linux-stable/arch/x86/platform/uv/tlb_uv.c
Andrew Banman 1b17c6df85 x86/platform/uv/BAU: Fix HUB errors by remove initial write to sw-ack register
Writing to the software acknowledge clear register when there are no
pending messages causes a HUB error to assert. The original intent of this
write was to clear the pending bits before start of operation, but this is
an incorrect method and has been determined to be unnecessary.

Signed-off-by: Andrew Banman <abanman@hpe.com>
Acked-by: Mike Travis <mike.travis@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: rja@hpe.com
Cc: sivanich@hpe.com
Link: http://lkml.kernel.org/r/1487351269-181133-1-git-send-email-abanman@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-01 10:28:20 +01:00

2225 lines
58 KiB
C

/*
* SGI UltraViolet TLB flush routines.
*
* (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
*
* This code is released under the GNU General Public License version 2 or
* later.
*/
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <asm/mmu_context.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_bau.h>
#include <asm/apic.h>
#include <asm/tsc.h>
#include <asm/irq_vectors.h>
#include <asm/timer.h>
static struct bau_operations ops;
static struct bau_operations uv123_bau_ops = {
.bau_gpa_to_offset = uv_gpa_to_offset,
.read_l_sw_ack = read_mmr_sw_ack,
.read_g_sw_ack = read_gmmr_sw_ack,
.write_l_sw_ack = write_mmr_sw_ack,
.write_g_sw_ack = write_gmmr_sw_ack,
.write_payload_first = write_mmr_payload_first,
.write_payload_last = write_mmr_payload_last,
};
static struct bau_operations uv4_bau_ops = {
.bau_gpa_to_offset = uv_gpa_to_soc_phys_ram,
.read_l_sw_ack = read_mmr_proc_sw_ack,
.read_g_sw_ack = read_gmmr_proc_sw_ack,
.write_l_sw_ack = write_mmr_proc_sw_ack,
.write_g_sw_ack = write_gmmr_proc_sw_ack,
.write_payload_first = write_mmr_proc_payload_first,
.write_payload_last = write_mmr_proc_payload_last,
};
/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
static int timeout_base_ns[] = {
20,
160,
1280,
10240,
81920,
655360,
5242880,
167772160
};
static int timeout_us;
static bool nobau = true;
static int nobau_perm;
static cycles_t congested_cycles;
/* tunables: */
static int max_concurr = MAX_BAU_CONCURRENT;
static int max_concurr_const = MAX_BAU_CONCURRENT;
static int plugged_delay = PLUGGED_DELAY;
static int plugsb4reset = PLUGSB4RESET;
static int giveup_limit = GIVEUP_LIMIT;
static int timeoutsb4reset = TIMEOUTSB4RESET;
static int ipi_reset_limit = IPI_RESET_LIMIT;
static int complete_threshold = COMPLETE_THRESHOLD;
static int congested_respns_us = CONGESTED_RESPONSE_US;
static int congested_reps = CONGESTED_REPS;
static int disabled_period = DISABLED_PERIOD;
static struct tunables tunables[] = {
{&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
{&plugged_delay, PLUGGED_DELAY},
{&plugsb4reset, PLUGSB4RESET},
{&timeoutsb4reset, TIMEOUTSB4RESET},
{&ipi_reset_limit, IPI_RESET_LIMIT},
{&complete_threshold, COMPLETE_THRESHOLD},
{&congested_respns_us, CONGESTED_RESPONSE_US},
{&congested_reps, CONGESTED_REPS},
{&disabled_period, DISABLED_PERIOD},
{&giveup_limit, GIVEUP_LIMIT}
};
static struct dentry *tunables_dir;
static struct dentry *tunables_file;
/* these correspond to the statistics printed by ptc_seq_show() */
static char *stat_description[] = {
"sent: number of shootdown messages sent",
"stime: time spent sending messages",
"numuvhubs: number of hubs targeted with shootdown",
"numuvhubs16: number times 16 or more hubs targeted",
"numuvhubs8: number times 8 or more hubs targeted",
"numuvhubs4: number times 4 or more hubs targeted",
"numuvhubs2: number times 2 or more hubs targeted",
"numuvhubs1: number times 1 hub targeted",
"numcpus: number of cpus targeted with shootdown",
"dto: number of destination timeouts",
"retries: destination timeout retries sent",
"rok: : destination timeouts successfully retried",
"resetp: ipi-style resource resets for plugs",
"resett: ipi-style resource resets for timeouts",
"giveup: fall-backs to ipi-style shootdowns",
"sto: number of source timeouts",
"bz: number of stay-busy's",
"throt: number times spun in throttle",
"swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
"recv: shootdown messages received",
"rtime: time spent processing messages",
"all: shootdown all-tlb messages",
"one: shootdown one-tlb messages",
"mult: interrupts that found multiple messages",
"none: interrupts that found no messages",
"retry: number of retry messages processed",
"canc: number messages canceled by retries",
"nocan: number retries that found nothing to cancel",
"reset: number of ipi-style reset requests processed",
"rcan: number messages canceled by reset requests",
"disable: number times use of the BAU was disabled",
"enable: number times use of the BAU was re-enabled"
};
static int __init setup_bau(char *arg)
{
int result;
if (!arg)
return -EINVAL;
result = strtobool(arg, &nobau);
if (result)
return result;
/* we need to flip the logic here, so that bau=y sets nobau to false */
nobau = !nobau;
if (!nobau)
pr_info("UV BAU Enabled\n");
else
pr_info("UV BAU Disabled\n");
return 0;
}
early_param("bau", setup_bau);
/* base pnode in this partition */
static int uv_base_pnode __read_mostly;
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
static void
set_bau_on(void)
{
int cpu;
struct bau_control *bcp;
if (nobau_perm) {
pr_info("BAU not initialized; cannot be turned on\n");
return;
}
nobau = false;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->nobau = false;
}
pr_info("BAU turned on\n");
return;
}
static void
set_bau_off(void)
{
int cpu;
struct bau_control *bcp;
nobau = true;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->nobau = true;
}
pr_info("BAU turned off\n");
return;
}
/*
* Determine the first node on a uvhub. 'Nodes' are used for kernel
* memory allocation.
*/
static int __init uvhub_to_first_node(int uvhub)
{
int node, b;
for_each_online_node(node) {
b = uv_node_to_blade_id(node);
if (uvhub == b)
return node;
}
return -1;
}
/*
* Determine the apicid of the first cpu on a uvhub.
*/
static int __init uvhub_to_first_apicid(int uvhub)
{
int cpu;
for_each_present_cpu(cpu)
if (uvhub == uv_cpu_to_blade_id(cpu))
return per_cpu(x86_cpu_to_apicid, cpu);
return -1;
}
/*
* Free a software acknowledge hardware resource by clearing its Pending
* bit. This will return a reply to the sender.
* If the message has timed out, a reply has already been sent by the
* hardware but the resource has not been released. In that case our
* clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message).
*/
static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
int do_acknowledge)
{
unsigned long dw;
struct bau_pq_entry *msg;
msg = mdp->msg;
if (!msg->canceled && do_acknowledge) {
dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
ops.write_l_sw_ack(dw);
}
msg->replied_to = 1;
msg->swack_vec = 0;
}
/*
* Process the receipt of a RETRY message
*/
static void bau_process_retry_msg(struct msg_desc *mdp,
struct bau_control *bcp)
{
int i;
int cancel_count = 0;
unsigned long msg_res;
unsigned long mmr = 0;
struct bau_pq_entry *msg = mdp->msg;
struct bau_pq_entry *msg2;
struct ptc_stats *stat = bcp->statp;
stat->d_retries++;
/*
* cancel any message from msg+1 to the retry itself
*/
for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
if (msg2 > mdp->queue_last)
msg2 = mdp->queue_first;
if (msg2 == msg)
break;
/* same conditions for cancellation as do_reset */
if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
(msg2->swack_vec) && ((msg2->swack_vec &
msg->swack_vec) == 0) &&
(msg2->sending_cpu == msg->sending_cpu) &&
(msg2->msg_type != MSG_NOOP)) {
mmr = ops.read_l_sw_ack();
msg_res = msg2->swack_vec;
/*
* This is a message retry; clear the resources held
* by the previous message only if they timed out.
* If it has not timed out we have an unexpected
* situation to report.
*/
if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
unsigned long mr;
/*
* Is the resource timed out?
* Make everyone ignore the cancelled message.
*/
msg2->canceled = 1;
stat->d_canceled++;
cancel_count++;
mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
ops.write_l_sw_ack(mr);
}
}
}
if (!cancel_count)
stat->d_nocanceled++;
}
/*
* Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message.
*/
static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
int do_acknowledge)
{
short socket_ack_count = 0;
short *sp;
struct atomic_short *asp;
struct ptc_stats *stat = bcp->statp;
struct bau_pq_entry *msg = mdp->msg;
struct bau_control *smaster = bcp->socket_master;
/*
* This must be a normal message, or retry of a normal message
*/
if (msg->address == TLB_FLUSH_ALL) {
local_flush_tlb();
stat->d_alltlb++;
} else {
__flush_tlb_one(msg->address);
stat->d_onetlb++;
}
stat->d_requestee++;
/*
* One cpu on each uvhub has the additional job on a RETRY
* of releasing the resource held by the message that is
* being retried. That message is identified by sending
* cpu number.
*/
if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
bau_process_retry_msg(mdp, bcp);
/*
* This is a swack message, so we have to reply to it.
* Count each responding cpu on the socket. This avoids
* pinging the count's cache line back and forth between
* the sockets.
*/
sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
asp = (struct atomic_short *)sp;
socket_ack_count = atom_asr(1, asp);
if (socket_ack_count == bcp->cpus_in_socket) {
int msg_ack_count;
/*
* Both sockets dump their completed count total into
* the message's count.
*/
*sp = 0;
asp = (struct atomic_short *)&msg->acknowledge_count;
msg_ack_count = atom_asr(socket_ack_count, asp);
if (msg_ack_count == bcp->cpus_in_uvhub) {
/*
* All cpus in uvhub saw it; reply
* (unless we are in the UV2 workaround)
*/
reply_to_message(mdp, bcp, do_acknowledge);
}
}
return;
}
/*
* Determine the first cpu on a pnode.
*/
static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
{
int cpu;
struct hub_and_pnode *hpp;
for_each_present_cpu(cpu) {
hpp = &smaster->thp[cpu];
if (pnode == hpp->pnode)
return cpu;
}
return -1;
}
/*
* Last resort when we get a large number of destination timeouts is
* to clear resources held by a given cpu.
* Do this with IPI so that all messages in the BAU message queue
* can be identified by their nonzero swack_vec field.
*
* This is entered for a single cpu on the uvhub.
* The sender want's this uvhub to free a specific message's
* swack resources.
*/
static void do_reset(void *ptr)
{
int i;
struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
struct reset_args *rap = (struct reset_args *)ptr;
struct bau_pq_entry *msg;
struct ptc_stats *stat = bcp->statp;
stat->d_resets++;
/*
* We're looking for the given sender, and
* will free its swack resource.
* If all cpu's finally responded after the timeout, its
* message 'replied_to' was set.
*/
for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
unsigned long msg_res;
/* do_reset: same conditions for cancellation as
bau_process_retry_msg() */
if ((msg->replied_to == 0) &&
(msg->canceled == 0) &&
(msg->sending_cpu == rap->sender) &&
(msg->swack_vec) &&
(msg->msg_type != MSG_NOOP)) {
unsigned long mmr;
unsigned long mr;
/*
* make everyone else ignore this message
*/
msg->canceled = 1;
/*
* only reset the resource if it is still pending
*/
mmr = ops.read_l_sw_ack();
msg_res = msg->swack_vec;
mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
if (mmr & msg_res) {
stat->d_rcanceled++;
ops.write_l_sw_ack(mr);
}
}
}
return;
}
/*
* Use IPI to get all target uvhubs to release resources held by
* a given sending cpu number.
*/
static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
{
int pnode;
int apnode;
int maskbits;
int sender = bcp->cpu;
cpumask_t *mask = bcp->uvhub_master->cpumask;
struct bau_control *smaster = bcp->socket_master;
struct reset_args reset_args;
reset_args.sender = sender;
cpumask_clear(mask);
/* find a single cpu for each uvhub in this distribution mask */
maskbits = sizeof(struct pnmask) * BITSPERBYTE;
/* each bit is a pnode relative to the partition base pnode */
for (pnode = 0; pnode < maskbits; pnode++) {
int cpu;
if (!bau_uvhub_isset(pnode, distribution))
continue;
apnode = pnode + bcp->partition_base_pnode;
cpu = pnode_to_first_cpu(apnode, smaster);
cpumask_set_cpu(cpu, mask);
}
/* IPI all cpus; preemption is already disabled */
smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
return;
}
/*
* Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
* number, not an absolute. It converts a duration in cycles to a duration in
* ns.
*/
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
struct cyc2ns_data *data = cyc2ns_read_begin();
unsigned long long ns;
ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
cyc2ns_read_end(data);
return ns;
}
/*
* The reverse of the above; converts a duration in ns to a duration in cycles.
*/
static inline unsigned long long ns_2_cycles(unsigned long long ns)
{
struct cyc2ns_data *data = cyc2ns_read_begin();
unsigned long long cyc;
cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul;
cyc2ns_read_end(data);
return cyc;
}
static inline unsigned long cycles_2_us(unsigned long long cyc)
{
return cycles_2_ns(cyc) / NSEC_PER_USEC;
}
static inline cycles_t sec_2_cycles(unsigned long sec)
{
return ns_2_cycles(sec * NSEC_PER_SEC);
}
static inline unsigned long long usec_2_cycles(unsigned long usec)
{
return ns_2_cycles(usec * NSEC_PER_USEC);
}
/*
* wait for all cpus on this hub to finish their sends and go quiet
* leaves uvhub_quiesce set so that no new broadcasts are started by
* bau_flush_send_and_wait()
*/
static inline void quiesce_local_uvhub(struct bau_control *hmaster)
{
atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
}
/*
* mark this quiet-requestor as done
*/
static inline void end_uvhub_quiesce(struct bau_control *hmaster)
{
atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
}
static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
{
unsigned long descriptor_status;
descriptor_status = uv_read_local_mmr(mmr_offset);
descriptor_status >>= right_shift;
descriptor_status &= UV_ACT_STATUS_MASK;
return descriptor_status;
}
/*
* Wait for completion of a broadcast software ack message
* return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
*/
static int uv1_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift,
struct bau_control *bcp, long try)
{
unsigned long descriptor_status;
cycles_t ttm;
struct ptc_stats *stat = bcp->statp;
descriptor_status = uv1_read_status(mmr_offset, right_shift);
/* spin on the status MMR, waiting for it to go idle */
while ((descriptor_status != DS_IDLE)) {
/*
* Our software ack messages may be blocked because
* there are no swack resources available. As long
* as none of them has timed out hardware will NACK
* our message and its state will stay IDLE.
*/
if (descriptor_status == DS_SOURCE_TIMEOUT) {
stat->s_stimeout++;
return FLUSH_GIVEUP;
} else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
stat->s_dtimeout++;
ttm = get_cycles();
/*
* Our retries may be blocked by all destination
* swack resources being consumed, and a timeout
* pending. In that case hardware returns the
* ERROR that looks like a destination timeout.
*/
if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
bcp->conseccompletes = 0;
return FLUSH_RETRY_PLUGGED;
}
bcp->conseccompletes = 0;
return FLUSH_RETRY_TIMEOUT;
} else {
/*
* descriptor_status is still BUSY
*/
cpu_relax();
}
descriptor_status = uv1_read_status(mmr_offset, right_shift);
}
bcp->conseccompletes++;
return FLUSH_COMPLETE;
}
/*
* UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
* But not currently used.
*/
static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
{
return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
}
/*
* Return whether the status of the descriptor that is normally used for this
* cpu (the one indexed by its hub-relative cpu number) is busy.
* The status of the original 32 descriptors is always reflected in the 64
* bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
* The bit provided by the activation_status_2 register is irrelevant to
* the status if it is only being tested for busy or not busy.
*/
int normal_busy(struct bau_control *bcp)
{
int cpu = bcp->uvhub_cpu;
int mmr_offset;
int right_shift;
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
return (((((read_lmmr(mmr_offset) >> right_shift) &
UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
}
/*
* Entered when a bau descriptor has gone into a permanent busy wait because
* of a hardware bug.
* Workaround the bug.
*/
int handle_uv2_busy(struct bau_control *bcp)
{
struct ptc_stats *stat = bcp->statp;
stat->s_uv2_wars++;
bcp->busy = 1;
return FLUSH_GIVEUP;
}
static int uv2_3_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift,
struct bau_control *bcp, long try)
{
unsigned long descriptor_stat;
cycles_t ttm;
int desc = bcp->uvhub_cpu;
long busy_reps = 0;
struct ptc_stats *stat = bcp->statp;
descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
/* spin on the status MMR, waiting for it to go idle */
while (descriptor_stat != UV2H_DESC_IDLE) {
if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT)) {
/*
* A h/w bug on the destination side may
* have prevented the message being marked
* pending, thus it doesn't get replied to
* and gets continually nacked until it times
* out with a SOURCE_TIMEOUT.
*/
stat->s_stimeout++;
return FLUSH_GIVEUP;
} else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
ttm = get_cycles();
/*
* Our retries may be blocked by all destination
* swack resources being consumed, and a timeout
* pending. In that case hardware returns the
* ERROR that looks like a destination timeout.
* Without using the extended status we have to
* deduce from the short time that this was a
* strong nack.
*/
if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
bcp->conseccompletes = 0;
stat->s_plugged++;
/* FLUSH_RETRY_PLUGGED causes hang on boot */
return FLUSH_GIVEUP;
}
stat->s_dtimeout++;
bcp->conseccompletes = 0;
/* FLUSH_RETRY_TIMEOUT causes hang on boot */
return FLUSH_GIVEUP;
} else {
busy_reps++;
if (busy_reps > 1000000) {
/* not to hammer on the clock */
busy_reps = 0;
ttm = get_cycles();
if ((ttm - bcp->send_message) > bcp->timeout_interval)
return handle_uv2_busy(bcp);
}
/*
* descriptor_stat is still BUSY
*/
cpu_relax();
}
descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
}
bcp->conseccompletes++;
return FLUSH_COMPLETE;
}
/*
* There are 2 status registers; each and array[32] of 2 bits. Set up for
* which register to read and position in that register based on cpu in
* current hub.
*/
static int wait_completion(struct bau_desc *bau_desc, struct bau_control *bcp, long try)
{
int right_shift;
unsigned long mmr_offset;
int desc = bcp->uvhub_cpu;
if (desc < UV_CPUS_PER_AS) {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = desc * UV_ACT_STATUS_SIZE;
} else {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
}
if (bcp->uvhub_version == 1)
return uv1_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try);
else
return uv2_3_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try);
}
/*
* Our retries are blocked by all destination sw ack resources being
* in use, and a timeout is pending. In that case hardware immediately
* returns the ERROR that looks like a destination timeout.
*/
static void destination_plugged(struct bau_desc *bau_desc,
struct bau_control *bcp,
struct bau_control *hmaster, struct ptc_stats *stat)
{
udelay(bcp->plugged_delay);
bcp->plugged_tries++;
if (bcp->plugged_tries >= bcp->plugsb4reset) {
bcp->plugged_tries = 0;
quiesce_local_uvhub(hmaster);
spin_lock(&hmaster->queue_lock);
reset_with_ipi(&bau_desc->distribution, bcp);
spin_unlock(&hmaster->queue_lock);
end_uvhub_quiesce(hmaster);
bcp->ipi_attempts++;
stat->s_resets_plug++;
}
}
static void destination_timeout(struct bau_desc *bau_desc,
struct bau_control *bcp, struct bau_control *hmaster,
struct ptc_stats *stat)
{
hmaster->max_concurr = 1;
bcp->timeout_tries++;
if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
bcp->timeout_tries = 0;
quiesce_local_uvhub(hmaster);
spin_lock(&hmaster->queue_lock);
reset_with_ipi(&bau_desc->distribution, bcp);
spin_unlock(&hmaster->queue_lock);
end_uvhub_quiesce(hmaster);
bcp->ipi_attempts++;
stat->s_resets_timeout++;
}
}
/*
* Stop all cpus on a uvhub from using the BAU for a period of time.
* This is reversed by check_enable.
*/
static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
{
int tcpu;
struct bau_control *tbcp;
struct bau_control *hmaster;
cycles_t tm1;
hmaster = bcp->uvhub_master;
spin_lock(&hmaster->disable_lock);
if (!bcp->baudisabled) {
stat->s_bau_disabled++;
tm1 = get_cycles();
for_each_present_cpu(tcpu) {
tbcp = &per_cpu(bau_control, tcpu);
if (tbcp->uvhub_master == hmaster) {
tbcp->baudisabled = 1;
tbcp->set_bau_on_time =
tm1 + bcp->disabled_period;
}
}
}
spin_unlock(&hmaster->disable_lock);
}
static void count_max_concurr(int stat, struct bau_control *bcp,
struct bau_control *hmaster)
{
bcp->plugged_tries = 0;
bcp->timeout_tries = 0;
if (stat != FLUSH_COMPLETE)
return;
if (bcp->conseccompletes <= bcp->complete_threshold)
return;
if (hmaster->max_concurr >= hmaster->max_concurr_const)
return;
hmaster->max_concurr++;
}
static void record_send_stats(cycles_t time1, cycles_t time2,
struct bau_control *bcp, struct ptc_stats *stat,
int completion_status, int try)
{
cycles_t elapsed;
if (time2 > time1) {
elapsed = time2 - time1;
stat->s_time += elapsed;
if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
bcp->period_requests++;
bcp->period_time += elapsed;
if ((elapsed > congested_cycles) &&
(bcp->period_requests > bcp->cong_reps) &&
((bcp->period_time / bcp->period_requests) >
congested_cycles)) {
stat->s_congested++;
disable_for_period(bcp, stat);
}
}
} else
stat->s_requestor--;
if (completion_status == FLUSH_COMPLETE && try > 1)
stat->s_retriesok++;
else if (completion_status == FLUSH_GIVEUP) {
stat->s_giveup++;
if (get_cycles() > bcp->period_end)
bcp->period_giveups = 0;
bcp->period_giveups++;
if (bcp->period_giveups == 1)
bcp->period_end = get_cycles() + bcp->disabled_period;
if (bcp->period_giveups > bcp->giveup_limit) {
disable_for_period(bcp, stat);
stat->s_giveuplimit++;
}
}
}
/*
* Because of a uv1 hardware bug only a limited number of concurrent
* requests can be made.
*/
static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
{
spinlock_t *lock = &hmaster->uvhub_lock;
atomic_t *v;
v = &hmaster->active_descriptor_count;
if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
stat->s_throttles++;
do {
cpu_relax();
} while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
}
}
/*
* Handle the completion status of a message send.
*/
static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
struct bau_control *bcp, struct bau_control *hmaster,
struct ptc_stats *stat)
{
if (completion_status == FLUSH_RETRY_PLUGGED)
destination_plugged(bau_desc, bcp, hmaster, stat);
else if (completion_status == FLUSH_RETRY_TIMEOUT)
destination_timeout(bau_desc, bcp, hmaster, stat);
}
/*
* Send a broadcast and wait for it to complete.
*
* The flush_mask contains the cpus the broadcast is to be sent to including
* cpus that are on the local uvhub.
*
* Returns 0 if all flushing represented in the mask was done.
* Returns 1 if it gives up entirely and the original cpu mask is to be
* returned to the kernel.
*/
int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp,
struct bau_desc *bau_desc)
{
int seq_number = 0;
int completion_stat = 0;
int uv1 = 0;
long try = 0;
unsigned long index;
cycles_t time1;
cycles_t time2;
struct ptc_stats *stat = bcp->statp;
struct bau_control *hmaster = bcp->uvhub_master;
struct uv1_bau_msg_header *uv1_hdr = NULL;
struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
if (bcp->uvhub_version == 1) {
uv1 = 1;
uv1_throttle(hmaster, stat);
}
while (hmaster->uvhub_quiesce)
cpu_relax();
time1 = get_cycles();
if (uv1)
uv1_hdr = &bau_desc->header.uv1_hdr;
else
/* uv2 and uv3 */
uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
do {
if (try == 0) {
if (uv1)
uv1_hdr->msg_type = MSG_REGULAR;
else
uv2_3_hdr->msg_type = MSG_REGULAR;
seq_number = bcp->message_number++;
} else {
if (uv1)
uv1_hdr->msg_type = MSG_RETRY;
else
uv2_3_hdr->msg_type = MSG_RETRY;
stat->s_retry_messages++;
}
if (uv1)
uv1_hdr->sequence = seq_number;
else
uv2_3_hdr->sequence = seq_number;
index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
bcp->send_message = get_cycles();
write_mmr_activation(index);
try++;
completion_stat = wait_completion(bau_desc, bcp, try);
handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
bcp->ipi_attempts = 0;
stat->s_overipilimit++;
completion_stat = FLUSH_GIVEUP;
break;
}
cpu_relax();
} while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
(completion_stat == FLUSH_RETRY_TIMEOUT));
time2 = get_cycles();
count_max_concurr(completion_stat, bcp, hmaster);
while (hmaster->uvhub_quiesce)
cpu_relax();
atomic_dec(&hmaster->active_descriptor_count);
record_send_stats(time1, time2, bcp, stat, completion_stat, try);
if (completion_stat == FLUSH_GIVEUP)
/* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
return 1;
return 0;
}
/*
* The BAU is disabled for this uvhub. When the disabled time period has
* expired re-enable it.
* Return 0 if it is re-enabled for all cpus on this uvhub.
*/
static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
{
int tcpu;
struct bau_control *tbcp;
struct bau_control *hmaster;
hmaster = bcp->uvhub_master;
spin_lock(&hmaster->disable_lock);
if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
stat->s_bau_reenabled++;
for_each_present_cpu(tcpu) {
tbcp = &per_cpu(bau_control, tcpu);
if (tbcp->uvhub_master == hmaster) {
tbcp->baudisabled = 0;
tbcp->period_requests = 0;
tbcp->period_time = 0;
tbcp->period_giveups = 0;
}
}
spin_unlock(&hmaster->disable_lock);
return 0;
}
spin_unlock(&hmaster->disable_lock);
return -1;
}
static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
int remotes, struct bau_desc *bau_desc)
{
stat->s_requestor++;
stat->s_ntargcpu += remotes + locals;
stat->s_ntargremotes += remotes;
stat->s_ntarglocals += locals;
/* uvhub statistics */
hubs = bau_uvhub_weight(&bau_desc->distribution);
if (locals) {
stat->s_ntarglocaluvhub++;
stat->s_ntargremoteuvhub += (hubs - 1);
} else
stat->s_ntargremoteuvhub += hubs;
stat->s_ntarguvhub += hubs;
if (hubs >= 16)
stat->s_ntarguvhub16++;
else if (hubs >= 8)
stat->s_ntarguvhub8++;
else if (hubs >= 4)
stat->s_ntarguvhub4++;
else if (hubs >= 2)
stat->s_ntarguvhub2++;
else
stat->s_ntarguvhub1++;
}
/*
* Translate a cpu mask to the uvhub distribution mask in the BAU
* activation descriptor.
*/
static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
struct bau_desc *bau_desc, int *localsp, int *remotesp)
{
int cpu;
int pnode;
int cnt = 0;
struct hub_and_pnode *hpp;
for_each_cpu(cpu, flush_mask) {
/*
* The distribution vector is a bit map of pnodes, relative
* to the partition base pnode (and the partition base nasid
* in the header).
* Translate cpu to pnode and hub using a local memory array.
*/
hpp = &bcp->socket_master->thp[cpu];
pnode = hpp->pnode - bcp->partition_base_pnode;
bau_uvhub_set(pnode, &bau_desc->distribution);
cnt++;
if (hpp->uvhub == bcp->uvhub)
(*localsp)++;
else
(*remotesp)++;
}
if (!cnt)
return 1;
return 0;
}
/*
* globally purge translation cache of a virtual address or all TLB's
* @cpumask: mask of all cpu's in which the address is to be removed
* @mm: mm_struct containing virtual address range
* @start: start virtual address to be removed from TLB
* @end: end virtual address to be remove from TLB
* @cpu: the current cpu
*
* This is the entry point for initiating any UV global TLB shootdown.
*
* Purges the translation caches of all specified processors of the given
* virtual address, or purges all TLB's on specified processors.
*
* The caller has derived the cpumask from the mm_struct. This function
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
*
* The cpumask is converted into a uvhubmask of the uvhubs containing
* those cpus.
*
* Note that this function should be called with preemption disabled.
*
* Returns NULL if all remote flushing was done.
* Returns pointer to cpumask if some remote flushing remains to be
* done. The returned pointer is valid till preemption is re-enabled.
*/
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
struct mm_struct *mm,
unsigned long start,
unsigned long end,
unsigned int cpu)
{
int locals = 0;
int remotes = 0;
int hubs = 0;
struct bau_desc *bau_desc;
struct cpumask *flush_mask;
struct ptc_stats *stat;
struct bau_control *bcp;
unsigned long descriptor_status;
unsigned long status;
bcp = &per_cpu(bau_control, cpu);
if (bcp->nobau)
return cpumask;
stat = bcp->statp;
stat->s_enters++;
if (bcp->busy) {
descriptor_status =
read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
status = ((descriptor_status >> (bcp->uvhub_cpu *
UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
if (status == UV2H_DESC_BUSY)
return cpumask;
bcp->busy = 0;
}
/* bau was disabled due to slow response */
if (bcp->baudisabled) {
if (check_enable(bcp, stat)) {
stat->s_ipifordisabled++;
return cpumask;
}
}
/*
* Each sending cpu has a per-cpu mask which it fills from the caller's
* cpu mask. All cpus are converted to uvhubs and copied to the
* activation descriptor.
*/
flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
/* don't actually do a shootdown of the local cpu */
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
if (cpumask_test_cpu(cpu, cpumask))
stat->s_ntargself++;
bau_desc = bcp->descriptor_base;
bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
return NULL;
record_send_statistics(stat, locals, hubs, remotes, bau_desc);
if (!end || (end - start) <= PAGE_SIZE)
bau_desc->payload.address = start;
else
bau_desc->payload.address = TLB_FLUSH_ALL;
bau_desc->payload.sending_cpu = cpu;
/*
* uv_flush_send_and_wait returns 0 if all cpu's were messaged,
* or 1 if it gave up and the original cpumask should be returned.
*/
if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
return NULL;
else
return cpumask;
}
/*
* Search the message queue for any 'other' unprocessed message with the
* same software acknowledge resource bit vector as the 'msg' message.
*/
struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
struct bau_control *bcp)
{
struct bau_pq_entry *msg_next = msg + 1;
unsigned char swack_vec = msg->swack_vec;
if (msg_next > bcp->queue_last)
msg_next = bcp->queue_first;
while (msg_next != msg) {
if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
(msg_next->swack_vec == swack_vec))
return msg_next;
msg_next++;
if (msg_next > bcp->queue_last)
msg_next = bcp->queue_first;
}
return NULL;
}
/*
* UV2 needs to work around a bug in which an arriving message has not
* set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
* Such a message must be ignored.
*/
void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
{
unsigned long mmr_image;
unsigned char swack_vec;
struct bau_pq_entry *msg = mdp->msg;
struct bau_pq_entry *other_msg;
mmr_image = ops.read_l_sw_ack();
swack_vec = msg->swack_vec;
if ((swack_vec & mmr_image) == 0) {
/*
* This message was assigned a swack resource, but no
* reserved acknowlegment is pending.
* The bug has prevented this message from setting the MMR.
*/
/*
* Some message has set the MMR 'pending' bit; it might have
* been another message. Look for that message.
*/
other_msg = find_another_by_swack(msg, bcp);
if (other_msg) {
/*
* There is another. Process this one but do not
* ack it.
*/
bau_process_message(mdp, bcp, 0);
/*
* Let the natural processing of that other message
* acknowledge it. Don't get the processing of sw_ack's
* out of order.
*/
return;
}
}
/*
* Either the MMR shows this one pending a reply or there is no
* other message using this sw_ack, so it is safe to acknowledge it.
*/
bau_process_message(mdp, bcp, 1);
return;
}
/*
* The BAU message interrupt comes here. (registered by set_intr_gate)
* See entry_64.S
*
* We received a broadcast assist message.
*
* Interrupts are disabled; this interrupt could represent
* the receipt of several messages.
*
* All cores/threads on this hub get this interrupt.
* The last one to see it does the software ack.
* (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware may timeout the s/w ack and reply ERROR)
*/
void uv_bau_message_interrupt(struct pt_regs *regs)
{
int count = 0;
cycles_t time_start;
struct bau_pq_entry *msg;
struct bau_control *bcp;
struct ptc_stats *stat;
struct msg_desc msgdesc;
ack_APIC_irq();
time_start = get_cycles();
bcp = &per_cpu(bau_control, smp_processor_id());
stat = bcp->statp;
msgdesc.queue_first = bcp->queue_first;
msgdesc.queue_last = bcp->queue_last;
msg = bcp->bau_msg_head;
while (msg->swack_vec) {
count++;
msgdesc.msg_slot = msg - msgdesc.queue_first;
msgdesc.msg = msg;
if (bcp->uvhub_version == 2)
process_uv2_message(&msgdesc, bcp);
else
/* no error workaround for uv1 or uv3 */
bau_process_message(&msgdesc, bcp, 1);
msg++;
if (msg > msgdesc.queue_last)
msg = msgdesc.queue_first;
bcp->bau_msg_head = msg;
}
stat->d_time += (get_cycles() - time_start);
if (!count)
stat->d_nomsg++;
else if (count > 1)
stat->d_multmsg++;
}
/*
* Each target uvhub (i.e. a uvhub that has cpu's) needs to have
* shootdown message timeouts enabled. The timeout does not cause
* an interrupt, but causes an error message to be returned to
* the sender.
*/
static void __init enable_timeouts(void)
{
int uvhub;
int nuvhubs;
int pnode;
unsigned long mmr_image;
nuvhubs = uv_num_possible_blades();
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
if (!uv_blade_nr_possible_cpus(uvhub))
continue;
pnode = uv_blade_to_pnode(uvhub);
mmr_image = read_mmr_misc_control(pnode);
/*
* Set the timeout period and then lock it in, in three
* steps; captures and locks in the period.
*
* To program the period, the SOFT_ACK_MODE must be off.
*/
mmr_image &= ~(1L << SOFTACK_MSHIFT);
write_mmr_misc_control(pnode, mmr_image);
/*
* Set the 4-bit period.
*/
mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
write_mmr_misc_control(pnode, mmr_image);
/*
* UV1:
* Subsequent reversals of the timebase bit (3) cause an
* immediate timeout of one or all INTD resources as
* indicated in bits 2:0 (7 causes all of them to timeout).
*/
mmr_image |= (1L << SOFTACK_MSHIFT);
if (is_uv2_hub()) {
/* do not touch the legacy mode bit */
/* hw bug workaround; do not use extended status */
mmr_image &= ~(1L << UV2_EXT_SHFT);
} else if (is_uv3_hub()) {
mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
mmr_image |= (1L << SB_STATUS_SHFT);
}
write_mmr_misc_control(pnode, mmr_image);
}
}
static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
{
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void ptc_seq_stop(struct seq_file *file, void *data)
{
}
/*
* Display the statistics thru /proc/sgi_uv/ptc_statistics
* 'data' points to the cpu number
* Note: see the descriptions in stat_description[].
*/
static int ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
struct bau_control *bcp;
int cpu;
cpu = *(loff_t *)data;
if (!cpu) {
seq_puts(file,
"# cpu bauoff sent stime self locals remotes ncpus localhub ");
seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
seq_puts(file,
"numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
seq_puts(file,
"rok resetp resett giveup sto bz throt disable ");
seq_puts(file,
"enable wars warshw warwaits enters ipidis plugged ");
seq_puts(file,
"ipiover glim cong swack recv rtime all one mult ");
seq_puts(file, "none retry canc nocan reset rcan\n");
}
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
bcp = &per_cpu(bau_control, cpu);
if (bcp->nobau) {
seq_printf(file, "cpu %d bau disabled\n", cpu);
return 0;
}
stat = bcp->statp;
/* source side statistics */
seq_printf(file,
"cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
cpu, bcp->nobau, stat->s_requestor,
cycles_2_us(stat->s_time),
stat->s_ntargself, stat->s_ntarglocals,
stat->s_ntargremotes, stat->s_ntargcpu,
stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
stat->s_ntarguvhub, stat->s_ntarguvhub16);
seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
stat->s_ntarguvhub8, stat->s_ntarguvhub4,
stat->s_ntarguvhub2, stat->s_ntarguvhub1,
stat->s_dtimeout, stat->s_strongnacks);
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
stat->s_retry_messages, stat->s_retriesok,
stat->s_resets_plug, stat->s_resets_timeout,
stat->s_giveup, stat->s_stimeout,
stat->s_busy, stat->s_throttles);
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
stat->s_bau_disabled, stat->s_bau_reenabled,
stat->s_uv2_wars, stat->s_uv2_wars_hw,
stat->s_uv2_war_waits, stat->s_enters,
stat->s_ipifordisabled, stat->s_plugged,
stat->s_overipilimit, stat->s_giveuplimit,
stat->s_congested);
/* destination side statistics */
seq_printf(file,
"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
stat->d_requestee, cycles_2_us(stat->d_time),
stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
stat->d_nomsg, stat->d_retries, stat->d_canceled,
stat->d_nocanceled, stat->d_resets,
stat->d_rcanceled);
}
return 0;
}
/*
* Display the tunables thru debugfs
*/
static ssize_t tunables_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char *buf;
int ret;
buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
"max_concur plugged_delay plugsb4reset timeoutsb4reset",
"ipi_reset_limit complete_threshold congested_response_us",
"congested_reps disabled_period giveup_limit",
max_concurr, plugged_delay, plugsb4reset,
timeoutsb4reset, ipi_reset_limit, complete_threshold,
congested_respns_us, congested_reps, disabled_period,
giveup_limit);
if (!buf)
return -ENOMEM;
ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
kfree(buf);
return ret;
}
/*
* handle a write to /proc/sgi_uv/ptc_statistics
* -1: reset the statistics
* 0: display meaning of the statistics
*/
static ssize_t ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
int cpu;
int i;
int elements;
long input_arg;
char optstr[64];
struct ptc_stats *stat;
if (count == 0 || count > sizeof(optstr))
return -EINVAL;
if (copy_from_user(optstr, user, count))
return -EFAULT;
optstr[count - 1] = '\0';
if (!strcmp(optstr, "on")) {
set_bau_on();
return count;
} else if (!strcmp(optstr, "off")) {
set_bau_off();
return count;
}
if (kstrtol(optstr, 10, &input_arg) < 0) {
pr_debug("%s is invalid\n", optstr);
return -EINVAL;
}
if (input_arg == 0) {
elements = ARRAY_SIZE(stat_description);
pr_debug("# cpu: cpu number\n");
pr_debug("Sender statistics:\n");
for (i = 0; i < elements; i++)
pr_debug("%s\n", stat_description[i]);
} else if (input_arg == -1) {
for_each_present_cpu(cpu) {
stat = &per_cpu(ptcstats, cpu);
memset(stat, 0, sizeof(struct ptc_stats));
}
}
return count;
}
static int local_atoi(const char *name)
{
int val = 0;
for (;; name++) {
switch (*name) {
case '0' ... '9':
val = 10*val+(*name-'0');
break;
default:
return val;
}
}
}
/*
* Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
* Zero values reset them to defaults.
*/
static int parse_tunables_write(struct bau_control *bcp, char *instr,
int count)
{
char *p;
char *q;
int cnt = 0;
int val;
int e = ARRAY_SIZE(tunables);
p = instr + strspn(instr, WHITESPACE);
q = p;
for (; *p; p = q + strspn(q, WHITESPACE)) {
q = p + strcspn(p, WHITESPACE);
cnt++;
if (q == p)
break;
}
if (cnt != e) {
pr_info("bau tunable error: should be %d values\n", e);
return -EINVAL;
}
p = instr + strspn(instr, WHITESPACE);
q = p;
for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
q = p + strcspn(p, WHITESPACE);
val = local_atoi(p);
switch (cnt) {
case 0:
if (val == 0) {
max_concurr = MAX_BAU_CONCURRENT;
max_concurr_const = MAX_BAU_CONCURRENT;
continue;
}
if (val < 1 || val > bcp->cpus_in_uvhub) {
pr_debug(
"Error: BAU max concurrent %d is invalid\n",
val);
return -EINVAL;
}
max_concurr = val;
max_concurr_const = val;
continue;
default:
if (val == 0)
*tunables[cnt].tunp = tunables[cnt].deflt;
else
*tunables[cnt].tunp = val;
continue;
}
if (q == p)
break;
}
return 0;
}
/*
* Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
*/
static ssize_t tunables_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
int cpu;
int ret;
char instr[100];
struct bau_control *bcp;
if (count == 0 || count > sizeof(instr)-1)
return -EINVAL;
if (copy_from_user(instr, user, count))
return -EFAULT;
instr[count] = '\0';
cpu = get_cpu();
bcp = &per_cpu(bau_control, cpu);
ret = parse_tunables_write(bcp, instr, count);
put_cpu();
if (ret)
return ret;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->max_concurr = max_concurr;
bcp->max_concurr_const = max_concurr;
bcp->plugged_delay = plugged_delay;
bcp->plugsb4reset = plugsb4reset;
bcp->timeoutsb4reset = timeoutsb4reset;
bcp->ipi_reset_limit = ipi_reset_limit;
bcp->complete_threshold = complete_threshold;
bcp->cong_response_us = congested_respns_us;
bcp->cong_reps = congested_reps;
bcp->disabled_period = sec_2_cycles(disabled_period);
bcp->giveup_limit = giveup_limit;
}
return count;
}
static const struct seq_operations uv_ptc_seq_ops = {
.start = ptc_seq_start,
.next = ptc_seq_next,
.stop = ptc_seq_stop,
.show = ptc_seq_show
};
static int ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &uv_ptc_seq_ops);
}
static int tunables_open(struct inode *inode, struct file *file)
{
return 0;
}
static const struct file_operations proc_uv_ptc_operations = {
.open = ptc_proc_open,
.read = seq_read,
.write = ptc_proc_write,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct file_operations tunables_fops = {
.open = tunables_open,
.read = tunables_read,
.write = tunables_write,
.llseek = default_llseek,
};
static int __init uv_ptc_init(void)
{
struct proc_dir_entry *proc_uv_ptc;
if (!is_uv_system())
return 0;
proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
&proc_uv_ptc_operations);
if (!proc_uv_ptc) {
pr_err("unable to create %s proc entry\n",
UV_PTC_BASENAME);
return -EINVAL;
}
tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
if (!tunables_dir) {
pr_err("unable to create debugfs directory %s\n",
UV_BAU_TUNABLES_DIR);
return -EINVAL;
}
tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
tunables_dir, NULL, &tunables_fops);
if (!tunables_file) {
pr_err("unable to create debugfs file %s\n",
UV_BAU_TUNABLES_FILE);
return -EINVAL;
}
return 0;
}
/*
* Initialize the sending side's sending buffers.
*/
static void activation_descriptor_init(int node, int pnode, int base_pnode)
{
int i;
int cpu;
int uv1 = 0;
unsigned long gpa;
unsigned long m;
unsigned long n;
size_t dsize;
struct bau_desc *bau_desc;
struct bau_desc *bd2;
struct uv1_bau_msg_header *uv1_hdr;
struct uv2_3_bau_msg_header *uv2_3_hdr;
struct bau_control *bcp;
/*
* each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
* per cpu; and one per cpu on the uvhub (ADP_SZ)
*/
dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
BUG_ON(!bau_desc);
gpa = uv_gpa(bau_desc);
n = uv_gpa_to_gnode(gpa);
m = ops.bau_gpa_to_offset(gpa);
if (is_uv1_hub())
uv1 = 1;
/* the 14-bit pnode */
write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
/*
* Initializing all 8 (ITEMS_PER_DESC) descriptors for each
* cpu even though we only use the first one; one descriptor can
* describe a broadcast to 256 uv hubs.
*/
for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
memset(bd2, 0, sizeof(struct bau_desc));
if (uv1) {
uv1_hdr = &bd2->header.uv1_hdr;
uv1_hdr->swack_flag = 1;
/*
* The base_dest_nasid set in the message header
* is the nasid of the first uvhub in the partition.
* The bit map will indicate destination pnode numbers
* relative to that base. They may not be consecutive
* if nasid striding is being used.
*/
uv1_hdr->base_dest_nasid =
UV_PNODE_TO_NASID(base_pnode);
uv1_hdr->dest_subnodeid = UV_LB_SUBNODEID;
uv1_hdr->command = UV_NET_ENDPOINT_INTD;
uv1_hdr->int_both = 1;
/*
* all others need to be set to zero:
* fairness chaining multilevel count replied_to
*/
} else {
/*
* BIOS uses legacy mode, but uv2 and uv3 hardware always
* uses native mode for selective broadcasts.
*/
uv2_3_hdr = &bd2->header.uv2_3_hdr;
uv2_3_hdr->swack_flag = 1;
uv2_3_hdr->base_dest_nasid =
UV_PNODE_TO_NASID(base_pnode);
uv2_3_hdr->dest_subnodeid = UV_LB_SUBNODEID;
uv2_3_hdr->command = UV_NET_ENDPOINT_INTD;
}
}
for_each_present_cpu(cpu) {
if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
continue;
bcp = &per_cpu(bau_control, cpu);
bcp->descriptor_base = bau_desc;
}
}
/*
* initialize the destination side's receiving buffers
* entered for each uvhub in the partition
* - node is first node (kernel memory notion) on the uvhub
* - pnode is the uvhub's physical identifier
*/
static void pq_init(int node, int pnode)
{
int cpu;
size_t plsize;
char *cp;
void *vp;
unsigned long gnode, first, last, tail;
struct bau_pq_entry *pqp;
struct bau_control *bcp;
plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
vp = kmalloc_node(plsize, GFP_KERNEL, node);
pqp = (struct bau_pq_entry *)vp;
BUG_ON(!pqp);
cp = (char *)pqp + 31;
pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
for_each_present_cpu(cpu) {
if (pnode != uv_cpu_to_pnode(cpu))
continue;
/* for every cpu on this pnode: */
bcp = &per_cpu(bau_control, cpu);
bcp->queue_first = pqp;
bcp->bau_msg_head = pqp;
bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
}
first = ops.bau_gpa_to_offset(uv_gpa(pqp));
last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
/*
* Pre UV4, the gnode is required to locate the payload queue
* and the payload queue tail must be maintained by the kernel.
*/
bcp = &per_cpu(bau_control, smp_processor_id());
if (bcp->uvhub_version <= 3) {
tail = first;
gnode = uv_gpa_to_gnode(uv_gpa(pqp));
first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
write_mmr_payload_tail(pnode, tail);
}
ops.write_payload_first(pnode, first);
ops.write_payload_last(pnode, last);
/* in effect, all msg_type's are set to MSG_NOOP */
memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
}
/*
* Initialization of each UV hub's structures
*/
static void __init init_uvhub(int uvhub, int vector, int base_pnode)
{
int node;
int pnode;
unsigned long apicid;
node = uvhub_to_first_node(uvhub);
pnode = uv_blade_to_pnode(uvhub);
activation_descriptor_init(node, pnode, base_pnode);
pq_init(node, pnode);
/*
* The below initialization can't be in firmware because the
* messaging IRQ will be determined by the OS.
*/
apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
write_mmr_data_config(pnode, ((apicid << 32) | vector));
}
/*
* We will set BAU_MISC_CONTROL with a timeout period.
* But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
* So the destination timeout period has to be calculated from them.
*/
static int calculate_destination_timeout(void)
{
unsigned long mmr_image;
int mult1;
int mult2;
int index;
int base;
int ret;
unsigned long ts_ns;
if (is_uv1_hub()) {
mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
ts_ns = timeout_base_ns[index];
ts_ns *= (mult1 * mult2);
ret = ts_ns / 1000;
} else {
/* same destination timeout for uv2 and uv3 */
/* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */
mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
base = 80;
else
base = 10;
mult1 = mmr_image & UV2_ACK_MASK;
ret = mult1 * base;
}
return ret;
}
static void __init init_per_cpu_tunables(void)
{
int cpu;
struct bau_control *bcp;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->baudisabled = 0;
if (nobau)
bcp->nobau = true;
bcp->statp = &per_cpu(ptcstats, cpu);
/* time interval to catch a hardware stay-busy bug */
bcp->timeout_interval = usec_2_cycles(2*timeout_us);
bcp->max_concurr = max_concurr;
bcp->max_concurr_const = max_concurr;
bcp->plugged_delay = plugged_delay;
bcp->plugsb4reset = plugsb4reset;
bcp->timeoutsb4reset = timeoutsb4reset;
bcp->ipi_reset_limit = ipi_reset_limit;
bcp->complete_threshold = complete_threshold;
bcp->cong_response_us = congested_respns_us;
bcp->cong_reps = congested_reps;
bcp->disabled_period = sec_2_cycles(disabled_period);
bcp->giveup_limit = giveup_limit;
spin_lock_init(&bcp->queue_lock);
spin_lock_init(&bcp->uvhub_lock);
spin_lock_init(&bcp->disable_lock);
}
}
/*
* Scan all cpus to collect blade and socket summaries.
*/
static int __init get_cpu_topology(int base_pnode,
struct uvhub_desc *uvhub_descs,
unsigned char *uvhub_mask)
{
int cpu;
int pnode;
int uvhub;
int socket;
struct bau_control *bcp;
struct uvhub_desc *bdp;
struct socket_desc *sdp;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
memset(bcp, 0, sizeof(struct bau_control));
pnode = uv_cpu_hub_info(cpu)->pnode;
if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
pr_emerg(
"cpu %d pnode %d-%d beyond %d; BAU disabled\n",
cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
return 1;
}
bcp->osnode = cpu_to_node(cpu);
bcp->partition_base_pnode = base_pnode;
uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
bdp = &uvhub_descs[uvhub];
bdp->num_cpus++;
bdp->uvhub = uvhub;
bdp->pnode = pnode;
/* kludge: 'assuming' one node per socket, and assuming that
disabling a socket just leaves a gap in node numbers */
socket = bcp->osnode & 1;
bdp->socket_mask |= (1 << socket);
sdp = &bdp->socket[socket];
sdp->cpu_number[sdp->num_cpus] = cpu;
sdp->num_cpus++;
if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
pr_emerg("%d cpus per socket invalid\n",
sdp->num_cpus);
return 1;
}
}
return 0;
}
/*
* Each socket is to get a local array of pnodes/hubs.
*/
static void make_per_cpu_thp(struct bau_control *smaster)
{
int cpu;
size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
memset(smaster->thp, 0, hpsz);
for_each_present_cpu(cpu) {
smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
}
}
/*
* Each uvhub is to get a local cpumask.
*/
static void make_per_hub_cpumask(struct bau_control *hmaster)
{
int sz = sizeof(cpumask_t);
hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
}
/*
* Initialize all the per_cpu information for the cpu's on a given socket,
* given what has been gathered into the socket_desc struct.
* And reports the chosen hub and socket masters back to the caller.
*/
static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
struct bau_control **smasterp,
struct bau_control **hmasterp)
{
int i;
int cpu;
struct bau_control *bcp;
for (i = 0; i < sdp->num_cpus; i++) {
cpu = sdp->cpu_number[i];
bcp = &per_cpu(bau_control, cpu);
bcp->cpu = cpu;
if (i == 0) {
*smasterp = bcp;
if (!(*hmasterp))
*hmasterp = bcp;
}
bcp->cpus_in_uvhub = bdp->num_cpus;
bcp->cpus_in_socket = sdp->num_cpus;
bcp->socket_master = *smasterp;
bcp->uvhub = bdp->uvhub;
if (is_uv1_hub())
bcp->uvhub_version = 1;
else if (is_uv2_hub())
bcp->uvhub_version = 2;
else if (is_uv3_hub())
bcp->uvhub_version = 3;
else if (is_uv4_hub())
bcp->uvhub_version = 4;
else {
pr_emerg("uvhub version not 1, 2, 3, or 4\n");
return 1;
}
bcp->uvhub_master = *hmasterp;
bcp->uvhub_cpu = uv_cpu_blade_processor_id(cpu);
if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
pr_emerg("%d cpus per uvhub invalid\n",
bcp->uvhub_cpu);
return 1;
}
}
return 0;
}
/*
* Summarize the blade and socket topology into the per_cpu structures.
*/
static int __init summarize_uvhub_sockets(int nuvhubs,
struct uvhub_desc *uvhub_descs,
unsigned char *uvhub_mask)
{
int socket;
int uvhub;
unsigned short socket_mask;
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
struct uvhub_desc *bdp;
struct bau_control *smaster = NULL;
struct bau_control *hmaster = NULL;
if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
continue;
bdp = &uvhub_descs[uvhub];
socket_mask = bdp->socket_mask;
socket = 0;
while (socket_mask) {
struct socket_desc *sdp;
if ((socket_mask & 1)) {
sdp = &bdp->socket[socket];
if (scan_sock(sdp, bdp, &smaster, &hmaster))
return 1;
make_per_cpu_thp(smaster);
}
socket++;
socket_mask = (socket_mask >> 1);
}
make_per_hub_cpumask(hmaster);
}
return 0;
}
/*
* initialize the bau_control structure for each cpu
*/
static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
{
unsigned char *uvhub_mask;
void *vp;
struct uvhub_desc *uvhub_descs;
if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
timeout_us = calculate_destination_timeout();
vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
uvhub_descs = (struct uvhub_desc *)vp;
memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
goto fail;
if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
goto fail;
kfree(uvhub_descs);
kfree(uvhub_mask);
init_per_cpu_tunables();
return 0;
fail:
kfree(uvhub_descs);
kfree(uvhub_mask);
return 1;
}
/*
* Initialization of BAU-related structures
*/
static int __init uv_bau_init(void)
{
int uvhub;
int pnode;
int nuvhubs;
int cur_cpu;
int cpus;
int vector;
cpumask_var_t *mask;
if (!is_uv_system())
return 0;
if (is_uv4_hub())
ops = uv4_bau_ops;
else if (is_uv3_hub())
ops = uv123_bau_ops;
else if (is_uv2_hub())
ops = uv123_bau_ops;
else if (is_uv1_hub())
ops = uv123_bau_ops;
for_each_possible_cpu(cur_cpu) {
mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
}
nuvhubs = uv_num_possible_blades();
congested_cycles = usec_2_cycles(congested_respns_us);
uv_base_pnode = 0x7fffffff;
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
cpus = uv_blade_nr_possible_cpus(uvhub);
if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
uv_base_pnode = uv_blade_to_pnode(uvhub);
}
/* software timeouts are not supported on UV4 */
if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
enable_timeouts();
if (init_per_cpu(nuvhubs, uv_base_pnode)) {
set_bau_off();
nobau_perm = 1;
return 0;
}
vector = UV_BAU_MESSAGE;
for_each_possible_blade(uvhub) {
if (uv_blade_nr_possible_cpus(uvhub))
init_uvhub(uvhub, vector, uv_base_pnode);
}
alloc_intr_gate(vector, uv_bau_message_intr1);
for_each_possible_blade(uvhub) {
if (uv_blade_nr_possible_cpus(uvhub)) {
unsigned long val;
unsigned long mmr;
pnode = uv_blade_to_pnode(uvhub);
/* INIT the bau */
val = 1L << 63;
write_gmmr_activation(pnode, val);
mmr = 1; /* should be 1 to broadcast to both sockets */
if (!is_uv1_hub())
write_mmr_data_broadcast(pnode, mmr);
}
}
return 0;
}
core_initcall(uv_bau_init);
fs_initcall(uv_ptc_init);