linux-stable/drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager_v9.c

931 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2016-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include "kfd_priv.h"
#include "kfd_mqd_manager.h"
#include "v9_structs.h"
#include "gc/gc_9_0_offset.h"
#include "gc/gc_9_0_sh_mask.h"
#include "sdma0/sdma0_4_0_sh_mask.h"
#include "amdgpu_amdkfd.h"
#include "kfd_device_queue_manager.h"
static void update_mqd(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
struct mqd_update_info *minfo);
static uint64_t mqd_stride_v9(struct mqd_manager *mm,
struct queue_properties *q)
{
if (mm->dev->kfd->cwsr_enabled &&
q->type == KFD_QUEUE_TYPE_COMPUTE)
return ALIGN(q->ctl_stack_size, PAGE_SIZE) +
ALIGN(sizeof(struct v9_mqd), PAGE_SIZE);
return mm->mqd_size;
}
static inline struct v9_mqd *get_mqd(void *mqd)
{
return (struct v9_mqd *)mqd;
}
static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct v9_sdma_mqd *)mqd;
}
static void update_cu_mask(struct mqd_manager *mm, void *mqd,
struct mqd_update_info *minfo, uint32_t inst)
{
struct v9_mqd *m;
uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
if (!minfo || !minfo->cu_mask.ptr)
return;
mqd_symmetrically_map_cu_mask(mm,
minfo->cu_mask.ptr, minfo->cu_mask.count, se_mask, inst);
m = get_mqd(mqd);
m->compute_static_thread_mgmt_se0 = se_mask[0];
m->compute_static_thread_mgmt_se1 = se_mask[1];
m->compute_static_thread_mgmt_se2 = se_mask[2];
m->compute_static_thread_mgmt_se3 = se_mask[3];
if (KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 3)) {
m->compute_static_thread_mgmt_se4 = se_mask[4];
m->compute_static_thread_mgmt_se5 = se_mask[5];
m->compute_static_thread_mgmt_se6 = se_mask[6];
m->compute_static_thread_mgmt_se7 = se_mask[7];
pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
m->compute_static_thread_mgmt_se0,
m->compute_static_thread_mgmt_se1,
m->compute_static_thread_mgmt_se2,
m->compute_static_thread_mgmt_se3,
m->compute_static_thread_mgmt_se4,
m->compute_static_thread_mgmt_se5,
m->compute_static_thread_mgmt_se6,
m->compute_static_thread_mgmt_se7);
} else {
pr_debug("inst: %u, update cu mask to %#x %#x %#x %#x\n",
inst, m->compute_static_thread_mgmt_se0,
m->compute_static_thread_mgmt_se1,
m->compute_static_thread_mgmt_se2,
m->compute_static_thread_mgmt_se3);
}
}
static void set_priority(struct v9_mqd *m, struct queue_properties *q)
{
m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
m->cp_hqd_queue_priority = q->priority;
}
static struct kfd_mem_obj *allocate_mqd(struct kfd_node *node,
struct queue_properties *q)
{
int retval;
struct kfd_mem_obj *mqd_mem_obj = NULL;
/* For V9 only, due to a HW bug, the control stack of a user mode
* compute queue needs to be allocated just behind the page boundary
* of its regular MQD buffer. So we allocate an enlarged MQD buffer:
* the first page of the buffer serves as the regular MQD buffer
* purpose and the remaining is for control stack. Although the two
* parts are in the same buffer object, they need different memory
* types: MQD part needs UC (uncached) as usual, while control stack
* needs NC (non coherent), which is different from the UC type which
* is used when control stack is allocated in user space.
*
* Because of all those, we use the gtt allocation function instead
* of sub-allocation function for this enlarged MQD buffer. Moreover,
* in order to achieve two memory types in a single buffer object, we
* pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
* amdgpu memory functions to do so.
*/
if (node->kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if (!mqd_mem_obj)
return NULL;
retval = amdgpu_amdkfd_alloc_gtt_mem(node->adev,
(ALIGN(q->ctl_stack_size, PAGE_SIZE) +
ALIGN(sizeof(struct v9_mqd), PAGE_SIZE)) *
NUM_XCC(node->xcc_mask),
&(mqd_mem_obj->gtt_mem),
&(mqd_mem_obj->gpu_addr),
(void *)&(mqd_mem_obj->cpu_ptr), true);
if (retval) {
kfree(mqd_mem_obj);
return NULL;
}
} else {
retval = kfd_gtt_sa_allocate(node, sizeof(struct v9_mqd),
&mqd_mem_obj);
if (retval)
return NULL;
}
return mqd_mem_obj;
}
static void init_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
uint64_t addr;
struct v9_mqd *m;
m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
addr = mqd_mem_obj->gpu_addr;
memset(m, 0, sizeof(struct v9_mqd));
m->header = 0xC0310800;
m->compute_pipelinestat_enable = 1;
m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
m->cp_mqd_base_addr_lo = lower_32_bits(addr);
m->cp_mqd_base_addr_hi = upper_32_bits(addr);
m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
/* Set cp_hqd_hq_scheduler0 bit 14 to 1 to have the CP set up the
* DISPATCH_PTR. This is required for the kfd debugger
*/
m->cp_hqd_hq_status0 = 1 << 14;
if (q->format == KFD_QUEUE_FORMAT_AQL)
m->cp_hqd_aql_control =
1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
if (q->tba_addr) {
m->compute_pgm_rsrc2 |=
(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
}
if (mm->dev->kfd->cwsr_enabled && q->ctx_save_restore_area_address) {
m->cp_hqd_persistent_state |=
(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
m->cp_hqd_ctx_save_base_addr_lo =
lower_32_bits(q->ctx_save_restore_area_address);
m->cp_hqd_ctx_save_base_addr_hi =
upper_32_bits(q->ctx_save_restore_area_address);
m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
m->cp_hqd_wg_state_offset = q->ctl_stack_size;
}
*mqd = m;
if (gart_addr)
*gart_addr = addr;
update_mqd(mm, m, q, NULL);
}
static int load_mqd(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
return mm->dev->kfd2kgd->hqd_load(mm->dev->adev, mqd, pipe_id, queue_id,
(uint32_t __user *)p->write_ptr,
wptr_shift, 0, mms, 0);
}
static void update_mqd(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
struct mqd_update_info *minfo)
{
struct v9_mqd *m;
m = get_mqd(mqd);
m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
m->cp_hqd_pq_doorbell_control =
q->doorbell_off <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
m->cp_hqd_pq_doorbell_control);
m->cp_hqd_ib_control =
3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
/*
* HW does not clamp this field correctly. Maximum EOP queue size
* is constrained by per-SE EOP done signal count, which is 8-bit.
* Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
* more than (EOP entry count - 1) so a queue size of 0x800 dwords
* is safe, giving a maximum field value of 0xA.
*
* Also, do calculation only if EOP is used (size > 0), otherwise
* the order_base_2 calculation provides incorrect result.
*
*/
m->cp_hqd_eop_control = q->eop_ring_buffer_size ?
min(0xA, order_base_2(q->eop_ring_buffer_size / 4) - 1) : 0;
m->cp_hqd_eop_base_addr_lo =
lower_32_bits(q->eop_ring_buffer_address >> 8);
m->cp_hqd_eop_base_addr_hi =
upper_32_bits(q->eop_ring_buffer_address >> 8);
m->cp_hqd_iq_timer = 0;
m->cp_hqd_vmid = q->vmid;
if (q->format == KFD_QUEUE_FORMAT_AQL) {
m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
m->cp_hqd_pq_doorbell_control |= 1 <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
}
if (mm->dev->kfd->cwsr_enabled && q->ctx_save_restore_area_address)
m->cp_hqd_ctx_save_control = 0;
if (KFD_GC_VERSION(mm->dev) != IP_VERSION(9, 4, 3))
update_cu_mask(mm, mqd, minfo, 0);
set_priority(m, q);
if (minfo && KFD_GC_VERSION(mm->dev) >= IP_VERSION(9, 4, 2)) {
if (minfo->update_flag & UPDATE_FLAG_IS_GWS)
m->compute_resource_limits |=
COMPUTE_RESOURCE_LIMITS__FORCE_SIMD_DIST_MASK;
else
m->compute_resource_limits &=
~COMPUTE_RESOURCE_LIMITS__FORCE_SIMD_DIST_MASK;
}
q->is_active = QUEUE_IS_ACTIVE(*q);
}
static uint32_t read_doorbell_id(void *mqd)
{
struct v9_mqd *m = (struct v9_mqd *)mqd;
return m->queue_doorbell_id0;
}
static int get_wave_state(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
struct v9_mqd *m;
struct kfd_context_save_area_header header;
/* Control stack is located one page after MQD. */
void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
m = get_mqd(mqd);
*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
m->cp_hqd_cntl_stack_offset;
*save_area_used_size = m->cp_hqd_wg_state_offset -
m->cp_hqd_cntl_stack_size;
header.wave_state.control_stack_size = *ctl_stack_used_size;
header.wave_state.wave_state_size = *save_area_used_size;
header.wave_state.wave_state_offset = m->cp_hqd_wg_state_offset;
header.wave_state.control_stack_offset = m->cp_hqd_cntl_stack_offset;
if (copy_to_user(ctl_stack, &header, sizeof(header.wave_state)))
return -EFAULT;
if (copy_to_user(ctl_stack + m->cp_hqd_cntl_stack_offset,
mqd_ctl_stack + m->cp_hqd_cntl_stack_offset,
*ctl_stack_used_size))
return -EFAULT;
return 0;
}
static void get_checkpoint_info(struct mqd_manager *mm, void *mqd, u32 *ctl_stack_size)
{
struct v9_mqd *m = get_mqd(mqd);
*ctl_stack_size = m->cp_hqd_cntl_stack_size;
}
static void checkpoint_mqd(struct mqd_manager *mm, void *mqd, void *mqd_dst, void *ctl_stack_dst)
{
struct v9_mqd *m;
/* Control stack is located one page after MQD. */
void *ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
m = get_mqd(mqd);
memcpy(mqd_dst, m, sizeof(struct v9_mqd));
memcpy(ctl_stack_dst, ctl_stack, m->cp_hqd_cntl_stack_size);
}
static void restore_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *qp,
const void *mqd_src,
const void *ctl_stack_src, u32 ctl_stack_size)
{
uint64_t addr;
struct v9_mqd *m;
void *ctl_stack;
m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
addr = mqd_mem_obj->gpu_addr;
memcpy(m, mqd_src, sizeof(*m));
*mqd = m;
if (gart_addr)
*gart_addr = addr;
/* Control stack is located one page after MQD. */
ctl_stack = (void *)((uintptr_t)*mqd + PAGE_SIZE);
memcpy(ctl_stack, ctl_stack_src, ctl_stack_size);
m->cp_hqd_pq_doorbell_control =
qp->doorbell_off <<
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
m->cp_hqd_pq_doorbell_control);
qp->is_active = 0;
}
static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_mqd *m;
init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
m = get_mqd(*mqd);
m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
}
static int destroy_hiq_mqd(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type, unsigned int timeout,
uint32_t pipe_id, uint32_t queue_id)
{
int err;
struct v9_mqd *m;
u32 doorbell_off;
m = get_mqd(mqd);
doorbell_off = m->cp_hqd_pq_doorbell_control >>
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, 0);
if (err)
pr_debug("Destroy HIQ MQD failed: %d\n", err);
return err;
}
static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_sdma_mqd *m;
m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
memset(m, 0, sizeof(struct v9_sdma_mqd));
*mqd = m;
if (gart_addr)
*gart_addr = mqd_mem_obj->gpu_addr;
mm->update_mqd(mm, m, q, NULL);
}
#define SDMA_RLC_DUMMY_DEFAULT 0xf
static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
struct mqd_update_info *minfo)
{
struct v9_sdma_mqd *m;
m = get_sdma_mqd(mqd);
m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->sdmax_rlcx_doorbell_offset =
q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
m->sdma_engine_id = q->sdma_engine_id;
m->sdma_queue_id = q->sdma_queue_id;
m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
q->is_active = QUEUE_IS_ACTIVE(*q);
}
static void checkpoint_mqd_sdma(struct mqd_manager *mm,
void *mqd,
void *mqd_dst,
void *ctl_stack_dst)
{
struct v9_sdma_mqd *m;
m = get_sdma_mqd(mqd);
memcpy(mqd_dst, m, sizeof(struct v9_sdma_mqd));
}
static void restore_mqd_sdma(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *qp,
const void *mqd_src,
const void *ctl_stack_src, const u32 ctl_stack_size)
{
uint64_t addr;
struct v9_sdma_mqd *m;
m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
addr = mqd_mem_obj->gpu_addr;
memcpy(m, mqd_src, sizeof(*m));
m->sdmax_rlcx_doorbell_offset =
qp->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
*mqd = m;
if (gart_addr)
*gart_addr = addr;
qp->is_active = 0;
}
static void init_mqd_hiq_v9_4_3(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_mqd *m;
int xcc = 0;
struct kfd_mem_obj xcc_mqd_mem_obj;
uint64_t xcc_gart_addr = 0;
memset(&xcc_mqd_mem_obj, 0x0, sizeof(struct kfd_mem_obj));
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
kfd_get_hiq_xcc_mqd(mm->dev, &xcc_mqd_mem_obj, xcc);
init_mqd(mm, (void **)&m, &xcc_mqd_mem_obj, &xcc_gart_addr, q);
m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
m->cp_mqd_stride_size = kfd_hiq_mqd_stride(mm->dev);
if (xcc == 0) {
/* Set no_update_rptr = 0 in Master XCC */
m->cp_hqd_pq_control &= ~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
/* Set the MQD pointer and gart address to XCC0 MQD */
*mqd = m;
*gart_addr = xcc_gart_addr;
}
}
}
static int hiq_load_mqd_kiq_v9_4_3(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
void *xcc_mqd;
uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
for_each_inst(xcc_id, xcc_mask) {
xcc_mqd = mqd + hiq_mqd_size * inst;
err = mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, xcc_mqd,
pipe_id, queue_id,
p->doorbell_off, xcc_id);
if (err) {
pr_debug("Failed to load HIQ MQD for XCC: %d\n", inst);
break;
}
++inst;
}
return err;
}
static int destroy_hiq_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type, unsigned int timeout,
uint32_t pipe_id, uint32_t queue_id)
{
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
uint64_t hiq_mqd_size = kfd_hiq_mqd_stride(mm->dev);
struct v9_mqd *m;
u32 doorbell_off;
for_each_inst(xcc_id, xcc_mask) {
m = get_mqd(mqd + hiq_mqd_size * inst);
doorbell_off = m->cp_hqd_pq_doorbell_control >>
CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
err = amdgpu_amdkfd_unmap_hiq(mm->dev->adev, doorbell_off, xcc_id);
if (err) {
pr_debug("Destroy HIQ MQD failed for xcc: %d\n", inst);
break;
}
++inst;
}
return err;
}
static void get_xcc_mqd(struct kfd_mem_obj *mqd_mem_obj,
struct kfd_mem_obj *xcc_mqd_mem_obj,
uint64_t offset)
{
xcc_mqd_mem_obj->gtt_mem = (offset == 0) ?
mqd_mem_obj->gtt_mem : NULL;
xcc_mqd_mem_obj->gpu_addr = mqd_mem_obj->gpu_addr + offset;
xcc_mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t)mqd_mem_obj->cpu_ptr
+ offset);
}
static void init_mqd_v9_4_3(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
struct v9_mqd *m;
int xcc = 0;
struct kfd_mem_obj xcc_mqd_mem_obj;
uint64_t xcc_gart_addr = 0;
uint64_t xcc_ctx_save_restore_area_address;
uint64_t offset = mm->mqd_stride(mm, q);
uint32_t local_xcc_start = mm->dev->dqm->current_logical_xcc_start++;
memset(&xcc_mqd_mem_obj, 0x0, sizeof(struct kfd_mem_obj));
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
get_xcc_mqd(mqd_mem_obj, &xcc_mqd_mem_obj, offset*xcc);
init_mqd(mm, (void **)&m, &xcc_mqd_mem_obj, &xcc_gart_addr, q);
m->cp_mqd_stride_size = offset;
/*
* Update the CWSR address for each XCC if CWSR is enabled
* and CWSR area is allocated in thunk
*/
if (mm->dev->kfd->cwsr_enabled &&
q->ctx_save_restore_area_address) {
xcc_ctx_save_restore_area_address =
q->ctx_save_restore_area_address +
(xcc * q->ctx_save_restore_area_size);
m->cp_hqd_ctx_save_base_addr_lo =
lower_32_bits(xcc_ctx_save_restore_area_address);
m->cp_hqd_ctx_save_base_addr_hi =
upper_32_bits(xcc_ctx_save_restore_area_address);
}
if (q->format == KFD_QUEUE_FORMAT_AQL) {
m->compute_tg_chunk_size = 1;
m->compute_current_logic_xcc_id =
(local_xcc_start + xcc) %
NUM_XCC(mm->dev->xcc_mask);
switch (xcc) {
case 0:
/* Master XCC */
m->cp_hqd_pq_control &=
~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
break;
default:
break;
}
} else {
/* PM4 Queue */
m->compute_current_logic_xcc_id = 0;
m->compute_tg_chunk_size = 0;
m->pm4_target_xcc_in_xcp = q->pm4_target_xcc;
}
if (xcc == 0) {
/* Set the MQD pointer and gart address to XCC0 MQD */
*mqd = m;
*gart_addr = xcc_gart_addr;
}
}
}
static void update_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
struct queue_properties *q, struct mqd_update_info *minfo)
{
struct v9_mqd *m;
int xcc = 0;
uint64_t size = mm->mqd_stride(mm, q);
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
m = get_mqd(mqd + size * xcc);
update_mqd(mm, m, q, minfo);
update_cu_mask(mm, mqd, minfo, xcc);
if (q->format == KFD_QUEUE_FORMAT_AQL) {
switch (xcc) {
case 0:
/* Master XCC */
m->cp_hqd_pq_control &=
~CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK;
break;
default:
break;
}
m->compute_tg_chunk_size = 1;
} else {
/* PM4 Queue */
m->compute_current_logic_xcc_id = 0;
m->compute_tg_chunk_size = 0;
m->pm4_target_xcc_in_xcp = q->pm4_target_xcc;
}
}
}
static int destroy_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type, unsigned int timeout,
uint32_t pipe_id, uint32_t queue_id)
{
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
void *xcc_mqd;
struct v9_mqd *m;
uint64_t mqd_offset;
m = get_mqd(mqd);
mqd_offset = m->cp_mqd_stride_size;
for_each_inst(xcc_id, xcc_mask) {
xcc_mqd = mqd + mqd_offset * inst;
err = mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, xcc_mqd,
type, timeout, pipe_id,
queue_id, xcc_id);
if (err) {
pr_debug("Destroy MQD failed for xcc: %d\n", inst);
break;
}
++inst;
}
return err;
}
static int load_mqd_v9_4_3(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
uint32_t xcc_mask = mm->dev->xcc_mask;
int xcc_id, err, inst = 0;
void *xcc_mqd;
uint64_t mqd_stride_size = mm->mqd_stride(mm, p);
for_each_inst(xcc_id, xcc_mask) {
xcc_mqd = mqd + mqd_stride_size * inst;
err = mm->dev->kfd2kgd->hqd_load(
mm->dev->adev, xcc_mqd, pipe_id, queue_id,
(uint32_t __user *)p->write_ptr, wptr_shift, 0, mms,
xcc_id);
if (err) {
pr_debug("Load MQD failed for xcc: %d\n", inst);
break;
}
++inst;
}
return err;
}
static int get_wave_state_v9_4_3(struct mqd_manager *mm, void *mqd,
struct queue_properties *q,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
int xcc, err = 0;
void *xcc_mqd;
void __user *xcc_ctl_stack;
uint64_t mqd_stride_size = mm->mqd_stride(mm, q);
u32 tmp_ctl_stack_used_size = 0, tmp_save_area_used_size = 0;
for (xcc = 0; xcc < NUM_XCC(mm->dev->xcc_mask); xcc++) {
xcc_mqd = mqd + mqd_stride_size * xcc;
xcc_ctl_stack = (void __user *)((uintptr_t)ctl_stack +
q->ctx_save_restore_area_size * xcc);
err = get_wave_state(mm, xcc_mqd, q, xcc_ctl_stack,
&tmp_ctl_stack_used_size,
&tmp_save_area_used_size);
if (err)
break;
/*
* Set the ctl_stack_used_size and save_area_used_size to
* ctl_stack_used_size and save_area_used_size of XCC 0 when
* passing the info the user-space.
* For multi XCC, user-space would have to look at the header
* info of each Control stack area to determine the control
* stack size and save area used.
*/
if (xcc == 0) {
*ctl_stack_used_size = tmp_ctl_stack_used_size;
*save_area_used_size = tmp_save_area_used_size;
}
}
return err;
}
#if defined(CONFIG_DEBUG_FS)
static int debugfs_show_mqd(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct v9_mqd), false);
return 0;
}
static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct v9_sdma_mqd), false);
return 0;
}
#endif
struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
struct kfd_node *dev)
{
struct mqd_manager *mqd;
if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
return NULL;
mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
if (!mqd)
return NULL;
mqd->dev = dev;
switch (type) {
case KFD_MQD_TYPE_CP:
mqd->allocate_mqd = allocate_mqd;
mqd->free_mqd = kfd_free_mqd_cp;
mqd->is_occupied = kfd_is_occupied_cp;
mqd->get_checkpoint_info = get_checkpoint_info;
mqd->checkpoint_mqd = checkpoint_mqd;
mqd->restore_mqd = restore_mqd;
mqd->mqd_size = sizeof(struct v9_mqd);
mqd->mqd_stride = mqd_stride_v9;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) {
mqd->init_mqd = init_mqd_v9_4_3;
mqd->load_mqd = load_mqd_v9_4_3;
mqd->update_mqd = update_mqd_v9_4_3;
mqd->destroy_mqd = destroy_mqd_v9_4_3;
mqd->get_wave_state = get_wave_state_v9_4_3;
} else {
mqd->init_mqd = init_mqd;
mqd->load_mqd = load_mqd;
mqd->update_mqd = update_mqd;
mqd->destroy_mqd = kfd_destroy_mqd_cp;
mqd->get_wave_state = get_wave_state;
}
break;
case KFD_MQD_TYPE_HIQ:
mqd->allocate_mqd = allocate_hiq_mqd;
mqd->free_mqd = free_mqd_hiq_sdma;
mqd->update_mqd = update_mqd;
mqd->is_occupied = kfd_is_occupied_cp;
mqd->mqd_size = sizeof(struct v9_mqd);
mqd->mqd_stride = kfd_mqd_stride;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
mqd->read_doorbell_id = read_doorbell_id;
if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)) {
mqd->init_mqd = init_mqd_hiq_v9_4_3;
mqd->load_mqd = hiq_load_mqd_kiq_v9_4_3;
mqd->destroy_mqd = destroy_hiq_mqd_v9_4_3;
} else {
mqd->init_mqd = init_mqd_hiq;
mqd->load_mqd = kfd_hiq_load_mqd_kiq;
mqd->destroy_mqd = destroy_hiq_mqd;
}
break;
case KFD_MQD_TYPE_DIQ:
mqd->allocate_mqd = allocate_mqd;
mqd->init_mqd = init_mqd_hiq;
mqd->free_mqd = kfd_free_mqd_cp;
mqd->load_mqd = load_mqd;
mqd->update_mqd = update_mqd;
mqd->destroy_mqd = kfd_destroy_mqd_cp;
mqd->is_occupied = kfd_is_occupied_cp;
mqd->mqd_size = sizeof(struct v9_mqd);
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
break;
case KFD_MQD_TYPE_SDMA:
mqd->allocate_mqd = allocate_sdma_mqd;
mqd->init_mqd = init_mqd_sdma;
mqd->free_mqd = free_mqd_hiq_sdma;
mqd->load_mqd = kfd_load_mqd_sdma;
mqd->update_mqd = update_mqd_sdma;
mqd->destroy_mqd = kfd_destroy_mqd_sdma;
mqd->is_occupied = kfd_is_occupied_sdma;
mqd->checkpoint_mqd = checkpoint_mqd_sdma;
mqd->restore_mqd = restore_mqd_sdma;
mqd->mqd_size = sizeof(struct v9_sdma_mqd);
mqd->mqd_stride = kfd_mqd_stride;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
#endif
break;
default:
kfree(mqd);
return NULL;
}
return mqd;
}