linux-stable/kernel/sched/stats.h
Brian Chen d168123f13 psi: Fix PSI_MEM_FULL state when tasks are in memstall and doing reclaim
[ Upstream commit cb0e52b774 ]

We've noticed cases where tasks in a cgroup are stalled on memory but
there is little memory FULL pressure since tasks stay on the runqueue
in reclaim.

A simple example involves a single threaded program that keeps leaking
and touching large amounts of memory. It runs in a cgroup with swap
enabled, memory.high set at 10M and cpu.max ratio set at 5%. Though
there is significant CPU pressure and memory SOME, there is barely any
memory FULL since the task enters reclaim and stays on the runqueue.
However, this memory-bound task is effectively stalled on memory and
we expect memory FULL to match memory SOME in this scenario.

The code is confused about memstall && running, thinking there is a
stalled task and a productive task when there's only one task: a
reclaimer that's counted as both. To fix this, we redefine the
condition for PSI_MEM_FULL to check that all running tasks are in an
active memstall instead of checking that there are no running tasks.

        case PSI_MEM_FULL:
-               return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
+               return unlikely(tasks[NR_MEMSTALL] &&
+                       tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);

This will capture reclaimers. It will also capture tasks that called
psi_memstall_enter() and are about to sleep, but this should be
negligible noise.

Signed-off-by: Brian Chen <brianchen118@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20211110213312.310243-1-brianchen118@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:04:27 +01:00

251 lines
7.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifdef CONFIG_SCHEDSTATS
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{
if (rq) {
rq->rq_sched_info.run_delay += delta;
rq->rq_sched_info.pcount++;
}
}
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_cpu_time += delta;
}
static inline void
rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_sched_info.run_delay += delta;
}
#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
#define __schedstat_inc(var) do { var++; } while (0)
#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
#define __schedstat_add(var, amt) do { var += (amt); } while (0)
#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
#define __schedstat_set(var, val) do { var = (val); } while (0)
#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
#define schedstat_val(var) (var)
#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
#else /* !CONFIG_SCHEDSTATS: */
static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { }
static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { }
# define schedstat_enabled() 0
# define __schedstat_inc(var) do { } while (0)
# define schedstat_inc(var) do { } while (0)
# define __schedstat_add(var, amt) do { } while (0)
# define schedstat_add(var, amt) do { } while (0)
# define __schedstat_set(var, val) do { } while (0)
# define schedstat_set(var, val) do { } while (0)
# define schedstat_val(var) 0
# define schedstat_val_or_zero(var) 0
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_PSI
/*
* PSI tracks state that persists across sleeps, such as iowaits and
* memory stalls. As a result, it has to distinguish between sleeps,
* where a task's runnable state changes, and requeues, where a task
* and its state are being moved between CPUs and runqueues.
*/
static inline void psi_enqueue(struct task_struct *p, bool wakeup)
{
int clear = 0, set = TSK_RUNNING;
if (static_branch_likely(&psi_disabled))
return;
if (p->in_memstall)
set |= TSK_MEMSTALL_RUNNING;
if (!wakeup || p->sched_psi_wake_requeue) {
if (p->in_memstall)
set |= TSK_MEMSTALL;
if (p->sched_psi_wake_requeue)
p->sched_psi_wake_requeue = 0;
} else {
if (p->in_iowait)
clear |= TSK_IOWAIT;
}
psi_task_change(p, clear, set);
}
static inline void psi_dequeue(struct task_struct *p, bool sleep)
{
int clear = TSK_RUNNING;
if (static_branch_likely(&psi_disabled))
return;
/*
* A voluntary sleep is a dequeue followed by a task switch. To
* avoid walking all ancestors twice, psi_task_switch() handles
* TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
* Do nothing here.
*/
if (sleep)
return;
if (p->in_memstall)
clear |= (TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
psi_task_change(p, clear, 0);
}
static inline void psi_ttwu_dequeue(struct task_struct *p)
{
if (static_branch_likely(&psi_disabled))
return;
/*
* Is the task being migrated during a wakeup? Make sure to
* deregister its sleep-persistent psi states from the old
* queue, and let psi_enqueue() know it has to requeue.
*/
if (unlikely(p->in_iowait || p->in_memstall)) {
struct rq_flags rf;
struct rq *rq;
int clear = 0;
if (p->in_iowait)
clear |= TSK_IOWAIT;
if (p->in_memstall)
clear |= TSK_MEMSTALL;
rq = __task_rq_lock(p, &rf);
psi_task_change(p, clear, 0);
p->sched_psi_wake_requeue = 1;
__task_rq_unlock(rq, &rf);
}
}
static inline void psi_sched_switch(struct task_struct *prev,
struct task_struct *next,
bool sleep)
{
if (static_branch_likely(&psi_disabled))
return;
psi_task_switch(prev, next, sleep);
}
#else /* CONFIG_PSI */
static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
static inline void psi_ttwu_dequeue(struct task_struct *p) {}
static inline void psi_sched_switch(struct task_struct *prev,
struct task_struct *next,
bool sleep) {}
#endif /* CONFIG_PSI */
#ifdef CONFIG_SCHED_INFO
/*
* We are interested in knowing how long it was from the *first* time a
* task was queued to the time that it finally hit a CPU, we call this routine
* from dequeue_task() to account for possible rq->clock skew across CPUs. The
* delta taken on each CPU would annul the skew.
*/
static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
{
unsigned long long delta = 0;
if (!t->sched_info.last_queued)
return;
delta = rq_clock(rq) - t->sched_info.last_queued;
t->sched_info.last_queued = 0;
t->sched_info.run_delay += delta;
rq_sched_info_dequeue(rq, delta);
}
/*
* Called when a task finally hits the CPU. We can now calculate how
* long it was waiting to run. We also note when it began so that we
* can keep stats on how long its timeslice is.
*/
static void sched_info_arrive(struct rq *rq, struct task_struct *t)
{
unsigned long long now, delta = 0;
if (!t->sched_info.last_queued)
return;
now = rq_clock(rq);
delta = now - t->sched_info.last_queued;
t->sched_info.last_queued = 0;
t->sched_info.run_delay += delta;
t->sched_info.last_arrival = now;
t->sched_info.pcount++;
rq_sched_info_arrive(rq, delta);
}
/*
* This function is only called from enqueue_task(), but also only updates
* the timestamp if it is already not set. It's assumed that
* sched_info_dequeue() will clear that stamp when appropriate.
*/
static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
{
if (!t->sched_info.last_queued)
t->sched_info.last_queued = rq_clock(rq);
}
/*
* Called when a process ceases being the active-running process involuntarily
* due, typically, to expiring its time slice (this may also be called when
* switching to the idle task). Now we can calculate how long we ran.
* Also, if the process is still in the TASK_RUNNING state, call
* sched_info_enqueue() to mark that it has now again started waiting on
* the runqueue.
*/
static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
{
unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
rq_sched_info_depart(rq, delta);
if (task_is_running(t))
sched_info_enqueue(rq, t);
}
/*
* Called when tasks are switched involuntarily due, typically, to expiring
* their time slice. (This may also be called when switching to or from
* the idle task.) We are only called when prev != next.
*/
static inline void
sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
/*
* prev now departs the CPU. It's not interesting to record
* stats about how efficient we were at scheduling the idle
* process, however.
*/
if (prev != rq->idle)
sched_info_depart(rq, prev);
if (next != rq->idle)
sched_info_arrive(rq, next);
}
#else /* !CONFIG_SCHED_INFO: */
# define sched_info_enqueue(rq, t) do { } while (0)
# define sched_info_dequeue(rq, t) do { } while (0)
# define sched_info_switch(rq, t, next) do { } while (0)
#endif /* CONFIG_SCHED_INFO */