mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
14726903c8
Merge misc updates from Andrew Morton: "173 patches. Subsystems affected by this series: ia64, ocfs2, block, and mm (debug, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock, oom-kill, migration, ksm, percpu, vmstat, and madvise)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits) mm/madvise: add MADV_WILLNEED to process_madvise() mm/vmstat: remove unneeded return value mm/vmstat: simplify the array size calculation mm/vmstat: correct some wrong comments mm/percpu,c: remove obsolete comments of pcpu_chunk_populated() selftests: vm: add COW time test for KSM pages selftests: vm: add KSM merging time test mm: KSM: fix data type selftests: vm: add KSM merging across nodes test selftests: vm: add KSM zero page merging test selftests: vm: add KSM unmerge test selftests: vm: add KSM merge test mm/migrate: correct kernel-doc notation mm: wire up syscall process_mrelease mm: introduce process_mrelease system call memblock: make memblock_find_in_range method private mm/mempolicy.c: use in_task() in mempolicy_slab_node() mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies mm/mempolicy: advertise new MPOL_PREFERRED_MANY mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY ...
1171 lines
30 KiB
C
1171 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <a.ryabinin@samsung.com>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/random.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <kunit/test.h>
|
|
|
|
#include "../mm/kasan/kasan.h"
|
|
|
|
#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
|
|
|
|
/*
|
|
* Some tests use these global variables to store return values from function
|
|
* calls that could otherwise be eliminated by the compiler as dead code.
|
|
*/
|
|
void *kasan_ptr_result;
|
|
int kasan_int_result;
|
|
|
|
static struct kunit_resource resource;
|
|
static struct kunit_kasan_expectation fail_data;
|
|
static bool multishot;
|
|
|
|
/*
|
|
* Temporarily enable multi-shot mode. Otherwise, KASAN would only report the
|
|
* first detected bug and panic the kernel if panic_on_warn is enabled. For
|
|
* hardware tag-based KASAN also allow tag checking to be reenabled for each
|
|
* test, see the comment for KUNIT_EXPECT_KASAN_FAIL().
|
|
*/
|
|
static int kasan_test_init(struct kunit *test)
|
|
{
|
|
if (!kasan_enabled()) {
|
|
kunit_err(test, "can't run KASAN tests with KASAN disabled");
|
|
return -1;
|
|
}
|
|
|
|
multishot = kasan_save_enable_multi_shot();
|
|
fail_data.report_found = false;
|
|
kunit_add_named_resource(test, NULL, NULL, &resource,
|
|
"kasan_data", &fail_data);
|
|
return 0;
|
|
}
|
|
|
|
static void kasan_test_exit(struct kunit *test)
|
|
{
|
|
kasan_restore_multi_shot(multishot);
|
|
KUNIT_EXPECT_FALSE(test, fail_data.report_found);
|
|
}
|
|
|
|
/**
|
|
* KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
|
|
* KASAN report; causes a test failure otherwise. This relies on a KUnit
|
|
* resource named "kasan_data". Do not use this name for KUnit resources
|
|
* outside of KASAN tests.
|
|
*
|
|
* For hardware tag-based KASAN in sync mode, when a tag fault happens, tag
|
|
* checking is auto-disabled. When this happens, this test handler reenables
|
|
* tag checking. As tag checking can be only disabled or enabled per CPU,
|
|
* this handler disables migration (preemption).
|
|
*
|
|
* Since the compiler doesn't see that the expression can change the fail_data
|
|
* fields, it can reorder or optimize away the accesses to those fields.
|
|
* Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
|
|
* expression to prevent that.
|
|
*
|
|
* In between KUNIT_EXPECT_KASAN_FAIL checks, fail_data.report_found is kept as
|
|
* false. This allows detecting KASAN reports that happen outside of the checks
|
|
* by asserting !fail_data.report_found at the start of KUNIT_EXPECT_KASAN_FAIL
|
|
* and in kasan_test_exit.
|
|
*/
|
|
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
|
|
!kasan_async_mode_enabled()) \
|
|
migrate_disable(); \
|
|
KUNIT_EXPECT_FALSE(test, READ_ONCE(fail_data.report_found)); \
|
|
barrier(); \
|
|
expression; \
|
|
barrier(); \
|
|
if (!READ_ONCE(fail_data.report_found)) { \
|
|
KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \
|
|
"expected in \"" #expression \
|
|
"\", but none occurred"); \
|
|
} \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) { \
|
|
if (READ_ONCE(fail_data.report_found)) \
|
|
kasan_enable_tagging_sync(); \
|
|
migrate_enable(); \
|
|
} \
|
|
WRITE_ONCE(fail_data.report_found, false); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \
|
|
if (!IS_ENABLED(config)) \
|
|
kunit_skip((test), "Test requires " #config "=y"); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \
|
|
if (IS_ENABLED(config)) \
|
|
kunit_skip((test), "Test requires " #config "=n"); \
|
|
} while (0)
|
|
|
|
static void kmalloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE - 5;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
/*
|
|
* An unaligned access past the requested kmalloc size.
|
|
* Only generic KASAN can precisely detect these.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
|
|
|
|
/*
|
|
* An aligned access into the first out-of-bounds granule that falls
|
|
* within the aligned kmalloc object.
|
|
*/
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
|
|
|
|
/* Out-of-bounds access past the aligned kmalloc object. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
|
|
ptr[size + KASAN_GRANULE_SIZE + 5]);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_left(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 15;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_node_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 4096;
|
|
|
|
ptr = kmalloc_node(size, GFP_KERNEL, 0);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
|
|
* fit into a slab cache and therefore is allocated via the page allocator
|
|
* fallback. Since this kind of fallback is only implemented for SLUB, these
|
|
* tests are limited to that allocator.
|
|
*/
|
|
static void kmalloc_pagealloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_pagealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
kfree(ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void kmalloc_pagealloc_invalid_free(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
|
|
}
|
|
|
|
static void pagealloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
size_t order = 4;
|
|
size_t size = (1UL << (PAGE_SHIFT + order));
|
|
|
|
/*
|
|
* With generic KASAN page allocations have no redzones, thus
|
|
* out-of-bounds detection is not guaranteed.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
|
|
free_pages((unsigned long)ptr, order);
|
|
}
|
|
|
|
static void pagealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
size_t order = 4;
|
|
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
free_pages((unsigned long)ptr, order);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void kmalloc_large_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
|
|
|
|
/*
|
|
* Allocate a chunk that is large enough, but still fits into a slab
|
|
* and does not trigger the page allocator fallback in SLUB.
|
|
*/
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void krealloc_more_oob_helper(struct kunit *test,
|
|
size_t size1, size_t size2)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t middle;
|
|
|
|
KUNIT_ASSERT_LT(test, size1, size2);
|
|
middle = size1 + (size2 - size1) / 2;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/* All offsets up to size2 must be accessible. */
|
|
ptr2[size1 - 1] = 'x';
|
|
ptr2[size1] = 'x';
|
|
ptr2[middle] = 'x';
|
|
ptr2[size2 - 1] = 'x';
|
|
|
|
/* Generic mode is precise, so unaligned size2 must be inaccessible. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
|
|
|
|
/* For all modes first aligned offset after size2 must be inaccessible. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void krealloc_less_oob_helper(struct kunit *test,
|
|
size_t size1, size_t size2)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t middle;
|
|
|
|
KUNIT_ASSERT_LT(test, size2, size1);
|
|
middle = size2 + (size1 - size2) / 2;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/* Must be accessible for all modes. */
|
|
ptr2[size2 - 1] = 'x';
|
|
|
|
/* Generic mode is precise, so unaligned size2 must be inaccessible. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
|
|
|
|
/* For all modes first aligned offset after size2 must be inaccessible. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
|
|
|
|
/*
|
|
* For all modes all size2, middle, and size1 should land in separate
|
|
* granules and thus the latter two offsets should be inaccessible.
|
|
*/
|
|
KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
|
|
round_down(middle, KASAN_GRANULE_SIZE));
|
|
KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
|
|
round_down(size1, KASAN_GRANULE_SIZE));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void krealloc_more_oob(struct kunit *test)
|
|
{
|
|
krealloc_more_oob_helper(test, 201, 235);
|
|
}
|
|
|
|
static void krealloc_less_oob(struct kunit *test)
|
|
{
|
|
krealloc_less_oob_helper(test, 235, 201);
|
|
}
|
|
|
|
static void krealloc_pagealloc_more_oob(struct kunit *test)
|
|
{
|
|
/* page_alloc fallback in only implemented for SLUB. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
|
|
KMALLOC_MAX_CACHE_SIZE + 235);
|
|
}
|
|
|
|
static void krealloc_pagealloc_less_oob(struct kunit *test)
|
|
{
|
|
/* page_alloc fallback in only implemented for SLUB. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
|
|
|
|
krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
|
|
KMALLOC_MAX_CACHE_SIZE + 201);
|
|
}
|
|
|
|
/*
|
|
* Check that krealloc() detects a use-after-free, returns NULL,
|
|
* and doesn't unpoison the freed object.
|
|
*/
|
|
static void krealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
int size1 = 201;
|
|
int size2 = 235;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
kfree(ptr1);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
|
|
KUNIT_ASSERT_PTR_EQ(test, (void *)ptr2, NULL);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
|
|
}
|
|
|
|
static void kmalloc_oob_16(struct kunit *test)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
/* This test is specifically crafted for the generic mode. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
|
|
kfree(ptr1);
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void kmalloc_uaf_16(struct kunit *test)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
kfree(ptr2);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
|
|
kfree(ptr1);
|
|
}
|
|
|
|
/*
|
|
* Note: in the memset tests below, the written range touches both valid and
|
|
* invalid memory. This makes sure that the instrumentation does not only check
|
|
* the starting address but the whole range.
|
|
*/
|
|
|
|
static void kmalloc_oob_memset_2(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, 2));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_4(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, 4));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_8(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, 8));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_16(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, 16));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_in_memset(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memset(ptr, 0, size + KASAN_GRANULE_SIZE));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_memmove_invalid_size(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 64;
|
|
volatile size_t invalid_size = -2;
|
|
|
|
/*
|
|
* Hardware tag-based mode doesn't check memmove for negative size.
|
|
* As a result, this test introduces a side-effect memory corruption,
|
|
* which can result in a crash.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
memset((char *)ptr, 0, 64);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memmove((char *)ptr, (char *)ptr + 4, invalid_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 10;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
|
|
}
|
|
|
|
static void kmalloc_uaf_memset(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 33;
|
|
|
|
/*
|
|
* Only generic KASAN uses quarantine, which is required to avoid a
|
|
* kernel memory corruption this test causes.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
|
|
}
|
|
|
|
static void kmalloc_uaf2(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size = 43;
|
|
int counter = 0;
|
|
|
|
again:
|
|
ptr1 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
kfree(ptr1);
|
|
|
|
ptr2 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/*
|
|
* For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
|
|
* Allow up to 16 attempts at generating different tags.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
|
|
kfree(ptr2);
|
|
goto again;
|
|
}
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
|
|
KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void kfree_via_page(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
struct page *page;
|
|
unsigned long offset;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
page = virt_to_page(ptr);
|
|
offset = offset_in_page(ptr);
|
|
kfree(page_address(page) + offset);
|
|
}
|
|
|
|
static void kfree_via_phys(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
phys_addr_t phys;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
phys = virt_to_phys(ptr);
|
|
kfree(phys_to_virt(phys));
|
|
}
|
|
|
|
static void kmem_cache_oob(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
|
|
|
|
kmem_cache_free(cache, p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_accounted(struct kunit *test)
|
|
{
|
|
int i;
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
/*
|
|
* Several allocations with a delay to allow for lazy per memcg kmem
|
|
* cache creation.
|
|
*/
|
|
for (i = 0; i < 5; i++) {
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p)
|
|
goto free_cache;
|
|
|
|
kmem_cache_free(cache, p);
|
|
msleep(100);
|
|
}
|
|
|
|
free_cache:
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_bulk(struct kunit *test)
|
|
{
|
|
struct kmem_cache *cache;
|
|
size_t size = 200;
|
|
char *p[10];
|
|
bool ret;
|
|
int i;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
|
|
if (!ret) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(p); i++)
|
|
p[i][0] = p[i][size - 1] = 42;
|
|
|
|
kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static char global_array[10];
|
|
|
|
static void kasan_global_oob(struct kunit *test)
|
|
{
|
|
/*
|
|
* Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
|
|
* from failing here and panicking the kernel, access the array via a
|
|
* volatile pointer, which will prevent the compiler from being able to
|
|
* determine the array bounds.
|
|
*
|
|
* This access uses a volatile pointer to char (char *volatile) rather
|
|
* than the more conventional pointer to volatile char (volatile char *)
|
|
* because we want to prevent the compiler from making inferences about
|
|
* the pointer itself (i.e. its array bounds), not the data that it
|
|
* refers to.
|
|
*/
|
|
char *volatile array = global_array;
|
|
char *p = &array[ARRAY_SIZE(global_array) + 3];
|
|
|
|
/* Only generic mode instruments globals. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
/* Check that ksize() makes the whole object accessible. */
|
|
static void ksize_unpoisons_memory(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 123, real_size;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
real_size = ksize(ptr);
|
|
|
|
/* This access shouldn't trigger a KASAN report. */
|
|
ptr[size] = 'x';
|
|
|
|
/* This one must. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size]);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* Check that a use-after-free is detected by ksize() and via normal accesses
|
|
* after it.
|
|
*/
|
|
static void ksize_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
int size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
kfree(ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
|
|
}
|
|
|
|
static void kasan_stack_oob(struct kunit *test)
|
|
{
|
|
char stack_array[10];
|
|
/* See comment in kasan_global_oob. */
|
|
char *volatile array = stack_array;
|
|
char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_alloca_oob_left(struct kunit *test)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
/* See comment in kasan_global_oob. */
|
|
char *volatile array = alloca_array;
|
|
char *p = array - 1;
|
|
|
|
/* Only generic mode instruments dynamic allocas. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_alloca_oob_right(struct kunit *test)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
/* See comment in kasan_global_oob. */
|
|
char *volatile array = alloca_array;
|
|
char *p = array + i;
|
|
|
|
/* Only generic mode instruments dynamic allocas. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kmem_cache_double_free(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
kmem_cache_free(cache, p);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_invalid_free(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
|
|
NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
/* Trigger invalid free, the object doesn't get freed. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
|
|
|
|
/*
|
|
* Properly free the object to prevent the "Objects remaining in
|
|
* test_cache on __kmem_cache_shutdown" BUG failure.
|
|
*/
|
|
kmem_cache_free(cache, p);
|
|
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kasan_memchr(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
if (OOB_TAG_OFF)
|
|
size = round_up(size, OOB_TAG_OFF);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
kasan_ptr_result = memchr(ptr, '1', size + 1));
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kasan_memcmp(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
int arr[9];
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
if (OOB_TAG_OFF)
|
|
size = round_up(size, OOB_TAG_OFF);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
memset(arr, 0, sizeof(arr));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
kasan_int_result = memcmp(ptr, arr, size+1));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kasan_strings(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
|
|
/*
|
|
* Try to cause only 1 invalid access (less spam in dmesg).
|
|
* For that we need ptr to point to zeroed byte.
|
|
* Skip metadata that could be stored in freed object so ptr
|
|
* will likely point to zeroed byte.
|
|
*/
|
|
ptr += 16;
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
|
|
}
|
|
|
|
static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
|
|
{
|
|
KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
|
|
}
|
|
|
|
static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
|
|
{
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
|
|
|
|
#if defined(clear_bit_unlock_is_negative_byte)
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
|
|
clear_bit_unlock_is_negative_byte(nr, addr));
|
|
#endif
|
|
}
|
|
|
|
static void kasan_bitops_generic(struct kunit *test)
|
|
{
|
|
long *bits;
|
|
|
|
/* This test is specifically crafted for the generic mode. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/*
|
|
* Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
|
|
* this way we do not actually corrupt other memory.
|
|
*/
|
|
bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit within allocated memory; however, the
|
|
* below accesses are still out-of-bounds, since bitops are defined to
|
|
* operate on the whole long the bit is in.
|
|
*/
|
|
kasan_bitops_modify(test, BITS_PER_LONG, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit beyond allocated memory.
|
|
*/
|
|
kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
kfree(bits);
|
|
}
|
|
|
|
static void kasan_bitops_tags(struct kunit *test)
|
|
{
|
|
long *bits;
|
|
|
|
/* This test is specifically crafted for tag-based modes. */
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
|
|
bits = kzalloc(48, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
|
|
|
|
/* Do the accesses past the 48 allocated bytes, but within the redone. */
|
|
kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
|
|
kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
|
|
|
|
kfree(bits);
|
|
}
|
|
|
|
static void kmalloc_double_kzfree(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 16;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree_sensitive(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
|
|
}
|
|
|
|
static void vmalloc_oob(struct kunit *test)
|
|
{
|
|
void *area;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
|
|
|
|
/*
|
|
* We have to be careful not to hit the guard page.
|
|
* The MMU will catch that and crash us.
|
|
*/
|
|
area = vmalloc(3000);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, area);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
|
|
vfree(area);
|
|
}
|
|
|
|
/*
|
|
* Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
|
|
* KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
|
|
* modes.
|
|
*/
|
|
static void match_all_not_assigned(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
int i, size, order;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
size = (get_random_int() % 1024) + 1;
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
kfree(ptr);
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
order = (get_random_int() % 4) + 1;
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
free_pages((unsigned long)ptr, order);
|
|
}
|
|
}
|
|
|
|
/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
|
|
static void match_all_ptr_tag(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
u8 tag;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(128, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
/* Backup the assigned tag. */
|
|
tag = get_tag(ptr);
|
|
KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Reset the tag to 0xff.*/
|
|
ptr = set_tag(ptr, KASAN_TAG_KERNEL);
|
|
|
|
/* This access shouldn't trigger a KASAN report. */
|
|
*ptr = 0;
|
|
|
|
/* Recover the pointer tag and free. */
|
|
ptr = set_tag(ptr, tag);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/* Check that there are no match-all memory tags for tag-based modes. */
|
|
static void match_all_mem_tag(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
int tag;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(128, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* For each possible tag value not matching the pointer tag. */
|
|
for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
|
|
if (tag == get_tag(ptr))
|
|
continue;
|
|
|
|
/* Mark the first memory granule with the chosen memory tag. */
|
|
kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
|
|
|
|
/* This access must cause a KASAN report. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
|
|
}
|
|
|
|
/* Recover the memory tag and free. */
|
|
kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static struct kunit_case kasan_kunit_test_cases[] = {
|
|
KUNIT_CASE(kmalloc_oob_right),
|
|
KUNIT_CASE(kmalloc_oob_left),
|
|
KUNIT_CASE(kmalloc_node_oob_right),
|
|
KUNIT_CASE(kmalloc_pagealloc_oob_right),
|
|
KUNIT_CASE(kmalloc_pagealloc_uaf),
|
|
KUNIT_CASE(kmalloc_pagealloc_invalid_free),
|
|
KUNIT_CASE(pagealloc_oob_right),
|
|
KUNIT_CASE(pagealloc_uaf),
|
|
KUNIT_CASE(kmalloc_large_oob_right),
|
|
KUNIT_CASE(krealloc_more_oob),
|
|
KUNIT_CASE(krealloc_less_oob),
|
|
KUNIT_CASE(krealloc_pagealloc_more_oob),
|
|
KUNIT_CASE(krealloc_pagealloc_less_oob),
|
|
KUNIT_CASE(krealloc_uaf),
|
|
KUNIT_CASE(kmalloc_oob_16),
|
|
KUNIT_CASE(kmalloc_uaf_16),
|
|
KUNIT_CASE(kmalloc_oob_in_memset),
|
|
KUNIT_CASE(kmalloc_oob_memset_2),
|
|
KUNIT_CASE(kmalloc_oob_memset_4),
|
|
KUNIT_CASE(kmalloc_oob_memset_8),
|
|
KUNIT_CASE(kmalloc_oob_memset_16),
|
|
KUNIT_CASE(kmalloc_memmove_invalid_size),
|
|
KUNIT_CASE(kmalloc_uaf),
|
|
KUNIT_CASE(kmalloc_uaf_memset),
|
|
KUNIT_CASE(kmalloc_uaf2),
|
|
KUNIT_CASE(kfree_via_page),
|
|
KUNIT_CASE(kfree_via_phys),
|
|
KUNIT_CASE(kmem_cache_oob),
|
|
KUNIT_CASE(kmem_cache_accounted),
|
|
KUNIT_CASE(kmem_cache_bulk),
|
|
KUNIT_CASE(kasan_global_oob),
|
|
KUNIT_CASE(kasan_stack_oob),
|
|
KUNIT_CASE(kasan_alloca_oob_left),
|
|
KUNIT_CASE(kasan_alloca_oob_right),
|
|
KUNIT_CASE(ksize_unpoisons_memory),
|
|
KUNIT_CASE(ksize_uaf),
|
|
KUNIT_CASE(kmem_cache_double_free),
|
|
KUNIT_CASE(kmem_cache_invalid_free),
|
|
KUNIT_CASE(kasan_memchr),
|
|
KUNIT_CASE(kasan_memcmp),
|
|
KUNIT_CASE(kasan_strings),
|
|
KUNIT_CASE(kasan_bitops_generic),
|
|
KUNIT_CASE(kasan_bitops_tags),
|
|
KUNIT_CASE(kmalloc_double_kzfree),
|
|
KUNIT_CASE(vmalloc_oob),
|
|
KUNIT_CASE(match_all_not_assigned),
|
|
KUNIT_CASE(match_all_ptr_tag),
|
|
KUNIT_CASE(match_all_mem_tag),
|
|
{}
|
|
};
|
|
|
|
static struct kunit_suite kasan_kunit_test_suite = {
|
|
.name = "kasan",
|
|
.init = kasan_test_init,
|
|
.test_cases = kasan_kunit_test_cases,
|
|
.exit = kasan_test_exit,
|
|
};
|
|
|
|
kunit_test_suite(kasan_kunit_test_suite);
|
|
|
|
MODULE_LICENSE("GPL");
|