvr_obj)
break;
/* Acquire lock on the GEM being mapped. */
err = drm_exec_lock_obj(exec,
gem_from_pvr_gem(bind_op->pvr_obj));
drm_exec_retry_on_contention(exec);
if (err)
return err;
}
return 0;
}
/**
* pvr_vm_gpuva_map() - Insert a mapping into a memory context.
* @op: gpuva op containing the remap details.
* @op_ctx: Operation context.
*
* Context: Called by drm_gpuvm_sm_map following a successful mapping while
* @op_ctx.vm_ctx mutex is held.
*
* Return:
* * 0 on success, or
* * Any error returned by pvr_mmu_map().
*/
static int
pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
{
struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
struct pvr_vm_bind_op *ctx = op_ctx;
int err;
if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
return -EINVAL;
err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
op->map.va.addr);
if (err)
return err;
drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
ctx->new_va = NULL;
return 0;
}
/**
* pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
* @op: gpuva op containing the unmap details.
* @op_ctx: Operation context.
*
* Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
* @op_ctx.vm_ctx mutex is held.
*
* Return:
* * 0 on success, or
* * Any error returned by pvr_mmu_unmap().
*/
static int
pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
{
struct pvr_vm_bind_op *ctx = op_ctx;
int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
op->unmap.va->va.range);
if (err)
return err;
drm_gpuva_unmap(&op->unmap);
drm_gpuva_unlink(op->unmap.va);
return 0;
}
/**
* pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
* @op: gpuva op containing the remap details.
* @op_ctx: Operation context.
*
* Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
* mapping or unmapping operation causes a region to be split. The
* @op_ctx.vm_ctx mutex is held.
*
* Return:
* * 0 on success, or
* * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
*/
static int
pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
{
struct pvr_vm_bind_op *ctx = op_ctx;
u64 va_start = 0, va_range = 0;
int err;
drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
if (err)
return err;
/* No actual remap required: the page table tree depth is fixed to 3,
* and we use 4k page table entries only for now.
*/
drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);
if (op->remap.prev) {
pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
ctx->prev_va = NULL;
}
if (op->remap.next) {
pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
ctx->next_va = NULL;
}
drm_gpuva_unlink(op->remap.unmap->va);
return 0;
}
/*
* Public API
*
* For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
*/
/**
* pvr_device_addr_is_valid() - Tests whether a device-virtual address
* is valid.
* @device_addr: Virtual device address to test.
*
* Return:
* * %true if @device_addr is within the valid range for a device page
* table and is aligned to the device page size, or
* * %false otherwise.
*/
bool
pvr_device_addr_is_valid(u64 device_addr)
{
return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
(device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
}
/**
* pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
* address and associated size are both valid.
* @vm_ctx: Target VM context.
* @device_addr: Virtual device address to test.
* @size: Size of the range based at @device_addr to test.
*
* Calling pvr_device_addr_is_valid() twice (once on @size, and again on
* @device_addr + @size) to verify a device-virtual address range initially
* seems intuitive, but it produces a false-negative when the address range
* is right at the end of device-virtual address space.
*
* This function catches that corner case, as well as checking that
* @size is non-zero.
*
* Return:
* * %true if @device_addr is device page aligned; @size is device page
* aligned; the range specified by @device_addr and @size is within the
* bounds of the device-virtual address space, and @size is non-zero, or
* * %false otherwise.
*/
bool
pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
u64 device_addr, u64 size)
{
return pvr_device_addr_is_valid(device_addr) &&
drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
(device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
}
void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
{
kfree(to_pvr_vm_context(gpuvm));
}
static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
.vm_free = pvr_gpuvm_free,
.sm_step_map = pvr_vm_gpuva_map,
.sm_step_remap = pvr_vm_gpuva_remap,
.sm_step_unmap = pvr_vm_gpuva_unmap,
};
static void
fw_mem_context_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
struct pvr_vm_context *vm_ctx = priv;
fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
}
/**
* pvr_vm_create_context() - Create a new VM context.
* @pvr_dev: Target PowerVR device.
* @is_userspace_context: %true if this context is for userspace. This will
* create a firmware memory context for the VM context
* and disable warnings when tearing down mappings.
*
* Return:
* * A handle to the newly-minted VM context on success,
* * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
* missing or has an unsupported value,
* * -%ENOMEM if allocation of the structure behind the opaque handle fails,
* or
* * Any error encountered while setting up internal structures.
*/
struct pvr_vm_context *
pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_vm_context *vm_ctx;
u16 device_addr_bits;
int err;
err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
&device_addr_bits);
if (err) {
drm_err(drm_dev,
"Failed to get device virtual address space bits\n");
return ERR_PTR(err);
}
if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
drm_err(drm_dev,
"Device has unsupported virtual address space size\n");
return ERR_PTR(-EINVAL);
}
vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
if (!vm_ctx)
return ERR_PTR(-ENOMEM);
drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
vm_ctx->pvr_dev = pvr_dev;
kref_init(&vm_ctx->ref_count);
mutex_init(&vm_ctx->lock);
drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
0, &pvr_dev->base, &vm_ctx->dummy_gem,
0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);
vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
err = PTR_ERR_OR_ZERO(&vm_ctx->mmu_ctx);
if (err) {
vm_ctx->mmu_ctx = NULL;
goto err_put_ctx;
}
if (is_userspace_context) {
err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
if (err)
goto err_page_table_destroy;
}
return vm_ctx;
err_page_table_destroy:
pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
err_put_ctx:
pvr_vm_context_put(vm_ctx);
return ERR_PTR(err);
}
/**
* pvr_vm_context_release() - Teardown a VM context.
* @ref_count: Pointer to reference counter of the VM context.
*
* This function ensures that no mappings are left dangling by unmapping them
* all in order of ascending device-virtual address.
*/
static void
pvr_vm_context_release(struct kref *ref_count)
{
struct pvr_vm_context *vm_ctx =
container_of(ref_count, struct pvr_vm_context, ref_count);
if (vm_ctx->fw_mem_ctx_obj)
pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start,
vm_ctx->gpuvm_mgr.mm_range));
pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
drm_gem_private_object_fini(&vm_ctx->dummy_gem);
mutex_destroy(&vm_ctx->lock);
drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
}
/**
* pvr_vm_context_lookup() - Look up VM context from handle
* @pvr_file: Pointer to pvr_file structure.
* @handle: Object handle.
*
* Takes reference on VM context object. Call pvr_vm_context_put() to release.
*
* Returns:
* * The requested object on success, or
* * %NULL on failure (object does not exist in list, or is not a VM context)
*/
struct pvr_vm_context *
pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
{
struct pvr_vm_context *vm_ctx;
xa_lock(&pvr_file->vm_ctx_handles);
vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
if (vm_ctx)
kref_get(&vm_ctx->ref_count);
xa_unlock(&pvr_file->vm_ctx_handles);
return vm_ctx;
}
/**
* pvr_vm_context_put() - Release a reference on a VM context
* @vm_ctx: Target VM context.
*
* Returns:
* * %true if the VM context was destroyed, or
* * %false if there are any references still remaining.
*/
bool
pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
{
if (vm_ctx)
return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);
return true;
}
/**
* pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
* given file.
* @pvr_file: Pointer to pvr_file structure.
*
* Removes all vm_contexts associated with @pvr_file from the device VM context
* list and drops initial references. vm_contexts will then be destroyed once
* all outstanding references are dropped.
*/
void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
{
struct pvr_vm_context *vm_ctx;
unsigned long handle;
xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
/* vm_ctx is not used here because that would create a race with xa_erase */
pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
}
}
/**
* pvr_vm_map() - Map a section of physical memory into a section of
* device-virtual memory.
* @vm_ctx: Target VM context.
* @pvr_obj: Target PowerVR memory object.
* @pvr_obj_offset: Offset into @pvr_obj to map from.
* @device_addr: Virtual device address at the start of the requested mapping.
* @size: Size of the requested mapping.
*
* No handle is returned to represent the mapping. Instead, callers should
* remember @device_addr and use that as a handle.
*
* Return:
* * 0 on success,
* * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
* address; the region specified by @pvr_obj_offset and @size does not fall
* entirely within @pvr_obj, or any part of the specified region of @pvr_obj
* is not device-virtual page-aligned,
* * Any error encountered while performing internal operations required to
* destroy the mapping (returned from pvr_vm_gpuva_map or
* pvr_vm_gpuva_remap).
*/
int
pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
u64 pvr_obj_offset, u64 device_addr, u64 size)
{
struct pvr_vm_bind_op bind_op = {0};
struct drm_exec exec;
int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
pvr_obj_offset, device_addr,
size);
if (err)
return err;
drm_exec_init(&exec,
DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES);
pvr_gem_object_get(pvr_obj);
err = pvr_vm_bind_op_lock_resvs(&exec, &bind_op);
if (err)
goto err_cleanup;
err = pvr_vm_bind_op_exec(&bind_op);
drm_exec_fini(&exec);
err_cleanup:
pvr_vm_bind_op_fini(&bind_op);
return err;
}
/**
* pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
* @vm_ctx: Target VM context.
* @device_addr: Virtual device address at the start of the target mapping.
* @size: Size of the target mapping.
*
* Return:
* * 0 on success,
* * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
* address,
* * Any error encountered while performing internal operations required to
* destroy the mapping (returned from pvr_vm_gpuva_unmap or
* pvr_vm_gpuva_remap).
*/
int
pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
{
struct pvr_vm_bind_op bind_op = {0};
struct drm_exec exec;
int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, device_addr,
size);
if (err)
return err;
drm_exec_init(&exec,
DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES);
err = pvr_vm_bind_op_lock_resvs(&exec, &bind_op);
if (err)
goto err_cleanup;
err = pvr_vm_bind_op_exec(&bind_op);
drm_exec_fini(&exec);
err_cleanup:
pvr_vm_bind_op_fini(&bind_op);
return err;
}
/* Static data areas are determined by firmware. */
static const struct drm_pvr_static_data_area static_data_areas[] = {
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
.location_heap_id = DRM_PVR_HEAP_GENERAL,
.offset = 0,
.size = 128,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
.location_heap_id = DRM_PVR_HEAP_GENERAL,
.offset = 128,
.size = 1024,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
.offset = 0,
.size = 128,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
.offset = 128,
.size = 128,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
.location_heap_id = DRM_PVR_HEAP_USC_CODE,
.offset = 0,
.size = 128,
},
};
#define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)
/*
* The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
* static data area for each heap.
*/
static const struct drm_pvr_heap pvr_heaps[] = {
[DRM_PVR_HEAP_GENERAL] = {
.base = ROGUE_GENERAL_HEAP_BASE,
.size = ROGUE_GENERAL_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_PDS_CODE_DATA] = {
.base = ROGUE_PDSCODEDATA_HEAP_BASE,
.size = ROGUE_PDSCODEDATA_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_USC_CODE] = {
.base = ROGUE_USCCODE_HEAP_BASE,
.size = ROGUE_USCCODE_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_RGNHDR] = {
.base = ROGUE_RGNHDR_HEAP_BASE,
.size = ROGUE_RGNHDR_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_VIS_TEST] = {
.base = ROGUE_VISTEST_HEAP_BASE,
.size = ROGUE_VISTEST_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_TRANSFER_FRAG] = {
.base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
.size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
};
int
pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
struct drm_pvr_ioctl_dev_query_args *args)
{
struct drm_pvr_dev_query_static_data_areas query = {0};
int err;
if (!args->pointer) {
args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
return 0;
}
err = PVR_UOBJ_GET(query, args->size, args->pointer);
if (err < 0)
return err;
if (!query.static_data_areas.array) {
query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
goto copy_out;
}
if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
if (err < 0)
return err;
copy_out:
err = PVR_UOBJ_SET(args->pointer, args->size, query);
if (err < 0)
return err;
args->size = sizeof(query);
return 0;
}
int
pvr_heap_info_get(const struct pvr_device *pvr_dev,
struct drm_pvr_ioctl_dev_query_args *args)
{
struct drm_pvr_dev_query_heap_info query = {0};
u64 dest;
int err;
if (!args->pointer) {
args->size = sizeof(struct drm_pvr_dev_query_heap_info);
return 0;
}
err = PVR_UOBJ_GET(query, args->size, args->pointer);
if (err < 0)
return err;
if (!query.heaps.array) {
query.heaps.count = ARRAY_SIZE(pvr_heaps);
query.heaps.stride = sizeof(struct drm_pvr_heap);
goto copy_out;
}
if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
query.heaps.count = ARRAY_SIZE(pvr_heaps);
/* Region header heap is only present if BRN63142 is present. */
dest = query.heaps.array;
for (size_t i = 0; i < query.heaps.count; i++) {
struct drm_pvr_heap heap = pvr_heaps[i];
if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
heap.size = 0;
err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
if (err < 0)
return err;
dest += query.heaps.stride;
}
copy_out:
err = PVR_UOBJ_SET(args->pointer, args->size, query);
if (err < 0)
return err;
args->size = sizeof(query);
return 0;
}
/**
* pvr_heap_contains_range() - Determine if a given heap contains the specified
* device-virtual address range.
* @pvr_heap: Target heap.
* @start: Inclusive start of the target range.
* @end: Inclusive end of the target range.
*
* It is an error to call this function with values of @start and @end that do
* not satisfy the condition @start <= @end.
*/
static __always_inline bool
pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
{
return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
}
/**
* pvr_find_heap_containing() - Find a heap which contains the specified
* device-virtual address range.
* @pvr_dev: Target PowerVR device.
* @start: Start of the target range.
* @size: Size of the target range.
*
* Return:
* * A pointer to a constant instance of struct drm_pvr_heap representing the
* heap containing the entire range specified by @start and @size on
* success, or
* * %NULL if no such heap exists.
*/
const struct drm_pvr_heap *
pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
{
u64 end;
if (check_add_overflow(start, size - 1, &end))
return NULL;
/*
* There are no guarantees about the order of address ranges in
* &pvr_heaps, so iterate over the entire array for a heap whose
* range completely encompasses the given range.
*/
for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
/* Filter heaps that present only with an associated quirk */
if (heap_id == DRM_PVR_HEAP_RGNHDR &&
!PVR_HAS_QUIRK(pvr_dev, 63142)) {
continue;
}
if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
return &pvr_heaps[heap_id];
}
return NULL;
}
/**
* pvr_vm_find_gem_object() - Look up a buffer object from a given
* device-virtual address.
* @vm_ctx: [IN] Target VM context.
* @device_addr: [IN] Virtual device address at the start of the required
* object.
* @mapped_offset_out: [OUT] Pointer to location to write offset of the start
* of the mapped region within the buffer object. May be
* %NULL if this information is not required.
* @mapped_size_out: [OUT] Pointer to location to write size of the mapped
* region. May be %NULL if this information is not required.
*
* If successful, a reference will be taken on the buffer object. The caller
* must drop the reference with pvr_gem_object_put().
*
* Return:
* * The PowerVR buffer object mapped at @device_addr if one exists, or
* * %NULL otherwise.
*/
struct pvr_gem_object *
pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
u64 *mapped_offset_out, u64 *mapped_size_out)
{
struct pvr_gem_object *pvr_obj;
struct drm_gpuva *va;
mutex_lock(&vm_ctx->lock);
va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
if (!va)
goto err_unlock;
pvr_obj = gem_to_pvr_gem(va->gem.obj);
pvr_gem_object_get(pvr_obj);
if (mapped_offset_out)
*mapped_offset_out = va->gem.offset;
if (mapped_size_out)
*mapped_size_out = va->va.range;
mutex_unlock(&vm_ctx->lock);
return pvr_obj;
err_unlock:
mutex_unlock(&vm_ctx->lock);
return NULL;
}
/**
* pvr_vm_get_fw_mem_context: Get object representing firmware memory context
* @vm_ctx: Target VM context.
*
* Returns:
* * FW object representing firmware memory context, or
* * %NULL if this VM context does not have a firmware memory context.
*/
struct pvr_fw_object *
pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
{
return vm_ctx->fw_mem_ctx_obj;
}