mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
9d69294be2
-----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.14 (GNU/Linux) iEYEABECAAYFAmDltyYACgkQ+iyteGJfRsqsYgCffWETSHEY5Ydo1ocA74lKLYa6 zuQAnjvBNRiuDXazyF1c3FTydg1A6BUy =AF+Z -----END PGP SIGNATURE----- Merge tag 'linux-watchdog-5.14-rc1' of git://www.linux-watchdog.org/linux-watchdog Pull watchdog updates from Wim Van Sebroeck: - Add Mstar MSC313e WDT driver - Add support for sama7g5-wdt - Add compatible for SC7280 SoC - Add compatible for Mediatek MT8195 - sbsa: Support architecture version 1 - Removal of the MV64x60 watchdog driver - Extra PCI IDs for hpwdt - Add hrtimer-based pretimeout feature - Add {min,max}_timeout sysfs nodes - keembay timeout and pre-timeout handling - Several fixes, cleanups and improvements * tag 'linux-watchdog-5.14-rc1' of git://www.linux-watchdog.org/linux-watchdog: (56 commits) watchdog: iTCO_wdt: use dev_err() instead of pr_err() watchdog: Add Mstar MSC313e WDT driver dt-bindings: watchdog: Add Mstar MSC313e WDT devicetree bindings documentation watchdog: iTCO_wdt: Account for rebooting on second timeout dt-bindings: watchdog: Convert arm,sbsa-gwdt to DT schema dt-bindings: watchdog: sama5d4-wdt: add compatible for sama7g5-wdt watchdog: sama5d4_wdt: add support for sama7g5-wdt dt-bindings: watchdog: sama5d4-wdt: convert to yaml watchdog: ziirave_wdt: Remove VERSION_FMT defines and add sysfs newlines dt-bindings: watchdog: Add compatible for Mediatek MT8195 dt-bindings: watchdog: dw-wdt: add description for rk3568 watchdog: imx_sc_wdt: fix pretimeout watchdog: diag288_wdt: Remove redundant assignment watchdog: Add hrtimer-based pretimeout feature dt-bindings: watchdog: Add compatible for SC7280 SoC watchdog: qcom: Move suspend/resume to suspend_late/resume_early watchdog: Fix a typo in the file orion_wdt.c watchdog: jz4740: Fix return value check in jz4740_wdt_probe() watchdog: Remove MV64x60 watchdog driver doc: mtk-wdt: support pre-timeout when the bark irq is available ...
613 lines
16 KiB
C
613 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Octeon Watchdog driver
|
|
*
|
|
* Copyright (C) 2007-2017 Cavium, Inc.
|
|
*
|
|
* Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
|
|
*
|
|
* Some parts derived from wdt.c
|
|
*
|
|
* (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
|
|
* All Rights Reserved.
|
|
*
|
|
* Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
|
|
* warranty for any of this software. This material is provided
|
|
* "AS-IS" and at no charge.
|
|
*
|
|
* (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
|
|
*
|
|
* The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
|
|
* For most systems this is less than 10 seconds, so to allow for
|
|
* software to request longer watchdog heartbeats, we maintain software
|
|
* counters to count multiples of the base rate. If the system locks
|
|
* up in such a manner that we can not run the software counters, the
|
|
* only result is a watchdog reset sooner than was requested. But
|
|
* that is OK, because in this case userspace would likely not be able
|
|
* to do anything anyhow.
|
|
*
|
|
* The hardware watchdog interval we call the period. The OCTEON
|
|
* watchdog goes through several stages, after the first period an
|
|
* irq is asserted, then if it is not reset, after the next period NMI
|
|
* is asserted, then after an additional period a chip wide soft reset.
|
|
* So for the software counters, we reset watchdog after each period
|
|
* and decrement the counter. But for the last two periods we need to
|
|
* let the watchdog progress to the NMI stage so we disable the irq
|
|
* and let it proceed. Once in the NMI, we print the register state
|
|
* to the serial port and then wait for the reset.
|
|
*
|
|
* A watchdog is maintained for each CPU in the system, that way if
|
|
* one CPU suffers a lockup, we also get a register dump and reset.
|
|
* The userspace ping resets the watchdog on all CPUs.
|
|
*
|
|
* Before userspace opens the watchdog device, we still run the
|
|
* watchdogs to catch any lockups that may be kernel related.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/watchdog.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdomain.h>
|
|
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/uasm.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
#include <asm/octeon/cvmx-boot-vector.h>
|
|
#include <asm/octeon/cvmx-ciu2-defs.h>
|
|
#include <asm/octeon/cvmx-rst-defs.h>
|
|
|
|
/* Watchdog interrupt major block number (8 MSBs of intsn) */
|
|
#define WD_BLOCK_NUMBER 0x01
|
|
|
|
static int divisor;
|
|
|
|
/* The count needed to achieve timeout_sec. */
|
|
static unsigned int timeout_cnt;
|
|
|
|
/* The maximum period supported. */
|
|
static unsigned int max_timeout_sec;
|
|
|
|
/* The current period. */
|
|
static unsigned int timeout_sec;
|
|
|
|
/* Set to non-zero when userspace countdown mode active */
|
|
static bool do_countdown;
|
|
static unsigned int countdown_reset;
|
|
static unsigned int per_cpu_countdown[NR_CPUS];
|
|
|
|
static cpumask_t irq_enabled_cpus;
|
|
|
|
#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
|
|
|
|
#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
|
|
|
|
static int heartbeat = WD_TIMO;
|
|
module_param(heartbeat, int, 0444);
|
|
MODULE_PARM_DESC(heartbeat,
|
|
"Watchdog heartbeat in seconds. (0 < heartbeat, default="
|
|
__MODULE_STRING(WD_TIMO) ")");
|
|
|
|
static bool nowayout = WATCHDOG_NOWAYOUT;
|
|
module_param(nowayout, bool, 0444);
|
|
MODULE_PARM_DESC(nowayout,
|
|
"Watchdog cannot be stopped once started (default="
|
|
__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
|
|
|
|
static int disable;
|
|
module_param(disable, int, 0444);
|
|
MODULE_PARM_DESC(disable,
|
|
"Disable the watchdog entirely (default=0)");
|
|
|
|
static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
|
|
|
|
void octeon_wdt_nmi_stage2(void);
|
|
|
|
static int cpu2core(int cpu)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return cpu_logical_map(cpu) & 0x3f;
|
|
#else
|
|
return cvmx_get_core_num();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_poke_irq - Poke the watchdog when an interrupt is received
|
|
*
|
|
* @cpl:
|
|
* @dev_id:
|
|
*
|
|
* Returns
|
|
*/
|
|
static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
unsigned int core = cpu2core(cpu);
|
|
int node = cpu_to_node(cpu);
|
|
|
|
if (do_countdown) {
|
|
if (per_cpu_countdown[cpu] > 0) {
|
|
/* We're alive, poke the watchdog */
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
|
|
per_cpu_countdown[cpu]--;
|
|
} else {
|
|
/* Bad news, you are about to reboot. */
|
|
disable_irq_nosync(cpl);
|
|
cpumask_clear_cpu(cpu, &irq_enabled_cpus);
|
|
}
|
|
} else {
|
|
/* Not open, just ping away... */
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* From setup.c */
|
|
extern int prom_putchar(char c);
|
|
|
|
/**
|
|
* octeon_wdt_write_string - Write a string to the uart
|
|
*
|
|
* @str: String to write
|
|
*/
|
|
static void octeon_wdt_write_string(const char *str)
|
|
{
|
|
/* Just loop writing one byte at a time */
|
|
while (*str)
|
|
prom_putchar(*str++);
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_write_hex() - Write a hex number out of the uart
|
|
*
|
|
* @value: Number to display
|
|
* @digits: Number of digits to print (1 to 16)
|
|
*/
|
|
static void octeon_wdt_write_hex(u64 value, int digits)
|
|
{
|
|
int d;
|
|
int v;
|
|
|
|
for (d = 0; d < digits; d++) {
|
|
v = (value >> ((digits - d - 1) * 4)) & 0xf;
|
|
if (v >= 10)
|
|
prom_putchar('a' + v - 10);
|
|
else
|
|
prom_putchar('0' + v);
|
|
}
|
|
}
|
|
|
|
static const char reg_name[][3] = {
|
|
"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
|
|
};
|
|
|
|
/**
|
|
* octeon_wdt_nmi_stage3:
|
|
*
|
|
* NMI stage 3 handler. NMIs are handled in the following manner:
|
|
* 1) The first NMI handler enables CVMSEG and transfers from
|
|
* the bootbus region into normal memory. It is careful to not
|
|
* destroy any registers.
|
|
* 2) The second stage handler uses CVMSEG to save the registers
|
|
* and create a stack for C code. It then calls the third level
|
|
* handler with one argument, a pointer to the register values.
|
|
* 3) The third, and final, level handler is the following C
|
|
* function that prints out some useful infomration.
|
|
*
|
|
* @reg: Pointer to register state before the NMI
|
|
*/
|
|
void octeon_wdt_nmi_stage3(u64 reg[32])
|
|
{
|
|
u64 i;
|
|
|
|
unsigned int coreid = cvmx_get_core_num();
|
|
/*
|
|
* Save status and cause early to get them before any changes
|
|
* might happen.
|
|
*/
|
|
u64 cp0_cause = read_c0_cause();
|
|
u64 cp0_status = read_c0_status();
|
|
u64 cp0_error_epc = read_c0_errorepc();
|
|
u64 cp0_epc = read_c0_epc();
|
|
|
|
/* Delay so output from all cores output is not jumbled together. */
|
|
udelay(85000 * coreid);
|
|
|
|
octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
|
|
octeon_wdt_write_hex(coreid, 2);
|
|
octeon_wdt_write_string(" ***\r\n");
|
|
for (i = 0; i < 32; i++) {
|
|
octeon_wdt_write_string("\t");
|
|
octeon_wdt_write_string(reg_name[i]);
|
|
octeon_wdt_write_string("\t0x");
|
|
octeon_wdt_write_hex(reg[i], 16);
|
|
if (i & 1)
|
|
octeon_wdt_write_string("\r\n");
|
|
}
|
|
octeon_wdt_write_string("\terr_epc\t0x");
|
|
octeon_wdt_write_hex(cp0_error_epc, 16);
|
|
|
|
octeon_wdt_write_string("\tepc\t0x");
|
|
octeon_wdt_write_hex(cp0_epc, 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
|
|
octeon_wdt_write_string("\tstatus\t0x");
|
|
octeon_wdt_write_hex(cp0_status, 16);
|
|
octeon_wdt_write_string("\tcause\t0x");
|
|
octeon_wdt_write_hex(cp0_cause, 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
|
|
/* The CIU register is different for each Octeon model. */
|
|
if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
|
|
octeon_wdt_write_string("\tsrc_wd\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
|
|
octeon_wdt_write_string("\ten_wd\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
octeon_wdt_write_string("\tsrc_rml\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
|
|
octeon_wdt_write_string("\ten_rml\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
octeon_wdt_write_string("\tsum\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
|
|
octeon_wdt_write_string("\tsum0\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
|
|
octeon_wdt_write_string("\ten0\t0x");
|
|
octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
|
|
octeon_wdt_write_string("\r\n");
|
|
}
|
|
|
|
octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
|
|
|
|
/*
|
|
* G-30204: We must trigger a soft reset before watchdog
|
|
* does an incomplete job of doing it.
|
|
*/
|
|
if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
|
|
u64 scr;
|
|
unsigned int node = cvmx_get_node_num();
|
|
unsigned int lcore = cvmx_get_local_core_num();
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
|
|
/*
|
|
* Wait for other cores to print out information, but
|
|
* not too long. Do the soft reset before watchdog
|
|
* can trigger it.
|
|
*/
|
|
do {
|
|
ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
|
|
} while (ciu_wdog.s.cnt > 0x10000);
|
|
|
|
scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
|
|
scr |= 1 << 11; /* Indicate watchdog in bit 11 */
|
|
cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
|
|
cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
|
|
}
|
|
}
|
|
|
|
static int octeon_wdt_cpu_to_irq(int cpu)
|
|
{
|
|
unsigned int coreid;
|
|
int node;
|
|
int irq;
|
|
|
|
coreid = cpu2core(cpu);
|
|
node = cpu_to_node(cpu);
|
|
|
|
if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
|
|
struct irq_domain *domain;
|
|
int hwirq;
|
|
|
|
domain = octeon_irq_get_block_domain(node,
|
|
WD_BLOCK_NUMBER);
|
|
hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
|
|
irq = irq_find_mapping(domain, hwirq);
|
|
} else {
|
|
irq = OCTEON_IRQ_WDOG0 + coreid;
|
|
}
|
|
return irq;
|
|
}
|
|
|
|
static int octeon_wdt_cpu_pre_down(unsigned int cpu)
|
|
{
|
|
unsigned int core;
|
|
int node;
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
|
|
core = cpu2core(cpu);
|
|
|
|
node = cpu_to_node(cpu);
|
|
|
|
/* Poke the watchdog to clear out its state */
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
|
|
|
|
/* Disable the hardware. */
|
|
ciu_wdog.u64 = 0;
|
|
cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
|
|
|
|
free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
|
|
return 0;
|
|
}
|
|
|
|
static int octeon_wdt_cpu_online(unsigned int cpu)
|
|
{
|
|
unsigned int core;
|
|
unsigned int irq;
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
int node;
|
|
struct irq_domain *domain;
|
|
int hwirq;
|
|
|
|
core = cpu2core(cpu);
|
|
node = cpu_to_node(cpu);
|
|
|
|
octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
|
|
|
|
/* Disable it before doing anything with the interrupts. */
|
|
ciu_wdog.u64 = 0;
|
|
cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
|
|
|
|
per_cpu_countdown[cpu] = countdown_reset;
|
|
|
|
if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
|
|
/* Must get the domain for the watchdog block */
|
|
domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
|
|
|
|
/* Get a irq for the wd intsn (hardware interrupt) */
|
|
hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
|
|
irq = irq_create_mapping(domain, hwirq);
|
|
irqd_set_trigger_type(irq_get_irq_data(irq),
|
|
IRQ_TYPE_EDGE_RISING);
|
|
} else
|
|
irq = OCTEON_IRQ_WDOG0 + core;
|
|
|
|
if (request_irq(irq, octeon_wdt_poke_irq,
|
|
IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
|
|
panic("octeon_wdt: Couldn't obtain irq %d", irq);
|
|
|
|
/* Must set the irq affinity here */
|
|
if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
|
|
cpumask_t mask;
|
|
|
|
cpumask_clear(&mask);
|
|
cpumask_set_cpu(cpu, &mask);
|
|
irq_set_affinity(irq, &mask);
|
|
}
|
|
|
|
cpumask_set_cpu(cpu, &irq_enabled_cpus);
|
|
|
|
/* Poke the watchdog to clear out its state */
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
|
|
|
|
/* Finally enable the watchdog now that all handlers are installed */
|
|
ciu_wdog.u64 = 0;
|
|
ciu_wdog.s.len = timeout_cnt;
|
|
ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
|
|
cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
|
|
{
|
|
int cpu;
|
|
int coreid;
|
|
int node;
|
|
|
|
if (disable)
|
|
return 0;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
coreid = cpu2core(cpu);
|
|
node = cpu_to_node(cpu);
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
|
|
per_cpu_countdown[cpu] = countdown_reset;
|
|
if ((countdown_reset || !do_countdown) &&
|
|
!cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
|
|
/* We have to enable the irq */
|
|
enable_irq(octeon_wdt_cpu_to_irq(cpu));
|
|
cpumask_set_cpu(cpu, &irq_enabled_cpus);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void octeon_wdt_calc_parameters(int t)
|
|
{
|
|
unsigned int periods;
|
|
|
|
timeout_sec = max_timeout_sec;
|
|
|
|
|
|
/*
|
|
* Find the largest interrupt period, that can evenly divide
|
|
* the requested heartbeat time.
|
|
*/
|
|
while ((t % timeout_sec) != 0)
|
|
timeout_sec--;
|
|
|
|
periods = t / timeout_sec;
|
|
|
|
/*
|
|
* The last two periods are after the irq is disabled, and
|
|
* then to the nmi, so we subtract them off.
|
|
*/
|
|
|
|
countdown_reset = periods > 2 ? periods - 2 : 0;
|
|
heartbeat = t;
|
|
timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
|
|
}
|
|
|
|
static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
|
|
unsigned int t)
|
|
{
|
|
int cpu;
|
|
int coreid;
|
|
union cvmx_ciu_wdogx ciu_wdog;
|
|
int node;
|
|
|
|
if (t <= 0)
|
|
return -1;
|
|
|
|
octeon_wdt_calc_parameters(t);
|
|
|
|
if (disable)
|
|
return 0;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
coreid = cpu2core(cpu);
|
|
node = cpu_to_node(cpu);
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
|
|
ciu_wdog.u64 = 0;
|
|
ciu_wdog.s.len = timeout_cnt;
|
|
ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
|
|
cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
|
|
cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
|
|
}
|
|
octeon_wdt_ping(wdog); /* Get the irqs back on. */
|
|
return 0;
|
|
}
|
|
|
|
static int octeon_wdt_start(struct watchdog_device *wdog)
|
|
{
|
|
octeon_wdt_ping(wdog);
|
|
do_countdown = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int octeon_wdt_stop(struct watchdog_device *wdog)
|
|
{
|
|
do_countdown = 0;
|
|
octeon_wdt_ping(wdog);
|
|
return 0;
|
|
}
|
|
|
|
static const struct watchdog_info octeon_wdt_info = {
|
|
.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
|
|
.identity = "OCTEON",
|
|
};
|
|
|
|
static const struct watchdog_ops octeon_wdt_ops = {
|
|
.owner = THIS_MODULE,
|
|
.start = octeon_wdt_start,
|
|
.stop = octeon_wdt_stop,
|
|
.ping = octeon_wdt_ping,
|
|
.set_timeout = octeon_wdt_set_timeout,
|
|
};
|
|
|
|
static struct watchdog_device octeon_wdt = {
|
|
.info = &octeon_wdt_info,
|
|
.ops = &octeon_wdt_ops,
|
|
};
|
|
|
|
static enum cpuhp_state octeon_wdt_online;
|
|
/**
|
|
* octeon_wdt_init - Module/ driver initialization.
|
|
*
|
|
* Returns Zero on success
|
|
*/
|
|
static int __init octeon_wdt_init(void)
|
|
{
|
|
int ret;
|
|
|
|
octeon_wdt_bootvector = cvmx_boot_vector_get();
|
|
if (!octeon_wdt_bootvector) {
|
|
pr_err("Error: Cannot allocate boot vector.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
|
|
divisor = 0x200;
|
|
else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
|
|
divisor = 0x400;
|
|
else
|
|
divisor = 0x100;
|
|
|
|
/*
|
|
* Watchdog time expiration length = The 16 bits of LEN
|
|
* represent the most significant bits of a 24 bit decrementer
|
|
* that decrements every divisor cycle.
|
|
*
|
|
* Try for a timeout of 5 sec, if that fails a smaller number
|
|
* of even seconds,
|
|
*/
|
|
max_timeout_sec = 6;
|
|
do {
|
|
max_timeout_sec--;
|
|
timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
|
|
} while (timeout_cnt > 65535);
|
|
|
|
BUG_ON(timeout_cnt == 0);
|
|
|
|
octeon_wdt_calc_parameters(heartbeat);
|
|
|
|
pr_info("Initial granularity %d Sec\n", timeout_sec);
|
|
|
|
octeon_wdt.timeout = timeout_sec;
|
|
octeon_wdt.max_timeout = UINT_MAX;
|
|
|
|
watchdog_set_nowayout(&octeon_wdt, nowayout);
|
|
|
|
ret = watchdog_register_device(&octeon_wdt);
|
|
if (ret) {
|
|
pr_err("watchdog_register_device() failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (disable) {
|
|
pr_notice("disabled\n");
|
|
return 0;
|
|
}
|
|
|
|
cpumask_clear(&irq_enabled_cpus);
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
|
|
octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
|
|
if (ret < 0)
|
|
goto err;
|
|
octeon_wdt_online = ret;
|
|
return 0;
|
|
err:
|
|
cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
|
|
watchdog_unregister_device(&octeon_wdt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* octeon_wdt_cleanup - Module / driver shutdown
|
|
*/
|
|
static void __exit octeon_wdt_cleanup(void)
|
|
{
|
|
watchdog_unregister_device(&octeon_wdt);
|
|
|
|
if (disable)
|
|
return;
|
|
|
|
cpuhp_remove_state(octeon_wdt_online);
|
|
|
|
/*
|
|
* Disable the boot-bus memory, the code it points to is soon
|
|
* to go missing.
|
|
*/
|
|
cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
|
|
MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
|
|
module_init(octeon_wdt_init);
|
|
module_exit(octeon_wdt_cleanup);
|