mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
263 lines
8 KiB
C
263 lines
8 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_PGTABLE_3LEVEL_H
|
|
#define _ASM_X86_PGTABLE_3LEVEL_H
|
|
|
|
/*
|
|
* Intel Physical Address Extension (PAE) Mode - three-level page
|
|
* tables on PPro+ CPUs.
|
|
*
|
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
|
*/
|
|
|
|
#define pte_ERROR(e) \
|
|
pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
|
|
__FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
|
|
#define pmd_ERROR(e) \
|
|
pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
|
|
__FILE__, __LINE__, &(e), pmd_val(e))
|
|
#define pgd_ERROR(e) \
|
|
pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
|
|
__FILE__, __LINE__, &(e), pgd_val(e))
|
|
|
|
/* Rules for using set_pte: the pte being assigned *must* be
|
|
* either not present or in a state where the hardware will
|
|
* not attempt to update the pte. In places where this is
|
|
* not possible, use pte_get_and_clear to obtain the old pte
|
|
* value and then use set_pte to update it. -ben
|
|
*/
|
|
static inline void native_set_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
ptep->pte_high = pte.pte_high;
|
|
smp_wmb();
|
|
ptep->pte_low = pte.pte_low;
|
|
}
|
|
|
|
#define pmd_read_atomic pmd_read_atomic
|
|
/*
|
|
* pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
|
|
* a "*pmdp" dereference done by gcc. Problem is, in certain places
|
|
* where pte_offset_map_lock is called, concurrent page faults are
|
|
* allowed, if the mmap_sem is hold for reading. An example is mincore
|
|
* vs page faults vs MADV_DONTNEED. On the page fault side
|
|
* pmd_populate rightfully does a set_64bit, but if we're reading the
|
|
* pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
|
|
* because gcc will not read the 64bit of the pmd atomically. To fix
|
|
* this all places running pmd_offset_map_lock() while holding the
|
|
* mmap_sem in read mode, shall read the pmdp pointer using this
|
|
* function to know if the pmd is null nor not, and in turn to know if
|
|
* they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
|
|
* operations.
|
|
*
|
|
* Without THP if the mmap_sem is hold for reading, the pmd can only
|
|
* transition from null to not null while pmd_read_atomic runs. So
|
|
* we can always return atomic pmd values with this function.
|
|
*
|
|
* With THP if the mmap_sem is hold for reading, the pmd can become
|
|
* trans_huge or none or point to a pte (and in turn become "stable")
|
|
* at any time under pmd_read_atomic. We could read it really
|
|
* atomically here with a atomic64_read for the THP enabled case (and
|
|
* it would be a whole lot simpler), but to avoid using cmpxchg8b we
|
|
* only return an atomic pmdval if the low part of the pmdval is later
|
|
* found stable (i.e. pointing to a pte). And we're returning a none
|
|
* pmdval if the low part of the pmd is none. In some cases the high
|
|
* and low part of the pmdval returned may not be consistent if THP is
|
|
* enabled (the low part may point to previously mapped hugepage,
|
|
* while the high part may point to a more recently mapped hugepage),
|
|
* but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
|
|
* of the pmd to be read atomically to decide if the pmd is unstable
|
|
* or not, with the only exception of when the low part of the pmd is
|
|
* zero in which case we return a none pmd.
|
|
*/
|
|
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
|
|
{
|
|
pmdval_t ret;
|
|
u32 *tmp = (u32 *)pmdp;
|
|
|
|
ret = (pmdval_t) (*tmp);
|
|
if (ret) {
|
|
/*
|
|
* If the low part is null, we must not read the high part
|
|
* or we can end up with a partial pmd.
|
|
*/
|
|
smp_rmb();
|
|
ret |= ((pmdval_t)*(tmp + 1)) << 32;
|
|
}
|
|
|
|
return (pmd_t) { ret };
|
|
}
|
|
|
|
static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
|
|
{
|
|
set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
|
|
}
|
|
|
|
static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
|
|
}
|
|
|
|
static inline void native_set_pud(pud_t *pudp, pud_t pud)
|
|
{
|
|
set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
|
|
}
|
|
|
|
/*
|
|
* For PTEs and PDEs, we must clear the P-bit first when clearing a page table
|
|
* entry, so clear the bottom half first and enforce ordering with a compiler
|
|
* barrier.
|
|
*/
|
|
static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
ptep->pte_low = 0;
|
|
smp_wmb();
|
|
ptep->pte_high = 0;
|
|
}
|
|
|
|
static inline void native_pmd_clear(pmd_t *pmd)
|
|
{
|
|
u32 *tmp = (u32 *)pmd;
|
|
*tmp = 0;
|
|
smp_wmb();
|
|
*(tmp + 1) = 0;
|
|
}
|
|
|
|
static inline void native_pud_clear(pud_t *pudp)
|
|
{
|
|
}
|
|
|
|
static inline void pud_clear(pud_t *pudp)
|
|
{
|
|
set_pud(pudp, __pud(0));
|
|
|
|
/*
|
|
* According to Intel App note "TLBs, Paging-Structure Caches,
|
|
* and Their Invalidation", April 2007, document 317080-001,
|
|
* section 8.1: in PAE mode we explicitly have to flush the
|
|
* TLB via cr3 if the top-level pgd is changed...
|
|
*
|
|
* Currently all places where pud_clear() is called either have
|
|
* flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
|
|
* pud_clear_bad()), so we don't need TLB flush here.
|
|
*/
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
|
|
{
|
|
pte_t res;
|
|
|
|
/* xchg acts as a barrier before the setting of the high bits */
|
|
res.pte_low = xchg(&ptep->pte_low, 0);
|
|
res.pte_high = ptep->pte_high;
|
|
ptep->pte_high = 0;
|
|
|
|
return res;
|
|
}
|
|
#else
|
|
#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
union split_pmd {
|
|
struct {
|
|
u32 pmd_low;
|
|
u32 pmd_high;
|
|
};
|
|
pmd_t pmd;
|
|
};
|
|
static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
|
|
{
|
|
union split_pmd res, *orig = (union split_pmd *)pmdp;
|
|
|
|
/* xchg acts as a barrier before setting of the high bits */
|
|
res.pmd_low = xchg(&orig->pmd_low, 0);
|
|
res.pmd_high = orig->pmd_high;
|
|
orig->pmd_high = 0;
|
|
|
|
return res.pmd;
|
|
}
|
|
#else
|
|
#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
union split_pud {
|
|
struct {
|
|
u32 pud_low;
|
|
u32 pud_high;
|
|
};
|
|
pud_t pud;
|
|
};
|
|
|
|
static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
|
|
{
|
|
union split_pud res, *orig = (union split_pud *)pudp;
|
|
|
|
/* xchg acts as a barrier before setting of the high bits */
|
|
res.pud_low = xchg(&orig->pud_low, 0);
|
|
res.pud_high = orig->pud_high;
|
|
orig->pud_high = 0;
|
|
|
|
return res.pud;
|
|
}
|
|
#else
|
|
#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
|
|
#endif
|
|
|
|
/* Encode and de-code a swap entry */
|
|
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
|
|
#define __swp_type(x) (((x).val) & 0x1f)
|
|
#define __swp_offset(x) ((x).val >> 5)
|
|
#define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << 5})
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t){ (pte).pte_high })
|
|
#define __swp_entry_to_pte(x) ((pte_t){ { .pte_high = (x).val } })
|
|
|
|
#define gup_get_pte gup_get_pte
|
|
/*
|
|
* WARNING: only to be used in the get_user_pages_fast() implementation.
|
|
*
|
|
* With get_user_pages_fast(), we walk down the pagetables without taking
|
|
* any locks. For this we would like to load the pointers atomically,
|
|
* but that is not possible (without expensive cmpxchg8b) on PAE. What
|
|
* we do have is the guarantee that a PTE will only either go from not
|
|
* present to present, or present to not present or both -- it will not
|
|
* switch to a completely different present page without a TLB flush in
|
|
* between; something that we are blocking by holding interrupts off.
|
|
*
|
|
* Setting ptes from not present to present goes:
|
|
*
|
|
* ptep->pte_high = h;
|
|
* smp_wmb();
|
|
* ptep->pte_low = l;
|
|
*
|
|
* And present to not present goes:
|
|
*
|
|
* ptep->pte_low = 0;
|
|
* smp_wmb();
|
|
* ptep->pte_high = 0;
|
|
*
|
|
* We must ensure here that the load of pte_low sees 'l' iff pte_high
|
|
* sees 'h'. We load pte_high *after* loading pte_low, which ensures we
|
|
* don't see an older value of pte_high. *Then* we recheck pte_low,
|
|
* which ensures that we haven't picked up a changed pte high. We might
|
|
* have gotten rubbish values from pte_low and pte_high, but we are
|
|
* guaranteed that pte_low will not have the present bit set *unless*
|
|
* it is 'l'. Because get_user_pages_fast() only operates on present ptes
|
|
* we're safe.
|
|
*/
|
|
static inline pte_t gup_get_pte(pte_t *ptep)
|
|
{
|
|
pte_t pte;
|
|
|
|
do {
|
|
pte.pte_low = ptep->pte_low;
|
|
smp_rmb();
|
|
pte.pte_high = ptep->pte_high;
|
|
smp_rmb();
|
|
} while (unlikely(pte.pte_low != ptep->pte_low));
|
|
|
|
return pte;
|
|
}
|
|
|
|
#endif /* _ASM_X86_PGTABLE_3LEVEL_H */
|