linux-stable/drivers/spi/spi-mem.c
Patrice Chotard 2283679f4c
spi: spi-mem: Fix spi_mem_poll_status()
In spi_mem_exec_op(), in case cs_gpiod descriptor is set, exec_op()
callback can't be used.
The same must be applied in spi_mem_poll_status(), poll_status()
callback can't be used, we must use the legacy path using
read_poll_timeout().

Tested on STM32mp257c-ev1 specific evaluation board on which a
spi-nand was mounted instead of a spi-nor.

Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Tested-by: Patrice Chotard <patrice.chotard@foss.st.com>
Link: https://lore.kernel.org/r/20220602091022.358127-1-patrice.chotard@foss.st.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-06-06 12:32:27 +01:00

919 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Exceet Electronics GmbH
* Copyright (C) 2018 Bootlin
*
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
*/
#include <linux/dmaengine.h>
#include <linux/iopoll.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/sched/task_stack.h>
#include "internals.h"
#define SPI_MEM_MAX_BUSWIDTH 8
/**
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
* memory operation
* @ctlr: the SPI controller requesting this dma_map()
* @op: the memory operation containing the buffer to map
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
* function
*
* Some controllers might want to do DMA on the data buffer embedded in @op.
* This helper prepares everything for you and provides a ready-to-use
* sg_table. This function is not intended to be called from spi drivers.
* Only SPI controller drivers should use it.
* Note that the caller must ensure the memory region pointed by
* op->data.buf.{in,out} is DMA-able before calling this function.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
const struct spi_mem_op *op,
struct sg_table *sgt)
{
struct device *dmadev;
if (!op->data.nbytes)
return -EINVAL;
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
dmadev = ctlr->dma_tx->device->dev;
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
dmadev = ctlr->dma_rx->device->dev;
else
dmadev = ctlr->dev.parent;
if (!dmadev)
return -EINVAL;
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
op->data.dir == SPI_MEM_DATA_IN ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
/**
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
* memory operation
* @ctlr: the SPI controller requesting this dma_unmap()
* @op: the memory operation containing the buffer to unmap
* @sgt: a pointer to an sg_table previously initialized by
* spi_controller_dma_map_mem_op_data()
*
* Some controllers might want to do DMA on the data buffer embedded in @op.
* This helper prepares things so that the CPU can access the
* op->data.buf.{in,out} buffer again.
*
* This function is not intended to be called from SPI drivers. Only SPI
* controller drivers should use it.
*
* This function should be called after the DMA operation has finished and is
* only valid if the previous spi_controller_dma_map_mem_op_data() call
* returned 0.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
const struct spi_mem_op *op,
struct sg_table *sgt)
{
struct device *dmadev;
if (!op->data.nbytes)
return;
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
dmadev = ctlr->dma_tx->device->dev;
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
dmadev = ctlr->dma_rx->device->dev;
else
dmadev = ctlr->dev.parent;
spi_unmap_buf(ctlr, dmadev, sgt,
op->data.dir == SPI_MEM_DATA_IN ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
{
u32 mode = mem->spi->mode;
switch (buswidth) {
case 1:
return 0;
case 2:
if ((tx &&
(mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
(!tx &&
(mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
return 0;
break;
case 4:
if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
(!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
return 0;
break;
case 8:
if ((tx && (mode & SPI_TX_OCTAL)) ||
(!tx && (mode & SPI_RX_OCTAL)))
return 0;
break;
default:
break;
}
return -ENOTSUPP;
}
static bool spi_mem_check_buswidth(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
return false;
if (op->addr.nbytes &&
spi_check_buswidth_req(mem, op->addr.buswidth, true))
return false;
if (op->dummy.nbytes &&
spi_check_buswidth_req(mem, op->dummy.buswidth, true))
return false;
if (op->data.dir != SPI_MEM_NO_DATA &&
spi_check_buswidth_req(mem, op->data.buswidth,
op->data.dir == SPI_MEM_DATA_OUT))
return false;
return true;
}
bool spi_mem_default_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_controller *ctlr = mem->spi->controller;
bool op_is_dtr =
op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
if (op_is_dtr) {
if (!spi_mem_controller_is_capable(ctlr, dtr))
return false;
if (op->cmd.nbytes != 2)
return false;
} else {
if (op->cmd.nbytes != 1)
return false;
}
if (op->data.ecc) {
if (!spi_mem_controller_is_capable(ctlr, ecc))
return false;
}
return spi_mem_check_buswidth(mem, op);
}
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
static bool spi_mem_buswidth_is_valid(u8 buswidth)
{
if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
return false;
return true;
}
static int spi_mem_check_op(const struct spi_mem_op *op)
{
if (!op->cmd.buswidth || !op->cmd.nbytes)
return -EINVAL;
if ((op->addr.nbytes && !op->addr.buswidth) ||
(op->dummy.nbytes && !op->dummy.buswidth) ||
(op->data.nbytes && !op->data.buswidth))
return -EINVAL;
if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
!spi_mem_buswidth_is_valid(op->addr.buswidth) ||
!spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
!spi_mem_buswidth_is_valid(op->data.buswidth))
return -EINVAL;
/* Buffers must be DMA-able. */
if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
object_is_on_stack(op->data.buf.in)))
return -EINVAL;
if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
object_is_on_stack(op->data.buf.out)))
return -EINVAL;
return 0;
}
static bool spi_mem_internal_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_controller *ctlr = mem->spi->controller;
if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
return ctlr->mem_ops->supports_op(mem, op);
return spi_mem_default_supports_op(mem, op);
}
/**
* spi_mem_supports_op() - Check if a memory device and the controller it is
* connected to support a specific memory operation
* @mem: the SPI memory
* @op: the memory operation to check
*
* Some controllers are only supporting Single or Dual IOs, others might only
* support specific opcodes, or it can even be that the controller and device
* both support Quad IOs but the hardware prevents you from using it because
* only 2 IO lines are connected.
*
* This function checks whether a specific operation is supported.
*
* Return: true if @op is supported, false otherwise.
*/
bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
if (spi_mem_check_op(op))
return false;
return spi_mem_internal_supports_op(mem, op);
}
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
static int spi_mem_access_start(struct spi_mem *mem)
{
struct spi_controller *ctlr = mem->spi->controller;
/*
* Flush the message queue before executing our SPI memory
* operation to prevent preemption of regular SPI transfers.
*/
spi_flush_queue(ctlr);
if (ctlr->auto_runtime_pm) {
int ret;
ret = pm_runtime_resume_and_get(ctlr->dev.parent);
if (ret < 0) {
dev_err(&ctlr->dev, "Failed to power device: %d\n",
ret);
return ret;
}
}
mutex_lock(&ctlr->bus_lock_mutex);
mutex_lock(&ctlr->io_mutex);
return 0;
}
static void spi_mem_access_end(struct spi_mem *mem)
{
struct spi_controller *ctlr = mem->spi->controller;
mutex_unlock(&ctlr->io_mutex);
mutex_unlock(&ctlr->bus_lock_mutex);
if (ctlr->auto_runtime_pm)
pm_runtime_put(ctlr->dev.parent);
}
/**
* spi_mem_exec_op() - Execute a memory operation
* @mem: the SPI memory
* @op: the memory operation to execute
*
* Executes a memory operation.
*
* This function first checks that @op is supported and then tries to execute
* it.
*
* Return: 0 in case of success, a negative error code otherwise.
*/
int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
struct spi_controller *ctlr = mem->spi->controller;
struct spi_transfer xfers[4] = { };
struct spi_message msg;
u8 *tmpbuf;
int ret;
ret = spi_mem_check_op(op);
if (ret)
return ret;
if (!spi_mem_internal_supports_op(mem, op))
return -ENOTSUPP;
if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
ret = spi_mem_access_start(mem);
if (ret)
return ret;
ret = ctlr->mem_ops->exec_op(mem, op);
spi_mem_access_end(mem);
/*
* Some controllers only optimize specific paths (typically the
* read path) and expect the core to use the regular SPI
* interface in other cases.
*/
if (!ret || ret != -ENOTSUPP)
return ret;
}
tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
/*
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
* we're guaranteed that this buffer is DMA-able, as required by the
* SPI layer.
*/
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
if (!tmpbuf)
return -ENOMEM;
spi_message_init(&msg);
tmpbuf[0] = op->cmd.opcode;
xfers[xferpos].tx_buf = tmpbuf;
xfers[xferpos].len = op->cmd.nbytes;
xfers[xferpos].tx_nbits = op->cmd.buswidth;
spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++;
totalxferlen++;
if (op->addr.nbytes) {
int i;
for (i = 0; i < op->addr.nbytes; i++)
tmpbuf[i + 1] = op->addr.val >>
(8 * (op->addr.nbytes - i - 1));
xfers[xferpos].tx_buf = tmpbuf + 1;
xfers[xferpos].len = op->addr.nbytes;
xfers[xferpos].tx_nbits = op->addr.buswidth;
spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++;
totalxferlen += op->addr.nbytes;
}
if (op->dummy.nbytes) {
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
xfers[xferpos].len = op->dummy.nbytes;
xfers[xferpos].tx_nbits = op->dummy.buswidth;
xfers[xferpos].dummy_data = 1;
spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++;
totalxferlen += op->dummy.nbytes;
}
if (op->data.nbytes) {
if (op->data.dir == SPI_MEM_DATA_IN) {
xfers[xferpos].rx_buf = op->data.buf.in;
xfers[xferpos].rx_nbits = op->data.buswidth;
} else {
xfers[xferpos].tx_buf = op->data.buf.out;
xfers[xferpos].tx_nbits = op->data.buswidth;
}
xfers[xferpos].len = op->data.nbytes;
spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++;
totalxferlen += op->data.nbytes;
}
ret = spi_sync(mem->spi, &msg);
kfree(tmpbuf);
if (ret)
return ret;
if (msg.actual_length != totalxferlen)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
/**
* spi_mem_get_name() - Return the SPI mem device name to be used by the
* upper layer if necessary
* @mem: the SPI memory
*
* This function allows SPI mem users to retrieve the SPI mem device name.
* It is useful if the upper layer needs to expose a custom name for
* compatibility reasons.
*
* Return: a string containing the name of the memory device to be used
* by the SPI mem user
*/
const char *spi_mem_get_name(struct spi_mem *mem)
{
return mem->name;
}
EXPORT_SYMBOL_GPL(spi_mem_get_name);
/**
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
* match controller limitations
* @mem: the SPI memory
* @op: the operation to adjust
*
* Some controllers have FIFO limitations and must split a data transfer
* operation into multiple ones, others require a specific alignment for
* optimized accesses. This function allows SPI mem drivers to split a single
* operation into multiple sub-operations when required.
*
* Return: a negative error code if the controller can't properly adjust @op,
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
* can't be handled in a single step.
*/
int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct spi_controller *ctlr = mem->spi->controller;
size_t len;
if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
return ctlr->mem_ops->adjust_op_size(mem, op);
if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
if (len > spi_max_transfer_size(mem->spi))
return -EINVAL;
op->data.nbytes = min3((size_t)op->data.nbytes,
spi_max_transfer_size(mem->spi),
spi_max_message_size(mem->spi) -
len);
if (!op->data.nbytes)
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct spi_mem_op op = desc->info.op_tmpl;
int ret;
op.addr.val = desc->info.offset + offs;
op.data.buf.in = buf;
op.data.nbytes = len;
ret = spi_mem_adjust_op_size(desc->mem, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(desc->mem, &op);
if (ret)
return ret;
return op.data.nbytes;
}
static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf)
{
struct spi_mem_op op = desc->info.op_tmpl;
int ret;
op.addr.val = desc->info.offset + offs;
op.data.buf.out = buf;
op.data.nbytes = len;
ret = spi_mem_adjust_op_size(desc->mem, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(desc->mem, &op);
if (ret)
return ret;
return op.data.nbytes;
}
/**
* spi_mem_dirmap_create() - Create a direct mapping descriptor
* @mem: SPI mem device this direct mapping should be created for
* @info: direct mapping information
*
* This function is creating a direct mapping descriptor which can then be used
* to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
* If the SPI controller driver does not support direct mapping, this function
* falls back to an implementation using spi_mem_exec_op(), so that the caller
* doesn't have to bother implementing a fallback on his own.
*
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
*/
struct spi_mem_dirmap_desc *
spi_mem_dirmap_create(struct spi_mem *mem,
const struct spi_mem_dirmap_info *info)
{
struct spi_controller *ctlr = mem->spi->controller;
struct spi_mem_dirmap_desc *desc;
int ret = -ENOTSUPP;
/* Make sure the number of address cycles is between 1 and 8 bytes. */
if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
return ERR_PTR(-EINVAL);
/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
return ERR_PTR(-EINVAL);
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
desc->mem = mem;
desc->info = *info;
if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
ret = ctlr->mem_ops->dirmap_create(desc);
if (ret) {
desc->nodirmap = true;
if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
ret = -ENOTSUPP;
else
ret = 0;
}
if (ret) {
kfree(desc);
return ERR_PTR(ret);
}
return desc;
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
/**
* spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
* @desc: the direct mapping descriptor to destroy
*
* This function destroys a direct mapping descriptor previously created by
* spi_mem_dirmap_create().
*/
void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
{
struct spi_controller *ctlr = desc->mem->spi->controller;
if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
ctlr->mem_ops->dirmap_destroy(desc);
kfree(desc);
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
{
struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
spi_mem_dirmap_destroy(desc);
}
/**
* devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
* it to a device
* @dev: device the dirmap desc will be attached to
* @mem: SPI mem device this direct mapping should be created for
* @info: direct mapping information
*
* devm_ variant of the spi_mem_dirmap_create() function. See
* spi_mem_dirmap_create() for more details.
*
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
*/
struct spi_mem_dirmap_desc *
devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
const struct spi_mem_dirmap_info *info)
{
struct spi_mem_dirmap_desc **ptr, *desc;
ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
desc = spi_mem_dirmap_create(mem, info);
if (IS_ERR(desc)) {
devres_free(ptr);
} else {
*ptr = desc;
devres_add(dev, ptr);
}
return desc;
}
EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
{
struct spi_mem_dirmap_desc **ptr = res;
if (WARN_ON(!ptr || !*ptr))
return 0;
return *ptr == data;
}
/**
* devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
* to a device
* @dev: device the dirmap desc is attached to
* @desc: the direct mapping descriptor to destroy
*
* devm_ variant of the spi_mem_dirmap_destroy() function. See
* spi_mem_dirmap_destroy() for more details.
*/
void devm_spi_mem_dirmap_destroy(struct device *dev,
struct spi_mem_dirmap_desc *desc)
{
devres_release(dev, devm_spi_mem_dirmap_release,
devm_spi_mem_dirmap_match, desc);
}
EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
/**
* spi_mem_dirmap_read() - Read data through a direct mapping
* @desc: direct mapping descriptor
* @offs: offset to start reading from. Note that this is not an absolute
* offset, but the offset within the direct mapping which already has
* its own offset
* @len: length in bytes
* @buf: destination buffer. This buffer must be DMA-able
*
* This function reads data from a memory device using a direct mapping
* previously instantiated with spi_mem_dirmap_create().
*
* Return: the amount of data read from the memory device or a negative error
* code. Note that the returned size might be smaller than @len, and the caller
* is responsible for calling spi_mem_dirmap_read() again when that happens.
*/
ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct spi_controller *ctlr = desc->mem->spi->controller;
ssize_t ret;
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
return -EINVAL;
if (!len)
return 0;
if (desc->nodirmap) {
ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
ret = spi_mem_access_start(desc->mem);
if (ret)
return ret;
ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
spi_mem_access_end(desc->mem);
} else {
ret = -ENOTSUPP;
}
return ret;
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
/**
* spi_mem_dirmap_write() - Write data through a direct mapping
* @desc: direct mapping descriptor
* @offs: offset to start writing from. Note that this is not an absolute
* offset, but the offset within the direct mapping which already has
* its own offset
* @len: length in bytes
* @buf: source buffer. This buffer must be DMA-able
*
* This function writes data to a memory device using a direct mapping
* previously instantiated with spi_mem_dirmap_create().
*
* Return: the amount of data written to the memory device or a negative error
* code. Note that the returned size might be smaller than @len, and the caller
* is responsible for calling spi_mem_dirmap_write() again when that happens.
*/
ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, const void *buf)
{
struct spi_controller *ctlr = desc->mem->spi->controller;
ssize_t ret;
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
return -EINVAL;
if (!len)
return 0;
if (desc->nodirmap) {
ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
ret = spi_mem_access_start(desc->mem);
if (ret)
return ret;
ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
spi_mem_access_end(desc->mem);
} else {
ret = -ENOTSUPP;
}
return ret;
}
EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
{
return container_of(drv, struct spi_mem_driver, spidrv.driver);
}
static int spi_mem_read_status(struct spi_mem *mem,
const struct spi_mem_op *op,
u16 *status)
{
const u8 *bytes = (u8 *)op->data.buf.in;
int ret;
ret = spi_mem_exec_op(mem, op);
if (ret)
return ret;
if (op->data.nbytes > 1)
*status = ((u16)bytes[0] << 8) | bytes[1];
else
*status = bytes[0];
return 0;
}
/**
* spi_mem_poll_status() - Poll memory device status
* @mem: SPI memory device
* @op: the memory operation to execute
* @mask: status bitmask to ckeck
* @match: (status & mask) expected value
* @initial_delay_us: delay in us before starting to poll
* @polling_delay_us: time to sleep between reads in us
* @timeout_ms: timeout in milliseconds
*
* This function polls a status register and returns when
* (status & mask) == match or when the timeout has expired.
*
* Return: 0 in case of success, -ETIMEDOUT in case of error,
* -EOPNOTSUPP if not supported.
*/
int spi_mem_poll_status(struct spi_mem *mem,
const struct spi_mem_op *op,
u16 mask, u16 match,
unsigned long initial_delay_us,
unsigned long polling_delay_us,
u16 timeout_ms)
{
struct spi_controller *ctlr = mem->spi->controller;
int ret = -EOPNOTSUPP;
int read_status_ret;
u16 status;
if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
op->data.dir != SPI_MEM_DATA_IN)
return -EINVAL;
if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !mem->spi->cs_gpiod) {
ret = spi_mem_access_start(mem);
if (ret)
return ret;
ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
initial_delay_us, polling_delay_us,
timeout_ms);
spi_mem_access_end(mem);
}
if (ret == -EOPNOTSUPP) {
if (!spi_mem_supports_op(mem, op))
return ret;
if (initial_delay_us < 10)
udelay(initial_delay_us);
else
usleep_range((initial_delay_us >> 2) + 1,
initial_delay_us);
ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
(read_status_ret || ((status) & mask) == match),
polling_delay_us, timeout_ms * 1000, false, mem,
op, &status);
if (read_status_ret)
return read_status_ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(spi_mem_poll_status);
static int spi_mem_probe(struct spi_device *spi)
{
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
struct spi_controller *ctlr = spi->controller;
struct spi_mem *mem;
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
if (!mem)
return -ENOMEM;
mem->spi = spi;
if (ctlr->mem_ops && ctlr->mem_ops->get_name)
mem->name = ctlr->mem_ops->get_name(mem);
else
mem->name = dev_name(&spi->dev);
if (IS_ERR_OR_NULL(mem->name))
return PTR_ERR_OR_ZERO(mem->name);
spi_set_drvdata(spi, mem);
return memdrv->probe(mem);
}
static void spi_mem_remove(struct spi_device *spi)
{
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
struct spi_mem *mem = spi_get_drvdata(spi);
if (memdrv->remove)
memdrv->remove(mem);
}
static void spi_mem_shutdown(struct spi_device *spi)
{
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
struct spi_mem *mem = spi_get_drvdata(spi);
if (memdrv->shutdown)
memdrv->shutdown(mem);
}
/**
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
* @memdrv: the SPI memory driver to register
* @owner: the owner of this driver
*
* Registers a SPI memory driver.
*
* Return: 0 in case of success, a negative error core otherwise.
*/
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
struct module *owner)
{
memdrv->spidrv.probe = spi_mem_probe;
memdrv->spidrv.remove = spi_mem_remove;
memdrv->spidrv.shutdown = spi_mem_shutdown;
return __spi_register_driver(owner, &memdrv->spidrv);
}
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
/**
* spi_mem_driver_unregister() - Unregister a SPI memory driver
* @memdrv: the SPI memory driver to unregister
*
* Unregisters a SPI memory driver.
*/
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
{
spi_unregister_driver(&memdrv->spidrv);
}
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);